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Abstract. In this paper a method for solving a mid-term unit commitment prob-
lem in a large-scale thermal power system is presented. This method i1s based on
Lagrangian relaxation and uses a bundle method for solving the nonsmooth dual
problem. Computational results are presented for systems up to 168 time periods
(hours) and 100 units.

1 Introduction and Model

The unit commitment problem consists in determining a start—up/shut—
down schedule and the corresponding production levels for each unit of a
power system over a planning period so that the resulting total system
costs are minimized. The schedules and the production levels have to satisfy
demand and capacity constraints, and single unit constraints such as low
and high generation limits, minimal up and down times as well as must—run
and must—down time periods.

The mathematical model for our unit commitment problem is given by

T-1 1
fmn)fup ZZ uly FCi(ph) + KHCi(uly) + (1.1)
P t=0 i=1

SUC(xf,u) + HUC (2t ul)]

subject to (fori = 1,....,Jand t = 1,...,T, respectively)
I
Z ulyp! = D' (demand constraint) (1.2)
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must on/must off constraints

where [ is the number of units, 7" the number of time periods (hours),
D' and R' the demand and reserve in time period t, respectively, p! the
power production level of unit i in time period ¢, u! the decision variable
describing whether the unit i in time period ¢ has to be online (u! = (1,0)),
to be hot (uf = (0,1)) or cool (u! = (0,0)), « the state of unit i at time
t indicating the status of the unit and how long the status has not been
changed. Further, F'C;, KHC;, SUC; and SUC; denote the fuel costs (as a
quadratic function of p!), the keeping hot costs, the start up costs and heat
up costs, respectively.

(1.1) = (1.7) is a large—scale mixed—variable mathematical programming
problem with nonlinear objective.

During the last decades numerous approaches for solving the unit com-
mitment problem have been proposed. They are based on several optimiza-
tion techniques such as heuristics and priority lists, dynamic programming,
branch-and-bound methods, Benders decomposition, Lagrangian relaxation
and combinations of them (cf. [1,6,8,9,11,15]). For a survey we refer to [14],
where the authors come to the following conclusion: “A clear consensus is
presently tending toward the Lagrangian relaxation approach over other
methodologies.” Further applications of optimization techniques in power
dispatch are considered in [4].

The idea of Lagrangian relaxation for unit commitment consists in in-
cluding the demand and capacity constraints together with corresponding
Lagrange multipliers into the objective function, so that the original problem
decomposes into I independent single unit subproblems of lower dimension.
By maximizing the dual function, the optimal Lagrange multipliers and a
near-optimal solution of (1.1) — (1.7) are obtained.

In our algorithm outlined in Section 2 we use a bundle method to solve
the dual problem. Compared to subgradient methods, bundle methods are
based on a cutting—plane approximation for the objective associated with
a bundle of information of function values and subgradients ([5,7,13]). The
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computational results presented in Section 3 illustrate the performance of
the proposed algorithm.

2 Lagrangian Relaxation and Solution Method

The Lagrangian of (1.1) with respect to the demand and capacity constraints
is defined by

T— 1
L(u,p, A, i) = f(u,p) + Zl N (D' =X )]
t=0 =1

T-1 I
+ 30 W (D' RS )],
=1

t=0
where A' and p! are certain Lagrange multipliers. The corresponding dual
problem of (1.1) is

d(A, 1), 2.1
(A,u)renI%%{sz (A-p) (2.1)

where
d(A, p) = fnil;{L(u,p, A ) | (u,p) satisfies (1.4) — (L.7)}.  (2.2)
u7p

For any given multipliers (A, p) € RT x Rz the minimization problem on
the right-hand side of equation (2.2) is called a Lagrangian relaxation of

(1.1) = (1.7).
The function d : RT x Rz — R is concave and a subgradient of d in
(A, p) is given by

0 1 0,0 T-1 I T-1,T-1
(D — D U P DT T = T T,
0 0 I 0 T-1 T-1 I T-1
DO+ RO — oL wlpper, . DT RIS - L e,

where (u,p) minimizes L(u,p, A, 1) subject to (1.4) — (1.7) (see e.g. [11]). It
holds

max  d(A, p) < min{ f(u,p) | (u,p) satisfies (1.2) — (1.7)}
(A u)eRT xRT (up)

(weak duality theorem), but in general the equality is not satisfied (see e.g.

[11]). An estimate of the relative duality gap is given by

/ d_*d < const.%,
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where f* and d* denote the optimal value of the original problem and its
dual, respectively [1,2]. Since d* — oo as I — o0, the relative duality gap
tends to zero if the number of units increases. Computational experiments
indicate that the relative duality gap becomes also small for large T. In
general the primal variables obtained by solving the dual problem do not
satisfy all demand and capacity constraints. Thus, a primal feasible solution
has to be determined after the dual problem has been solved. The function
d has the separability structure

I T-1
d(A p) =Y di( A )+ Y [N'D' + p' (D' + RY)),

where d;(A, ) represents a single unit subproblem

T-1
di(\ )= min{ 37 [uly  min  {FCi(ph) - Apl)
Uy =0 plte[p;nzn7p:nam]

+KHC(uly) + SUC (2l ul) (2.3)
+HUCi(a!,uf) — ptuly pe] .

In formula (2.3) the minimization with respect to p! can be carried out
explicitly and the minimization with respect to u; subject to (1.5) — (1.7) is
done by dynamic programming,.

The solution strategy now consists in solving the dual maximization
problem by nonsmooth optimization methods, which is followed by deter-
mining a primal feasible solution.

