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Introduction

What is Stochastic Programming ?

- Mathematics for Decision Making under Uncertainty

- subfield of Mathematical Programming (MSC 90C15)

Stochastic programs are optimization models

- having special properties and structures,

- depending on the underlying probability distribution,

- requiring specific approximation and numerical approaches,

- having close relations to practical applications.

Selected recent monographs:
P. Kall/S.W. Wallace 1994, A. Prekopa 1995, J.R. Birge/F. Louveaux 1997, J. Mayer/P. Kall 2005

A. Ruszczynski/A. Shapiro (eds.), Stochastic Programming, Handbook, Elsevier, 2003

S.W. Wallace/W.T. Ziemba (eds.), Applications of Stochastic Programming, MPS-SIAM Series on

Optimization, 2005.
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Part I

Chance Constraints and Nonsmooth Analysis

(R. Henrion (Berlin))
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Optimization models under stochastic uncertainty

Let us consider the optimization model

min{f (ξ, x) : x ∈ X, g(ξ, x) ≤ 0} ,

where ξ : Ω → Ξ is a random vector defined on a probability space

(Ω,F , IP ), Ξ andX are closed subsets of IRs and IRm, respectively,

f : Ξ×X → IR and g : Ξ×X → IRd are lower semicontinuous.

Aim: Finding optimal decisions before knowing the random out-

come of ξ (here-and-now decision).

Main approaches:

• Replace the objective by IE[f (ξ, x)] or by IF [f (ξ, x)], where

IE denotes expectation (w.r.t. IP ) and IF some functional on

the space of real random variables (e.g., playing the role of a

risk functional).
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• Replace the random constraints by the constraint

IP ({ω ∈ Ω : g(ξ(ω), x) ≤ 0}) = IP (g(ξ, x) ≤ 0) ≥ p

where p ∈ [0, 1] denotes a probability level, or go back to the

modeling stage and introduce a recourse action to compensate

violations of the constraint.

The first variant leads to stochastic programs with probabilistic or

chance constraints:

min{IE[f (ξ, x)] : x ∈ X, IP (g(ξ, x) ≤ 0) ≥ p}

Problem:

If the original optimization problem is smooth, convex or even linear,

the probabilistic constraint function

G(x) := IP (g(ξ, x) ≤ 0)

may be non-differentiable, non-Lipschitzian and non-convex.



Home Page

Title Page

Contents

JJ II

J I

Page 7 of 66

Go Back

Full Screen

Close

Quit

Properties of chance constraints

Special forms of chance constraints:

• g(ξ, x) := ξ − h(x), where h : IRm → IRs, i.e.,

G(x) = IP (ξ ≤ h(x)) = Fµ(h(x)) ≥ p ,

where Fµ(y) := IP ({ω ∈ Ω : ξ(ω) ≤ y}) = µ({ξ ∈ Ξ : ξ ≤
y}) (y ∈ IRs) denotes the (multivariate) probability distribu-

tion function of ξ and µ := IP · ξ−1 its probability distribution.

• g(ξ, x) := b(ξ)−A(ξ)x, where the matrix A(·) and the vector

b(·) are affine functions of ξ, i.e.,

G(x) := µ({ξ ∈ Ξ : A(ξ)x ≥ b(ξ)}) ≥ p.
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Proposition: (Prekopa)

If H : IRm → IRs is a set-valued mapping with closed graph, the

function G : IRm → IR defined by G(x) := µ(H(x)) (x ∈ IRm)

is upper semicontinuous for every probability distribution µ on IRs.

Hence, the feasible set

Xp(µ) = {x ∈ X : G(x) = µ(H(x)) ≥ p}

is closed.

What about continuity and differentiability properties of G or con-

vexity of Xp(µ) ?
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Examples:
(i) Let H(x) = x + IRs

− (∀x ∈ IRs) and µ be discrete with finite

support, i.e., µ =
∑n

i=1 piδξi, where δξ denotes the Dirac measure

placing unit mass at ξ and pi > 0, i = 1, . . . , n,
∑n

i=1 pi = 1.

Then Xp(µ) = X ∩ (∪i∈I(ξi + IRs
+)) holds with some index set

I ⊂ {1, . . . , n} and, hence, it is non-convex in general.

Moreover, G = Fµ is discontinuous with jumps at bd(ξi + IRs
−).

(ii) Let H(x) = x+ IRs
− (∀x ∈ IRs) and µ have a density fµ with

respect to the Lebesgue measure on IRs, i.e.,

G(x) = Fµ(x) =

x∫
−∞

fµ(y)dy =

x1∫
−∞

· · ·
xs∫

−∞

fµ(y1, . . . , ys)dys · · · dy1.

Conjecture: G = Fµ is Lipschitz continuous if the density fµ is

continuous and bounded.
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Answer: The conjecture is true for s = 1, but holds no longer for

s > 1 in general.

Example: (A. Wakolbinger)

fµ(x1, x2) =


0 x1 < 0

cx
1/4
1 e−x1x

2
2 x1 ∈ [0, 1]

ce−x
4
1x

2
2 x1 > 1,

where c is chosen such that
∫ ∞
−∞

∫ ∞
−∞ fµ(x1, x2)dx1dx2 = 1.
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The density fµ is continuous and bounded. However, Fµ is not

locally Lipschitz continuous (as the marginal density functions are

not bounded).
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Proposition:
A probability distribution function Fµ with density fµ is locally Lips-

chitz continuous if its (one-dimensional) marginal density functions

f iµ, i = 1, . . . , s, are locally bounded.

Fµ is (globally) Lipschitz continuous iff its marginal density func-

tions are bounded.

f iµ(xi) :=

∫ +∞

−∞
· · ·

∫ +∞

−∞
fµ(x1, . . . , xs)dx1 · · · dxi−1dxi+1 · · · dxs

Is there a reasonable class of probability distributions to which the

proposition applies ?
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Definition:
A probability measure µ ∈ P(IRs) is called quasi-concave whenever

µ(λB + (1− λ)B̃) ≥ min{µ(B), µ(B̃)}

holds true for all Borel measurable convex subsets B, B̃ ⊆ IRs and

all λ ∈ [0, 1] such that λB + (1− λ)B̃ is Borel measurable.

Proposition: (Prekopa)

If H : IRm → IRs is a set-valued mapping with closed convex graph

and µ ∈ P(IRs) is quasi-concave, the function G(x) := µ(H(x))

(x ∈ IRm) is quasi-concave. Hence, if X is closed and convex, the

feasible set

Xp(µ) = {x ∈ X : G(x) = µ(H(x)) ≥ p}

is closed and convex.

