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Multistage stochastic programs

Let ξ ={ξt}T
t=1 be an IRd-valued discrete-time stochastic data pro-

cess defined on some probability space (Ω,F , IP ) and with ξ1 de-

terministic. The stochastic decision xt at period t is assumed to be

measurable with respect to Ft := σ(ξ1, . . . , ξt) (nonanticipativity).

Multistage stochastic program:

min

IE[

T∑
t=1

〈bt(ξt), xt〉]

∣∣∣∣∣∣
xt ∈ Xt,

xt is Ft −measurable, t = 1, . . . , T,

At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, . . . , T


where Xt are nonempty and polyhedral set, At,0 are fixed matrices

and bt(·), ht(·) and At,1(·) possibly depend affinely linearly on ξt,

where ξ varies in a polyhedral set Ξ.

The model is (multiperiod) two-stage if Ft = F , t = 2, . . . , T .

Stability of such models is not known so far (cf. the survey by Römisch 03).
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Application: Airline Revenue Management

Origin&Destination (O&D) Revenue Management has become a

standard instrument in airline industry. It considers the entire air-

line network and determines protection levels for all origin desti-

nation itineraries, fare classes, points of sale and data collection

points (dcp’s) of the booking horizon. Our model incorporates

the stochastic nature of the passenger behaviour and represents a

multi-stage stochastic program where its stages refer to the dcp’s.
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To have the multistage stochastic program well defined, we assume

xt ∈ Lr′(Ω,Ft, IP ; IRmt) and ξt ∈ Lr(Ω,Ft, IP ; IRd), where r ≥ 1

and

r′ :=


r

r−1 , if only costs are random

r , if only right-hand sides are random

r = 2 , if only costs and right-hand sides are random

∞ , if all technology matrices are random and r = T.

Then nonanticipativity may be expressed as

x ∈ Nna

Nna = {x ∈ ×T
t=1Lr′(Ω,F , IP ; IRmt) : xt = IE[xt|Ft] , ∀t},

i.e., as a subspace constraint, by using the conditional expectations

IE[·|Ft] with respect to the σ-fields Ft.

For T = 2 we have Nna = IRm1 × Lr′(Ω,F , P ; IRm2).

→ infinite-dimensional optimization problem
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Dynamic programming

Theorem: (Evstigneev 76, Rockafellar/Wets 76)

Under weak assumptions the multistage stochastic program is equiv-

alent to the (first-stage) convex minimization problem

min {
∫

Ξ

f (x1, ξ)P (dξ) : x1 ∈ X1},

where f is an integrand on IRm1 × Ξ given by

f (x1, ξ):=〈b1(ξ1), x1〉 + Φ2(x1, ξ
2),

Φt(x1, . . . , xt−1, ξ
t):=inf{〈bt(ξt), xt〉+IE

[
Φt+1(x1, . . . , xt, ξ

t+1)|Ft

]
:

xt ∈ Xt, At,0xt + At,1xt−1 = ht(ξt)}

for t = 2, . . . , T , where ΦT+1(x1, . . . , xT , ξT+1) := 0.

→The integrand f depends on the probability measure IP in a

nonlinear way !



Home Page

Title Page

Contents

JJ II

J I

Page 6 of 12

Go Back

Full Screen

Close

Quit

Quantitative Stability

Let us introduce some notations. Let F denote the objective func-

tion defined on Lr(Ω,F , IP ; IRs) × Lr′(Ω,F , IP ; IRm) → IR by

F (ξ, x) := IE[
∑T

t=1〈bt(ξt), xt〉], let

Xt(xt−1; ξt) := {xt ∈ Xt|At,0xt + At,1(ξt)xt−1 = ht(ξt)}

denote the t-th feasibility set for every t = 2, . . . , T and

X (ξ) := {x ∈ ×T
t=1Lr′(Ω,Ft, IP ; IRmt)|x1 ∈ X1, xt ∈ Xt(xt−1; ξt)}

the set of feasible elements with input ξ.

Then the multistage stochastic program may be rewritten as

min{F (ξ, x) : x ∈ X (ξ)}.

Let v(ξ) denote its optimal value and, for any α ≥ 0,

lα(F (ξ, ·)) := {x ∈ X (ξ) : F (ξ, x) ≤ v(ξ) + α}

denote the α-level set of the stochastic program with input ξ.
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The following conditions are imposed:

(A1) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F , IP ; IRs)

with ‖ξ̃ − ξ‖r ≤ δ, any t = 2, . . . , T and any x1 ∈ X1, xτ ∈
Xτ (xτ−1; ξ̃τ ), τ = 2, . . . , t − 1, the set Xt(xt−1; ξ̃t) is nonempty

(relatively complete recourse locally around ξ).

(A2) The optimal value v(ξ) is finite and the objective function

F is level-bounded locally uniformly at ξ, i.e., for some α > 0

there exists a δ > 0 and a bounded subset B of Lr′(Ω,F , IP ; IRm)

such that lα(F (ξ̃, ·)) is nonempty and contained in B for all ξ̃ ∈
Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ.