Our algorithm follows the general concept of [15]. A simplified flow chart
is shown in figure 1 (see [10]).

| Initialization of Lagrange multipliers |

Solution of the dual problem (2.1)
by BT-methods Solution of the I single unit problems

given by (2.3)

[ Determining a reserve feasible solution |+«

| Economic dispatch |

Fig. 1

To initialize the Lagrange multiplier we generate a priority list based on
the average fuel costs at the maximum power level. The units are considered
in priority order and set online hourly if the capacity constraint has not yet
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been satisfied or if it is required by other constraints of type (1.6) and (1.7).
During this procedure we try to satisfy the inequality 2{21 uflplmm < DY,
too. After that we run the economic dispatch algorithm [3] and initialize the
multipliers ! with the values of the Lagrange multipliers A%, obtained by
the economic dispatch. The multipliers u! are initialized by u! = 0.

For solving the dual problem we use the bundle-trust (BT-)algorithm
BTNCBC [12]. To illustrate the method we consider the problem
mingcrm xR f(x), where f : R™t" — R is a convex function. At the k-th
iteration we have a sequence of iteration points z, a set J C {1,...,k}
and a collection of auxiliary points y;. For each auxiliary point we also
have a subgradient g; € df(y;) and the linearization error of := f(z;) —
[f(y:) + g (2 — y;)]. The next auxiliary and iteration points are calculated
as follows:

1. (vg,dg) ;== argmin  {v+ ﬁHdH2 | v>gld—ak Vie Jy,

(v,d)eRx R rp+deR™ xR}

2. 1If inkH < ¢ and —inkH? — vg < ¢, then stop.

(In this case f(zr) < f(z)+¢eljlz — zxl| + ¢ Vo € R” x R}.)

3. If f(ar + di) is “sufficiently smaller” than f(zy), then either (a)
enlarge t; and goto step 1, or (b) Zxy1 = yr41 1= @x + dj (serious
step). If f(ap+dy)is “not sufficiently smaller” than f(xy), then either
(a) reduce t; and goto step 1, or (b) 241 := zk and yry1 1= @ + di
(null step).

A detailed description of the algorithm as well as convergence results are

presented in [12,13].

As mentioned above the single unit problems are solved by dynamic
programming.

The procedure to search for a reserve feasible solution (RF'S) is essentially
the same as in [15]. The idea consists in finding the time interval ¢ for which
the capacity constraint is mostly violated and then computing the smallest
amount of necessary increase Ay’ for the multiplier u such that the solution
of the new Lagrangian relaxation where u’ is replaced by u! + Apu! satisfies
the t-th capacity constraint. This is done by determining the amount of
necessary increase in p! required to turn on an available unit that is originally
offline in interval t. When u! is increased the commitment of all online
units remains unchanged. This procedure is carried out recursively until the
reserve constraint is satisfied for all intervals.

The 0-1 variables are now fixed and the generation levels p! are adjusted
by a final economic dispatch for each time interval. For this purpose we use
the algorithm described in [3].
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3 Computational Results
number | number | number number | termination | number relative | CPU-time*
of of of binary of real parameter of BT- duality
periods units variables | variables (for BT) iterations gap
12 6 108 72 1D-3 14 1.7 % 1.0s
12 6 108 72 1D-4 33 1.1 % 2.5s
12 6 108 72 1D-5 62 1.1 % 5.3 s
24 25 900 600 1D-3 8 0.4 % 3.6s
24 25 900 600 1D-4 25 0.2 % 8.1s
24 25 900 600 1D-5 56 0.2 % 19.4 s
96 50 7200 4800 1D-3 5 0.7 % 40.5 s
96 50 7200 4800 1D-4 23 0.1 % 3:20 min
96 50 7200 4800 1D-5 57 0.1 % 8:48 min
168 50 12600 8400 1D-3 3 0.08 % 1:20 min
168 50 12600 8400 1D-4 25 0.04 % | 17:07 min
168 50 12600 8400 1D-5 50 0.05% | 34:12 min
168 100 25200 16800 1D-3 3 0.09 % 2:48 min
168 100 25200 16800 1D-4 13 0.01 % 9:13 min
168 100 25200 16800 1D-5 53 0.01 % | 38:57 min

* on HP apollo 715/50

Tab. 1

The algorithm described in Section 2 is implemented in FORTRAN 77 and
tested on a set of small- and mid-size unit commitment problems. Test runs
are performed for problems of various dimension and for several values of the
termination parameter of the BT-algorithm. Table 1 gives the correspond-
ing number of BT-iterations, the computational relative duality gap and the
CPU-times (on a HP-workstation). The termination criterion in step 2 of
the BT-iteration is realized by multiplying the termination parameter from
Table 1 with the estimate of the optimal primal function value obtained
during the initialization procedure. It is known that the computing time
for each Lagrangian relaxation given by (2.2) depends linearly on the num-
ber of periods and — assumed the average minimal up- and down-times are
similar — on the number of units. This behaviour is not observed for the
whole procedure due to the uncertain number of BT- and RFS-iterations.
Compared to subgradient-type methods, which are used in [8, 9,15], an es-
sential advantage of bundle—trust methods is the reliable stopping criterion
(without calculating primal feasible solutions in between). Different termi-
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nation criteria in the literature (bounds for the relative duality gap, maximal
number of iterations) complicate the comparison of test results and CPU-
times. However, the CPU~times of our test runs show that the algorithm
is comparatively fast and, in particular, suitable for large unit commitment
models.

Figure 2 contains the curves for the demand constraints, capacity con-
traints, and the sum of the lower and upper capacity limits of all online
units, respectively, for the 100 unit and 168 hour problem.
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Fig. 2
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