Proof: Let x, x̃ ∈ IRm, λ ∈ [0, 1].

G(λx + (1− λ)x̃) = µ(H(λx + (1− λ)x̃)) ≥ µ(λH(x) + (1− λ)H(x̃))
≥ min{µ(H(x)), µ(H(x̃))} = min{G(x), G(x̃)}.
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Theorem: (Borell 75)

If µ ∈ P(IRs) is quasi-concave and has a density fµ, the function

f
−1

s
µ : IRs → IR is convex.

Theorem: (Henrion/Römisch 05)

The probability distribution function Fµ of a quasi-concave proba-

bility measure µ ∈ P(IRs) is Lipschitz continuous iff suppµ is not

contained in a (s− 1)-dimensional hyperplane.

Question: Are distribution functions of quasi-concave measures dif-

ferentiable, too ?
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Examples: (of quasi-concave probability measures)

Multivariate normal distributions N(m,C) (with mean m ∈ IRs

and s × s symmetric, positive semidefinite covariance matrix C;

nondegenerate or singular), uniform distributions on convex com-

pact subsets of IRs, Dirichlet-, Pareto-, Gamma-distributions etc.

Example: (singular normal distributions)

The probability distribution functions Fµ of 2-dimensional normal

distributions N(0, C) with

C =

(
1 0

0 0

)
,

(
1 1

1 1

)
,

(
1 −1

−1 1

)
are not differentiable on IR2.



Home Page

Title Page

Contents

JJ II

J I

Page 15 of 66

Go Back

Full Screen

Close

Quit

Theorem: (Henrion/Römisch 05)

Let ξ be an s-dimensional normal random vector whose covariance

matrix is nonsingular. Let Fη denote the probability distribution

function of the random vector η = Aξ + b where A is an m × s-

matrix and b ∈ IRm.

Then Fη is infinitely many times differentiable at any x̄ ∈ IRm

for which the system (A, x̄ − b) satisfies the Linear Independence

Constraint Qualification (LICQ), i.e., the rows ai, i = 1, . . . ,m, of

A satisfy the condition rank {ai : i ∈ I} = #I for every index set

I ∈ {1, . . . ,m} such that there exists z ∈ IRs with

aTi z = x̄i − bi (i ∈ I), aTi z < x̄i − bi (i ∈ {1, . . . ,m} \ I).

Example:
Our second example of singular normal distributions corresponds to

the probability distribution function Fη of

η =

(
1

1

)
ξ, ξ ∼ N(0, 1).

The result implies the C∞-property of Fη on R2\{(x, x) : x ∈ IR}.
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Example: (Henrion)

Let µ ∈ P(IR) be the standard normal (N(0, 1)) distribution with

probability distribution function

Φ(x) =
1

(2π)
1
2

∫ x

−∞
exp(−ξ

2

2
)dξ,

A =

(
1

−1

)
and b(ξ) =

(
ξ

ξ

)
for each ξ ∈ IR. Then we have

G(x) = µ({ξ ∈ IR : Ax ≥ b(ξ)})
= µ({ξ ∈ IR : x ≥ ξ,−x ≥ ξ}) = Φ(min{−x, x}).

Hence, although Φ is in C∞(IR), G is non-differentiable.
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Example: (Henrion/Römisch 99)

Let m = s = 2, X = [0, 2]× [0, 2], A := I , p = 1/6 and µ be the

uniform distribution on Ξ := ([0, 1]× [0, 1]) \ ([0, 1/2]× [0, 1/2]).

Around the feasible point x̄ = (3/4, 1/2) (the probability level is

binding at x̄) the constraint function is of the form

G(x) := Fµ(x) = 4/3 max{x2(x1 − 1/2), x1(x2 − 1/2), x1x2 − 1/4}

and is non-differentiable at x̄, although x̄ lies in the interior of the

support of the underlying constant density. Note that µ is not

quasi-concave since the support of µ is non-convex.
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Metric regularity of chance constraints

Let H : IRm → IRs be a set-valued mapping with closed graph,

X ⊆ IRm be closed and µ ∈ P(IRs). We consider the set-valued

mapping (from IR to IRm)

y 7→ Xy(µ) = {x ∈ X : µ(H(x)) ≥ y}.

Definition:
The chance constraint function µ(H(·)) − p is metrically regular

with respect to X at x̄ ∈ Xp(µ) if there exist positive constants a

and ε such that

d(x,Xy(µ)) ≤ amax{0, y − µ(H(x))}

holds for all x ∈ X ∩ IB(x̄, ε) and |p− y| ≤ ε.

Motivation: Continuity properties of the feasible set Xp(µ) with

respect to perturbations of µ ∈ P(IRs) measured in terms of a

suitable distance on P(IRs), e.g., the B-discrepancy

αB(µ, ν) := sup
B∈B

|µ(B)− ν(B)| with B := {H(x) : x ∈ X}.
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The convex case

Proposition: (Römisch/Schultz 91)

Let the set-valued mapping H have closed and convex graph, X

be closed and convex, p ∈ (0, 1) and µ ∈ P(IRs) be r-concave for

some r ∈ (−∞,+∞]. Suppose there exists a Slater point x̄ ∈ X

such that µ(H(x̄) > p.

Then µ(H(·)) − p is metrically regular with respect to X at each

x ∈ Xp(µ).

The proof is based on the Robinson-Ursescu theorem applied to the set-valued mapping Γ(x) :=

{v ∈ IR : x ∈ X, pr − (µ(H(x)))r ≥ v} for some r < 0 (w.l.o.g.).

The proposition applies to H(x) = {ξ ∈ IRs : h(x) ≥ ξ}, i.e.,

µ(H(x)) = Fµ(h(x)), where h has concave components. However,

even for h(x) = Ax the matrix A has to be non-stochastic.

For stochastic A there exist only specific results (Henrion/Strugarek 06).

Metric regularity results for the general case are an open problem.
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Definition:
A probability measure µ ∈ P(IRs) is called r- concave for some

r ∈ [−∞,+∞] if the inequality

µ(λB + (1− λ)B̃) ≥ mr(µ(B), µ(B̃);λ)

holds for all λ ∈ [0, 1] and all convex Borel subsets B, B̃ of IRs

such that λB + (1− λ)B̃ is Borel.