(A3) ξ ∈ Lr(Ω,F , IP ; IRs) for some r ≥ 1.

Norm in Lr: ‖ξ‖r := (
T∑

t=1
IE[‖ξt‖r])

1
r
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Theorem:
Let (A1), (A2) and (A3) be satisfied and X1 be bounded.

Then there exist positive constants L, α and δ such that

|v(ξ)− v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + Df(ξ, ξ̃))

holds for all ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ.

Here, Df(ξ, ξ̃) denotes the filtration distance of ξ and ξ̃ defined by

Df(ξ, ξ̃):= sup
ε∈(0,α]

inf
x∈lε(F (ξ,·))
x̃∈lε(F (ξ̃,·))

T−1∑
t=2

max{‖xt − IE[xt|F̃t]‖r′,‖x̃t − IE[x̃t|Ft]‖r′}

where Ft = σ(ξ1, . . . , ξt) and F̃t = σ(ξ̃1, . . . , ξ̃t), t = 2, . . . , T−1.

Note that the filtration distance vanishes for multiperiod two-stage

stochastic programs !
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If solutions exist, the filtration distance is of the simplified form

Df(ξ, ξ̃) = inf
x∈l0(F (ξ,·))
x̃∈l0(F (ξ̃,·))

T−1∑
t=2

max{‖xt−IE[xt|F̃t]‖r′, ‖x̃t−IE[x̃t|Ft]‖r′}.

For example, solutions exist if Ω is finite or if 1 < r′ < ∞ implying

that the spaces Lr′ are finite-dimensional or reflexive Banach spaces

(hence, the level sets are compact or weakly sequentially compact).

Remark:
The continuity property of infima in the Theorem can be supple-

mented by a quantitative stability property of the set S(ξ) of first

stage solutions. Namely, there exists a constant L̂ > 0 such that

sup
x∈S(ξ̃)

d(x, S(ξ)) ≤ Ψ−1
ξ (L̂(‖ξ − ξ̃‖r + Df(ξ, ξ̃))),

where Ψξ(τ ) :=inf {IE[f (x1, ξ)]−v(ξ) :d(x1, S(ξ)) ≥ τ, x1 ∈ X1}
with Ψ−1

ξ (α) := sup{τ ∈ IR+ : Ψξ(τ ) ≤ α} (α ∈ IR+) is the

growth function of the original problem near its solution set S(ξ).
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The following example shows that the filtration distance Df is in-

dispensable for the stability result to hold.

Example: (Optimal purchase under uncertainty)

The decisions xt correspond to the amounts to be purchased at

each time period with uncertain prices are ξt, t = 1, . . . , T , and

such that a prescribed amount a is achieved at the end of a given

time horizon. The problem is of the form

min

IE

[
T∑

t=1

ξtxt

] ∣∣∣∣∣∣∣∣∣
(xt, st) ∈ Xt = IR2

+,

(xt, st) is (ξ1, . . . , ξt)-measurable,

st − st−1 = xt, t = 2, . . . , T,

s1 = 0, sT = a.

 ,

where the state variable st corresponds to the amount at time t.

Let T := 3 and ξε denote the stochastic price process having the

two scenarios ξ1
ε = (3, 2 + ε, 3) (ε ∈ (0, 1)) and ξ2

ε = (3, 2, 1) each

endowed with probability 1
2. Let ξ̃ denote the approximation of ξε

given by the two scenarios ξ̃1 = (3, 2, 3) and ξ̃2 = (3, 2, 1) with the

same probabilities 1
2.
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2+ε 3

1

233

Scenario trees for ξε (left) and ξ̃

We obtain

v(ξε) =
1

2
((2 + ε)a + a) =

3 + ε

2
a

v(ξ̃) = 2a , but

‖ξε − ξ̃‖1 ≤ 1

2
(0 + ε + 0) +

1

2
(0 + 0 + 0) =

ε

2
.

Hence, the multistage stochastic purchasing model is not stable

with respect to ‖ · ‖1.

However, the estimate for |v(ξ) − v(ξ̃)| in the stability theorem is

valid with L = 1 since Df(ξ, ξ̃) = a
2.
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Conclusions

The stability result has important consequences for the construction

of scenario trees ξtr as approximations of the original process ξ. The

tree ξtr should be selected such that

‖ξ − ξtr‖r and Df(ξ, ξtr)

are smaller than some tolerance. This problem may be solved for ξ

having scenarios ξi and probabilities pi, i = 1, . . . , N .

Application: Airline revenue management (continued)

Let ξi be passenger demand scenarios for a single flight (LH400, A340-300) with d = 14 fare classes

and the booking time horizon with T = 18 obtained by (re)sampling from historical data (N=300).

An implementation of a (forward) tree construction leads to the following scenario tree with 150

scenarios, 1190 nodes and branching at all t = 1, . . . , 18.