Here, the generalized mean function mr on IR+ × IR+ × [0, 1] for

r ∈ [−∞,∞] is given by

mr(a, b;λ) :=



(λar + (1− λ)br)1/r , r > 0 or r < 0, ab > 0,

0 , ab = 0, r < 0,

aλb1−λ , r = 0,

max{a, b} , r = ∞,

min{a, b} , r = −∞.

Notice that r = −∞ corresponds to quasi-concavity.
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A non-convex and non-differentiable situation

Proposition: (Henrion/Römisch 99)

Let µ ∈ P(IRs) have a density fµ on IRs, p ∈ (0, 1) and h : IRm →
IRs be locally Lipschitz continuous.

Then Fµ(h(·)) − p is metrically regular with respect to X at x̄ ∈
Xp(µ) if the following conditions are satisfied:

(i) (h(x̄) + bd IRs
−) ∩ D+ 6= ∅ if Fµ(h(x̄)) = p, where

D+ :={ξ ∈ IRs : ∃ε > 0 such that fµ(z) ≥ ε, ∀z ∈ IB(ξ, ε)}.

(ii) ∂a〈y∗, h〉(x̄) ∩ (−Na(X ; x̄)) = ∅, ∀y∗ ∈ IRs
− \ {0}, where

Na and ∂a denote the approximate normal cone and subdiffer-

ential (of Mordukhovich), respectively.

(decomposition into growth condition and constraint qualification)

Corollary:
If X is closed and convex, and all components of h are concave,

condition (ii) is satisfied if there exists x̂ ∈ X with h(x̂) > h(x̄).
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Illustration of quantitative stability results

We consider the 2-dimensional example

min{x1 + x2|IP (ξ1 ≤ x1, ξ2 ≤ x2) ≥ 1/2},
where ξ is assumed to have a distribution µ which is normal with

independent N(0, 1) components. The solution set consists of a

singleton Ψ(µ) = {(q, q)}, where q ≈ 0.55 is the 1/
√

2-quantile of

the N(0, 1) distribution.

We consider two specific approximations of µ:

(i) The empirical measure ν = N−1
∑N

i=1 δξi, where ξi, i = 1, . . . , N

are i.i.d. observations of ξ.

(ii) A parametric estimate for the mean m and the covariance ma-

trix C in ν ∼ N(m,C).

The figure shows dH(Ψ(µ),Ψ(ν)) relative to the Kolmogorov dis-

tance dK(µ, ν) = sup
ξ∈IR2 |Fµ(ξ) − Fν(ξ)|. The grey dots corre-

spond to the empirical estimates and the black dots to the para-

metric estimates.
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Part II

Solution Estimates for Two-Stage Models

(S. T. Rachev (Karlsruhe), R. J-B Wets (Davis))
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Stochastic programming models with recourse

Consider a linear program with stochastic parameters of the form

min{〈c, x〉 : x ∈ X, T (ξ)x = h(ξ)},
where ξ : Ω → Ξ is a random vector defined on a probability space

(Ω,F , IP ), c ∈ IRm, Ξ and X are polyhedral subsets of IRs and

IRm, respectively, and the d×m-matrix T (·) and vector h(·) ∈ IRd

are affine functions of ξ.

Idea:
Introduce a recourse variable y ∈ IRm, recourse costs q(ξ) ∈ IRm,

recourse d×m-matrix W (ξ) and a (deterministic) polyhedral cone

Y ⊆ IRm, and solve the second-stage or recourse program

min{〈q(ξ), y〉 : y ∈ Y,W (ξ)y = h(ξ)− T (ξ)x}.
Add the expected minimal recourse costs IE[Φ̂(ξ, x)] (depending

on the first-stage decision x) to the original objective and solve

min {〈c, x〉 + IE[Φ̂(ξ, x)] : x ∈ X},
where Φ̂(ξ, x) := inf{〈q(ξ), y〉 : y ∈ Y,W (ξ)y = h(ξ)− T (ξ)x}.
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Two formulations of two-stage models

Deterministic equivalent of the two-stage model:

min {〈c, x〉 +

∫
Ξ

Φ̂(ξ, x)P (dξ) : x ∈ X},

where P := IPξ−1 ∈ P(Ξ) is the probability distribution of the

random vector ξ and Φ̂(·, ·) is the infimum function of the second-

stage program.

Infinite-dimensional optimization model:

min {〈c, x〉 +

∫
Ξ

〈q(ξ), y(ξ)〉P (dξ) : x ∈ X, y ∈ Lr(Ξ,B(Ξ), P ),

y(ξ) ∈ Y, W (ξ)y(ξ) = h(ξ)− T (ξ)x},

where r ∈ [1,+∞] is selected properly.

If the probability distribution P of ξ is assumed to have p-th order moments, i.e.,
∫

Ξ
‖ξ‖pP (dξ) <

∞, with p > 1, r should be chosen such that the constraints of y are consistent with these

moment conditions and IE[〈q(ξ), y(ξ)〉] is finite. For example, if the recourse matrix is fixed

(i.e., W (ξ) ≡ W ), r = p
p−1

is consistent.
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Structural properties of two-stage models

We consider the infimum function of the parametrized linear (second-

stage) program and the dual feasible set of the second-stage pro-

gram, namely,

Φ(ξ, u, t):=inf{〈u, y〉 :W (ξ)y = t, y ∈ Y } ((ξ, u, t) ∈Ξ×IRm×IRd)

D(ξ) := {z ∈ IRr :W (ξ)>z − q(ξ) ∈ Y ∗} (ξ ∈ Ξ),

where W (ξ)> is the transposed of W (ξ) and Y ∗ the polar cone

of Y . Then we have

Φ̂(ξ, x)=Φ(ξ, q(ξ), h(ξ)−T (ξ)x)=sup{〈h(ξ)−T (ξ)x, z〉:z∈D(ξ)}.

Theorem: (Walkup/Wets 69)

For any ξ ∈ Ξ, the function Φ(ξ, ·, ·) is finite and continuous on

the polyhedral set D(ξ) × W (ξ)Y . Furthermore, the function

Φ(ξ, u, ·) is piecewise linear convex on the polyhedral set W (ξ)Y

for fixed u ∈ D(ξ), and Φ(ξ, ·, t) is piecewise linear concave on

D(ξ) for fixed t ∈ W (ξ)Y .
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Assumptions:

(A1) relatively complete recourse: for any (ξ, x) ∈ Ξ×X,

h(ξ)− T (ξ)x ∈ W (ξ)Y ;

(A2) dual feasibility: D(ξ) 6= ∅ holds for all ξ ∈ Ξ.

Note that (A1) is satisfied if W (ξ)Y = IRd (complete recourse).

In general, (A1) and (A2) impose a condition on the support of P .

Proposition:
Then the deterministic equivalent of the two-stage model represents

a finite convex program (with polyhedral constraints) if the integrals∫
Ξ Φ(ξ, q(ξ), h(ξ)− T (ξ)x)P (dξ) are finite for all x ∈ X.

For fixed recourse (W (ξ) ≡ W ), it suffices to assume∫
Ξ

‖ξ‖2P (dξ) <∞.

Convex subdifferentials, optimality conditions, conditions for differ-

entiability, duality results are well known.

(Ruszczyński/Shapiro, Handbook, 2003)
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Towards stability

We define the integrand f0 : Ξ× IRm → IR by

f0(ξ, x)=


〈c, x〉+Φ(ξ, q(ξ), h(ξ)−T (ξ)x) if h(ξ)− T (ξ)x ∈

W (ξ)Y, D(ξ) 6= ∅,
+∞ otherwise,

and note that f0 is a convex random lsc function with Ξ × X ⊆
dom f0 if (A1) and (A2) are satisfied.

The two-stage stochastic program can thus be expressed as

min {
∫

Ξ

f0(ξ,x)P(dξ) : x ∈ X}.

We are interested in studying the behavior of its solutions when

perturbing (approximating, estimating) the probability measure P .

By v(P ), S(P ) and Sε(P ) (ε ≥ 0) we denote its optimal value,

solution set and set of ε-approximate solutions, i.e.,
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v(P ) := inf {
∫

Ξ

f0(ξ, x)P (dξ) : x ∈ X}

S(P ) := argminx∈X

∫
Ξ

f0(ξ, x)P (dξ) := S0(P ),

Sε(P ) := {x ∈ X :

∫
Ξ

f0(ξ, x)P (dξ) ≤ v(P ) + ε}.

We consider classes of relevant functions and probability measures,

namely, F = {f0(·, x) : x ∈ X} and

PF = {Q ∈ P(Ξ) :

∫
Ξ

inf
x∈X∩ρIB

f0(ξ, x)Q(dξ) > −∞ , and

sup
x∈X∩ρIB

∫
Ξ

f0(ξ, x)Q(dξ) <∞ , for all ρ > 0},

where IB is the closed unit ball in IRm. We note that the infimum

function ξ 7→ infx∈X∩ρIB f0(ξ, x) is measurable for each ρ > 0 as

f0 is a random lsc function.
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For any ρ > 0 and probability measures P, Q ∈ PF we consider

the following distance

dF , ρ(P,Q) = sup
x∈X∩ρIB

∣∣∣∣∫
Ξ

f0(ξ, x)P (dξ)−
∫

Ξ

f0(ξ, x)Q(dξ)

∣∣∣∣ .
It is nonnegative, finite, symmetric and satisfies the triangle in-

equality, i.e., it is a semi-metric on PF . In general, however, the

class Fρ will not be rich enough to guarantee dF , ρ(P,Q) = 0 im-

plies P = Q.

Lemma:
For any Q ∈ PF , the function x 7→

∫
Ξ f0(ξ, x)Q(dξ) is convex

and lsc on IRm.

Proof by using Fatou’s lemma.
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Set- and epi-distances (Rockafellar/Wets 98)

Let dC(x) = d(x,C) = infy∈C ‖x − y‖ denote the distance of

x ∈ IRm to a non-empty closed subset of IRm. The ρ−distance

between two non-empty closed sets is by definition

dlρ(C,D) = sup
||x||≤ρ

|dC(x)− dD(x)|.

In fact, it is just a semi-distance from which one can build a met-

ric on the hyperspace of closed sets (metrizing the topology of

Painlevé-Kuratowski convergence), for example, by setting

dl(C,D) =

∫ ∞

0

dlρ(C,D)e−ρ dρ.

Estimates for the ρ-distance can be obtained by relying on a ’trun-

cated’ Pompeiu-Hausdorff type distance:

d̂lρ(C,D) = inf{η ≥ 0 : C ∩ ρIB ⊂ D + ηIB;D ∩ ρIB ⊂ C + ηIB}.

Indeed one always has,

d̂lρ(C1, C2) ≤ dlρ(C1, C2) ≤ d̂lρ′(C1, C2)

for ρ′ ≥ 2ρ + max {dC1(0), dC2(0) }.
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If we let ρ→∞, we end up with dlρ(C,D) and d̂lρ(C,D) tending

to dl∞(C,D), the Pompeiu-Hausdorff distance between the closed

non-empty sets C and D.

The distance between (lsc) functions is measured in terms of the

distance between their epigraphs, so for ρ > 0,

dlρ(f, g) = dlρ(epi f, epi g), d̂lρ(f, g) = d̂lρ(epi f, epi g).

and dl(f, g) = dl(epi f, epi g). However, since our sets are epigraphs

(in IRm+1), it is convenient to rely on the ‘unit ball’ to be IB ×
[−1, 1], this brings us to an ‘auxiliary’ distance d̂l

+
ρ (f1, f2) defined

as the infimum of all η ≥ 0 such that for all x ∈ ρIB,

minIB(x,η) f2 ≤ max{ f1(x),−ρ } + η

minIB(x,η) f1 ≤ max{ f2(x),−ρ } + η.

For lsc f1, f2 : IRn → IR, not identically ∞, one has,

d̂l
+
ρ/
√

2 (f1, f2) ≤ d̂lρ(f1, f2) ≤
√

2 d̂l
+
ρ (f1, f2).
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Quantitative stability of two-stage models

Theorem: (Römisch/Wets 06)

Let P ∈ PF and suppose S(P ) is non-empty and bounded. Then

there exist constants ρ > 0 and δ > 0 such that

|v(P )− v(Q)| ≤ dF , ρ(P,Q)

∅ 6= S(Q) ⊂ S(P ) + ΨP (dF , ρ(P,Q))IB

holds for all Q ∈ PF with dF , ρ(P,Q) < δ, where ΨP is a condi-

tioning function associated with our given program, more precisely,

ΨP (η) := η + ψ−1
P (2η), η ≥ 0, with

ψP (τ ) := min{
∫

Ξ

f0(ξ, x)P (dξ)− v(P ) : d(x, S(P )) ≥ τ}, τ ≥ 0.

Simple examples of two-stage stochastic programs show that, in general, the set-valued map-

ping S(.) is not inner semicontinuous at P (Römisch 03). Furthermore, explicit descriptions of

conditioning functions ψP of stochastic programs (like linear or quadratic growth at solution

sets) are only known in some specific cases, for example, for linear two-stage stochastic pro-

grams with finite discrete distribution or with strictly positive densities of random right-hand

sides (Schultz 94).
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We are in much better shape, when we consider the stability prop-

erties of the sets Sε(·) of ε-approximate solutions.

Theorem:
Let P ∈ PF and S(P ) be non-empty, bounded. Then there exist

constants ρ̂ > 0 and ε̂ > 0 such that

dl∞(Sε(P ), Sε(Q)) ≤ 4ρ̂

ε
dF , ρ̂+ε(P,Q)

holds for any ε ∈ (0, ε̂) and Q ∈ PF such that dF , ρ̂+ε(P,Q) < ε.

The preceding stability results remain valid if the set Fρ is enlarged

to a set F̂ and the set PF reduced to a subset on which the new

distance

dF̂(P,Q) = sup
f∈F̂

∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)P (dξ)

∣∣∣∣
is finite and well-defined. Which classes F̂ of functions contain

Fρ = {f0(·, x) : x ∈ X ∩ ρIB} for any ρ > 0 ?
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In the context of two-stage models, function classes of the form

FH := {f : Ξ → IR : f (ξ)− f (ξ̃) ≤ max{1, H(‖ξ‖), H(‖ξ̃‖)} ·
‖ξ − ξ̃‖,∀ξ, ξ̃ ∈ Ξ}

are of particular interest, where H : IR+ → IR+ is nondecreasing,

H(0) = 0. The corresponding distances are

dFH
(P,Q) = sup

f∈FH

∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)Q(dξ)

∣∣∣∣ =: ζH(P,Q)

are so-called Fortet-Mourier metrics defined on

PH(Ξ) :={Q ∈ P(Ξ) :

∫
Ξ

max{1, H(‖ξ‖)}‖ξ‖Q(dξ) <∞}

Important special case: H(t) := tr−1 for r ≥ 1.

The corresponding classes of functions and measures, and the dis-

tances are denoted by Fr, Pr(Ξ) and ζr, respectively, where the

measures are in the class

Pr(Ξ) := {Q ∈ P(Ξ) :

∫
Ξ

‖ξ‖rQ(dξ) <∞}.

Convergence with respect to ζr means weak conergence of the probability measures and |
∫
Ξ ‖ξ‖

rP (dξ)−∫
Ξ ‖ξ‖

rQ(dξ)| ≤ rζr(P,Q), i.e., convergence of the r-th order moments (Rachev 91).
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Under which conditions appear relevant classes FH containing Fρ ?

Proposition:
Suppose the stochastic program satisfies (A1) and (A2). Assume

that the mapping ξ 7→ D(ξ) is bounded-valued and there exists a

constant L > 0, and a nondecreasing function h : IR+ → IR+ with

h(0) = 0 such that

dl∞(D(ξ), D(ξ̃)) ≤ L max{1, h(‖ξ‖), h(‖ξ̃‖)}‖ξ − ξ̃‖

holds for all ξ, ξ̃ ∈ Ξ.

Then, for any ρ > 0, there exist L̂ > 0 and L̂(ρ) > 0 such that

f0(ξ, x)− f0(ξ̃, x) ≤ L̂(ρ) max{1, H(‖ξ‖), H(‖ξ̃‖)}‖ξ − ξ̃‖
f0(ξ, x)− f0(ξ, x̃) ≤ L̂max{1, H(‖ξ‖)‖ξ‖}‖x− x̃‖

for all ξ, ξ̃ ∈ Ξ, x, x̃ ∈ X ∩ ρIB, where H is defined by

H(t) := h(t)t, ∀t ∈ IR+.

Note that h(t) =

{
1 , fixed recourse

tk , lower diagonal randomness with k blocks.
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Example:
Let m = 4, d = 2, Y = IR4

+, Ξ = IR and consider the random

(second-stage) costs and recourse matrix

W (ξ) =

(
1 −1 0 0

−ξ 0 1 −1

)
q(ξ) =


0

0

ξ

−ξ


Then W (ξ)Y = IR2 (complete recourse) and D(ξ)=[0, ξ2]× {ξ}.
Hence, the conditions (A1), (A2) are satisfied and the local Lip-

schitz continuity property of D(·) holds with h(t) = t, t ∈ IR+.

Remark: (convergence of empirical estimates)

For the empirical measure Pn = n−1
∑n

i=1 δξi, where ξi, i ∈ IN are

i.i.d. samples from P , exponential estimates for the convergence in

probability of dF , ρ(Pn, P ) = supf∈Fρ
|
∫

Ξ f (ξ)(Pn − P )(dξ)| can

be obtained by showing that the covering number of Fρ, i.e., the

minimal number of balls with radius ε in L2(Ξ, P ), grows at most

with ε−r for some r ≥ 1.
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Discrete approximations of two-stage stochastic programs

Replace the (original) probability measure P by measures Pn having

(finite) discrete support {ξ1, . . . , ξn} (n ∈ IN), i.e.,

Pn =

n∑
i=1

piδξi,

and insert it into the infinite-dimensional stochastic program:

min{〈c, x〉 +

n∑
i=1

pi〈q(ξi), yi〉 : x ∈ X, yi ∈ Y, i = 1, . . . , n,

W (ξ1)y1 +T (ξ1)x = h(ξ1)

W (ξ2)y2 +T (ξ2)x = h(ξ2)
. . . ... = ...

W (ξn)yn +T (ξn)x = h(ξn)}
Hence, we arrive at a (finite-dimensional) large scale block-structured

linear program which allows for specific decomposition methods.

(Ruszczyński/Shapiro, Handbook, 2003)
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How to choose the discrete approximation ?

The quantitative stability results suggest to determine Pn such that

it forms the best approximation of P with respect to the semi-

distance dF , ρ or the probability metric ζr, i.e., given n ∈ IN solve

min{ζr(P,
1

n

n∑
i=1

δξi) : ξi ∈ Ξ, i = 1, . . . , n}

Such best approximations P ∗
n = 1

n

∑n
i=1 δξ∗i are known as optimal

quantizations of the probability distribution P (Graf/Luschgy, LNM 2000).

Convergence properties of optimal quantizations and numerical meth-

ods for solving the best approximation problems in case of the `r-

minimal metrics (or Wasserstein metrics)

`r(P,Q) :=

(
inf

{∫
Ξ×Ξ

‖ξ − ξ̃‖rη(dξ, dξ̃) | π1η = P, π2η = Q

})1
r

,

are already known. Here, πi is the projection onto the i-th compo-

nent. The convergence rates are in some cases better than O(n−
1
2)

for sampling methods. Note that ζr(P,Q) ≤ (1 +
∫
Ξ ‖ξ‖

r(P + Q)(dξ))
r−1

r `r(P,Q).
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Scenario reduction

We consider discrete distributions P with scenarios ξi and proba-

bilities pi, i = 1, . . . , N , and Q being supported by a given subset

of scenarios ξj, j 6∈ J ⊂ {1, . . . , N}, of P .

Optimal reduction of a given scenario set J :

The best approximation of P with respect to ζr = µĉr by such a

distribution Q exists and is denoted by Q∗. It has the distance

DJ := ζr(P,Q
∗) = min

Q
µĉr(P,Q) =

∑
i∈J

pi min
j 6∈J

ĉr(ξi, ξj)

=
∑
i∈J

pi min{
n−1∑
k=1

cr(ξlk, ξlk+1) : n ∈ IN, lk ∈ {1, . . . , N},

l1 = i, ln = j 6∈ J}

and the probabilities q∗j = pj +
∑
i∈Jj

pi, ∀j 6∈ J, where

Jj := {i ∈ J : j = j(i)} and j(i) ∈ arg min
j 6∈J

ĉr(ξi, ξj), ∀i ∈ J .

(Dupačová/Gröwe-Kuska/Römisch 03)
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We needed the following notation:

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).

Proposition: (Rachev/Rüschendorf 98)

ζr(P,Q)=µĉr(P,Q)=inf

{∫
Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) :π1η=P, π2η =Q

}
where ĉr ≤ cr and ĉr is the metric (reduced cost)

ĉr(ξ, ξ̃) := inf

{
n−1∑
i=1

cr(ξli, ξli+1) : n ∈ IN, ξli ∈ Ξ, ξl1 = ξ, ξln = ξ̃

}
.

Determining the optimal scenario index set with prescribed cardi-

nality n is, however, a combinatorial optimization problem of set

covering type:

min{DJ =
∑
i∈J

pi min
j 6∈J

ĉr(ξi, ξj) : J ⊂ {1, ..., N},#J = N − n}

Hence, the problem of finding the optimal set J to delete is NP-

hard and polynomial time solution algorithms do not exist.
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Fast reduction heuristics

Starting point (n = N − 1): min
l∈{1,...,N}

pl min
j 6=l

ĉr(ξl, ξj)

Algorithm 1: (Backward reduction)

Step [0]: J [0] := ∅ .
Step [i]: li ∈ arg min

l 6∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

ĉr(ξk, ξj).

J [i] := J [i−1] ∪ {li} .
Step [N-n+1]: Optimal redistribution.
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Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkĉr(ξk, ξu)

Algorithm 2: (Forward selection)

Step [0]: J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

ĉr(ξk, ξj),

J [i] := J [i−1] \ {ui} .
Step [n+1]: Optimal redistribution.
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Example: (Electrical load scenario tree)

(Mean shifted ternary) Load scenario tree (729 scenarios)
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<Start Animation>
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Reduced load scenario tree obtained by the forward selection method (15 scenarios)
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Reduced load scenario tree obtained by the backward reduction method (12 scenarios)
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Part III

Optimization in Lr-spaces – Multistage stochastic
programs

(H. Heitsch (Berlin), C. Strugarek (EdF, Clamart))
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Multistage stochastic programs

Let {ξt}Tt=1 be a discrete-time stochastic data process defined on

some probability space (Ω,F , IP ) and with ξ1 deterministic. The

stochastic decision xt at period t is assumed to be measurable with

respect to Ft := σ(ξ1, . . . , ξt) (nonanticipativity).

Multistage stochastic optimization model:

min

IE
[

T∑
t=1

〈bt(ξt), xt〉

]∣∣∣∣∣∣
xt ∈ Xt, t = 1, . . . , T, A1,0x1 = h1(ξ1),

xt is Ft −measurable, t = 1, . . . , T,

At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, ., T


where the sets Xt, t = 1, . . . , T , are polyhedral cones, the vectors

bt(·), ht(·) and At,1(·) are affine functions of ξt, where ξ varies in

a polyhedral set Ξ.

The model is (multiperiod) two-stage if Ft = F , t = 2, . . . , T .

If the process {ξt}Tt=1 has a finite number of scenarios, they exhibit

a scenario tree structure.
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To have the model well defined, we assume

xt ∈ Lr′(Ω,Ft, IP ; IRmt) and ξt ∈ Lr(Ω,Ft, IP ; IRd),

where r ≥ 1 and

r′ :=


r
r−1 , if only costs are random

r , if only right-hand sides are random

∞ , if all technology matrices are random and r = T.

Then nonanticipativity may be expressed as

x ∈ Nna

Nna = {x ∈ ×T
t=1Lr′(Ω,F , IP ; IRmt) : xt = IE[xt|Ft] , ∀t},

i.e., as a subspace constraint, by using the conditional expectation

IE[·|Ft] with respect to the σ-algebra Ft.

For T = 2 we have Nna = IRm1 × Lr′(Ω,F , IP ; IRm2).

→ infinite-dimensional optimization problem
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1. Data process approximation by scenario trees

The process {ξt}Tt=1 is approximated by a process forming a scenario

tree being based on a finite set N ⊂ IN of nodes.

s
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t = 1

q
t = 2

q
t(n)

q
T

Scenario tree with T = 5, N = 22 and 11 leaves

n = 1 root node, n− unique predecessor of node n, path(n) =

{1, . . . , n−, n}, t(n) := |path(n)|, N+(n) set of successors to n,

NT := {n ∈ N : N+(n) = ∅} set of leaves, path(n), n ∈ NT ,

scenario with (given) probability πn, πn :=
∑

ν∈N+(n) π
ν probability

of node n, ξn realization of ξt(n).
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Tree representation of the optimization model

min

{∑
n∈N

πn〈bt(n)(ξ
n), xn〉

∣∣∣∣xn ∈ Xt(n), n ∈ N , A1,0x
1 = h1(ξ

1)

At(n),0x
n + At(n),1x

n− =ht(n)(ξ
n), n ∈ N

}

How to solve the optimization model ?

- Standard software (e.g., CPLEX)

- Decomposition methods for (very) large scale models

(Ruszczynski/Shapiro (Eds.): Stochastic Programming, Handbook, 2003)

Open question:
How to generate (multivariate) scenario trees ?

Idea:
Utilizing quantitative stability results !?
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Dynamic programming

Theorem: (Evstigneev 76, Rockafellar/Wets 76)

Under weak assumptions the multistage stochastic program is equiv-

alent to the (first-stage) convex minimization problem

min {
∫

Ξ

f (x1, ξ)P (dξ) : x1 ∈ X1(ξ1)},

where f is an integrand on IRm1 × Ξ given by

f (x1, ξ):=〈b1(ξ1), x1〉 + Φ2(x1, ξ
2),

Φt(x1, . . . , xt−1, ξ
t):=inf{〈bt(ξt), xt〉+IE

[
Φt+1(x1, . . . , xt, ξ

t+1)|Ft

]
:

xt ∈ Xt, At,0xt + At,1(ξt)xt−1 = ht(ξt)}

for t = 2, . . . , T , where ΦT+1(x1, . . . , xT , ξ
T+1) := 0, X1(ξ1) :=

{x1 ∈ X1 : A1,0x1 = h1(ξ1)} and P ∈ P(Ξ) is the probability

distribution of ξ.

→The integrand f depends on the probability measure IP in a

nonlinear way !
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Quantitative Stability

Let us introduce some notations. Let F denote the objective func-

tion defined on Lr(Ω,F , IP ; IRs) × Lr′(Ω,F , IP ; IRm) → IR by

F (ξ, x) := IE[
∑T

t=1〈bt(ξt), xt〉], let

Xt(xt−1; ξt) := {xt ∈ Xt : At,0xt + At,1(ξt)xt−1 = ht(ξt)}

denote the t-th feasibility set for every t = 2, . . . , T and

X (ξ) := {x ∈ Lr′(Ω,F , IP ; IRm) : x1 ∈ X1(ξ1), xt ∈ Xt(xt−1; ξt)}

the set of feasible elements with input ξ.

Then the multistage stochastic program may be rewritten as

min{F (ξ, x) : x ∈ X (ξ) ∩Nr′(ξ)}.

Let v(ξ) denote its optimal value and, for any α ≥ 0,

lα(F (ξ, ·)) := {x ∈ X (ξ) ∩Nr′(ξ) : F (ξ, x) ≤ v(ξ) + α}
S(ξ) := l0(F (ξ, ·))

denote the α-level set and the solution set of the stochastic pro-

gram with input ξ.
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Assumptions:
(A1) ξ ∈ Lr(Ω,F , IP ; IRs) for some r ≥ 1.

(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F , IP ; IRs)

with ‖ξ̃ − ξ‖r ≤ δ, any t = 2, . . . , T and any x1 ∈ X1, xτ ∈
Xτ (xτ−1; ξ̃τ ), τ = 2, . . . , t − 1, the set Xt(xt−1; ξ̃t) is nonempty

(relatively complete recourse locally around ξ).

(A3) For each ξ ∈ Ξ there exists z ∈ ×T
t=1Lr′(Ω,F , IP ; IRnt) with

A>
t,0zt + A>

t+1,1(ξt+1)zt+1 − ht(ξt) ∈ X∗
t , t = 1, . . . , T − 1,

A>
T,0zT − hT (ξT ) ∈ X∗

T ,

whereX∗
t denotes the polar to the polyhedral coneXt, t = 1, . . . , T

(dual feasibility).

(A4) The objective function F is level-bounded locally uniformly

at ξ, i.e., for some α > 0 there exists a δ > 0 and a bounded

subset B of Lr′(Ω,F , IP ; IRm) such that lα(F (ξ̃, ·)) is nonempty

and contained in B for all ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃−ξ‖r ≤ δ.
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Theorem: (Heitsch/Römisch/Strugarek 06)

Let (A1) – (A4) be satisfied and X1(ξ1) be (uniformly) bounded.

Then there exist positive constants L, α and δ such that

|v(ξ)− v(ξ̃)| ≤ L(‖ξ − ξ̃‖r +Df(ξ, ξ̃))

holds for all ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ.

Assume that only costs and right-hand sides are random and that

the solution x∗ of the original problem is unique.

If (ξ(n)) is a sequence in Lr(Ω,F , IP ; IRs) such that

‖ξ(n) − ξ‖r and Df(ξ
n, ξ)

converge to 0, then any sequence (x(n)) of solutions of the approx-

imate problems converges to x∗ with respect to the weak (weak∗)

topology σ(Lr′, Lr).

Here, Df(ξ, ξ̃) denotes the filtration distance of ξ and ξ̃ defined by

Df(ξ, ξ̃) = inf
x∈S(ξ)
x̃∈S(ξ̃)

T−1∑
t=2

max{‖xt − IE[xt|F̃t]‖r′, ‖x̃t − IE[x̃t|Ft]‖r′}.
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Remark:
The convergence of approximate solutions can be supplemented

by a quantitative stability property of the set S1(ξ) of first stage

solutions. Namely, there exists a constant L̂ > 0 such that

sup
x∈S1(ξ̃)

d(x, S1(ξ)) ≤ Ψ−1
ξ (L̂(‖ξ − ξ̃‖r +Df(ξ, ξ̃))),

where Ψξ(τ ) := inf {IE[f (x1, ξ)] − v(ξ) : d(x1, S1(ξ)) ≥ τ, x1 ∈
X1} with Ψ−1

ξ (α) := sup{τ ∈ IR+ : Ψξ(τ ) ≤ α} (α ∈ IR+) is the

growth function of the original problem near its solution set S1(ξ).

Remark:
The filtration distance Df(ξ, ξ̃) may be further estimated by the

distance df(ξ, ξ̃) with

df(ξ, ξ̃) := sup
‖x‖r′≤1, x∈Lr′

T−1∑
t=2

‖IE[xt|Ft]− IE[xt|F̃t]‖r′.

In case of finite Ω, this distance corresponds to the lr′-distance of

two matrices representing the information on the filtrations of ξ

and ξ̃, respectively.
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Next we compute the distance df(ξ, ξ̃) of filtrations for the special

case that Ω is finite, say, Ω = {ω1, . . . , ωS}. Let IP ({ωi}) = pi,

i = 1, . . . , S and let Et and Ẽt be partitions of Ω that generate the

σ-fields Ft and F̃t, respectively. Then IE[xt|Ft] = Htxt, where the

matrix Ht is of the form

Ht = (eσs)σ,s=1,...,S , where eσs :=


ps∑

i∈Etσ

pi
, s ∈ Etσ

0 , s 6∈ Etσ

and ωσ ∈ Etσ ∈ Et. Analogously, H̃t = (ẽσs)σ,s=1,...,S is defined

using the corresponding sets Ẽtσ in a generator of the σ-field F̃t.

Hence, we obtain for r′ = ∞, i.e., the row sum norm ‖ · ‖∞ of

matrices, that

df(ξ, ξ̃) =

T−1∑
t=1

‖Ht − H̃t‖∞

‖Ht−H̃t‖∞= max
σ=1,...,S


∑

s∈Etσ\Ẽtσ

ps∑
i∈Etσ

pi

+
∑

s∈Ẽtσ\Etσ

ps∑
i∈Ẽtσ

pi

+
∑

s∈Etσ∩Ẽtσ

∣∣∣∣∣∣∣
ps∑

i∈Etσ

pi

− ps∑
i∈Ẽtσ

pi

∣∣∣∣∣∣∣


for t = 2, . . . , T − 1.
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The following example shows that the filtration distance Df is in-

dispensable for the stability result to hold.

Example: (Optimal purchase under uncertainty)

The decisions xt correspond to the amounts to be purchased at

each time period with uncertain prices are ξt, t = 1, . . . , T , and

such that a prescribed amount a is achieved at the end of a given

time horizon. The problem is of the form

min

IE

[
T∑
t=1

ξtxt

] ∣∣∣∣∣∣∣∣∣
(xt, st) ∈ Xt = IR2

+,

(xt, st) is (ξ1, . . . , ξt)-measurable,

st − st−1 = xt, t = 2, . . . , T,

s1 = 0, sT = a.

 ,

where the state variable st corresponds to the amount at time t.

Let T := 3 and ξε denote the stochastic price process having the

two scenarios ξ1
ε = (3, 2 + ε, 3) (ε ∈ (0, 1)) and ξ2

ε = (3, 2, 1) each

endowed with probability 1
2. Let ξ̃ denote the approximation of ξε

given by the two scenarios ξ̃1 = (3, 2, 3) and ξ̃2 = (3, 2, 1) with the

same probabilities 1
2.
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3

12

2+ε 3

1

233

Scenario trees for ξε (left) and ξ̃

We obtain

v(ξε) =
1

2
((2 + ε)a + a) =

3 + ε

2
a

v(ξ̃) = 2a , but

‖ξε − ξ̃‖1 ≤ 1

2
(0 + ε + 0) +

1

2
(0 + 0 + 0) =

ε

2
.

Hence, the multistage stochastic purchasing model is not stable

with respect to ‖ · ‖1.

However, the estimate for |v(ξ)− v(ξ̃)| in the stability theorem is

valid with L = 1 since Df(ξ, ξ̃) = a
2.
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Generation of scenario trees

(i) Development of a statistical model for the stochastic process

ξ (parametric [e.g. time series model], nonparametric [e.g.

resampling]) and generation of simulation scenarios;

(ii) Construction of a scenario tree out of the statistical model or

of the simulation scenarios.

Approaches for (ii):

(1) Bound-based approximation methods (Frauendorfer 96, Kuhn 05, Edirisinghe 99, Casey/Sen

05).

(2) Monte Carlo-based schemes (inside or outside decomposition methods) (e.g. Shapiro 03,

06, Higle/Rayco/Sen 01, Chiralaksanakul/Morton 04).

(3) the use of Quasi Monte Carlo integration quadratures (Pennanen 05, 06).

(4) EVPI-based sampling schemes (inside decomposition schemes) (Corvera Poire 95, Demp-

ster 04).

(5) Moment-matching principle (Høyland/Wallace 01, Høyland/Kaut/Wallace 03).

(6) (Nearly) best approximations based on probability metrics (Pflug 01, Hochreiter/Pflug 02,

Gröwe-Kuska/Heitsch/Römisch 01, 03, Heitsch/Römisch 05).

Survey: Dupačová/Consigli/Wallace 2000
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Constructing scenario trees

Let ξ be the original stochastic process on some probability space

(Ω,F , IP ) with parameter set {1, . . . , T} and state space IRd. We

aim at generating a scenario tree ξtr such that

‖ξ − ξtr‖r and Df(ξ, ξ
tr)

are small and, hence, the optimal values v(ξ) and v(ξtr) are close

to each other. Since this problem is hardly solvable in general, we

replace ξ by a finitely discrete approximation ξf such that ‖ξ−ξf‖r
is small and its scenarios ξi = (ξi1, . . . , ξ

i
T ) with probabilities πi,

i = 1, . . . , N form a fan of individual scenarios.

 t = 1  t = 2  t = 3  t = 4  t = 5
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An algorithm was developed that generates a tree ξtr by deleting

and bundling scenarios at each t = 2, . . . , T (that are close to each

other) and such that

‖ξf − ξtr‖r
may be computed and bounded and that

Df(ξ
f, ξtr)

may be bounded from above. The latter relies on the

Proposition:
Assume that only costs and right-hand sides are random and let

(A2) – (A4) be satisfied. Then there exists a constant L̂ > 0 such

that the filtration distance allows the estimate

Df(ξ
f, ξtr) ≤ L̂


( ∑
i∈I2

∑
j∈I2,i

pj‖ξj − ξi‖r′
) 1

r′
, 1 ≤ r′ <∞

max
i∈I2

max
j∈I2,i

‖ξj − ξi‖ , r′ = ∞ .

Tolerances εr and εf are prescribed for ‖ξf − ξtr‖r and Df(ξ
f, ξtr),

respectively, which control the scenario tree generation process.
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 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

Illustration of the forward tree construction for an example including T=5 time periods starting

with a scenario fan containing N=58 scenarios

<Start Animation>

file:C:/anim05/animation.html
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 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

a) Forward tree construction with filtration level 0.35

 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

b) Forward tree construction with filtration level 0.45

Yearly demand-price scenario trees with relative tolerance 0.25
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 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

a) Modified forward tree construction with filtration level 0.6

 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

b) Modified forward tree construction with filtration level 0.7

Yearly demand-price scenario trees with relative reduction level 0.5 (Heitsch/Römisch 06)
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