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Introduction

• Applied stochastic programming models in finance, production and energy

often contain high-dimensional random vectors.

• Computational methods for solving stochastic programs require a discretiza-

tion of the underlying probability distribution induced by a numerical inte-

gration scheme for computing expectations.

• Discretization means scenario or sample generation.

• Standard approach: Variants of Monte Carlo (MC) methods.

• Two recently considered alternative approaches to scenario generation:

(a) Quasi-Monte Carlo methods

(Koivu-Pennanen 05, Pennanen 09, Homem-de-Mello 08).

(b) Sparse grid quadrature rules (Chen-Mehrotra 08).

• Both are supported by encouraging complexity results for numerical integra-

tion.
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Complexity of numerical integration

We consider the approximate computation of

Id(f ) =

∫
[0,1]d

f (ξ)dξ

by a linear numerical integration or quadrature method of the form

Qn(f ) =

n∑
i=1

wif (ξi)

with points ξi ∈ [0, 1]d and weights wi ∈ R, i = 1, . . . , n.

We assume that f belongs to a linear normed space Fd of functions on [0, 1]d

with norm ‖ · ‖d and unit ball Bd = {f ∈ Fd : ‖f‖d ≤ 1} such that Id and Qn

are linear bounded functionals on Fd.

Worst-case error of Qn over Bd and optimal error are given by:

e(Qn) = sup
f∈Bd
|Id(f )−Qn(f )|

e(n,Bd) = inf
Qn
e(Qn) .

(Novak 14)



It is known that due to the convexity and symmetry of Bd linear algorithms are

optimal among nonlinear and adaptive ones (Bakhvalov 71, Novak 88).

The information complexity n(ε,Bd) is the minimal number of function values

which is needed that the worst-case error is at most ε, i.e.,

n(ε,Bd) = min{n : ∃Qn such that e(Qn) ≤ ε}

Of course, the behavior of n(ε,Bd) as function of (ε, d) depends heavily on Fd.

Numerical integration is said to

be polynomially tractable if there exist constants C > 0 q ≥ 0, p > 0 such that

n(ε,Bd) ≤ Cdqε−p ,

be strongly polynomially tractable if there exist constants C > 0, p > 0 such

that

n(ε,Bd) ≤ Cε−p ,

have the curse of dimension if there exist c > 0, ε0 > 0 and γ > 0 such that

n(ε,Bd) ≥ c(1 + γ)d for all ε ≤ ε0 and for infinitely many d ∈ N.



Randomized algorithms:

A randomized quadrature algorithm is denoted by (Q(ω))ω∈Ω and considered on

a probabability space (Ω,F ,P).. We assume that Q(ω) is a quadrature algorithm

for each ω and that it depends on ω in a measurable way. Let n(f, ω) denote

the number of evaluations of f ∈ Fd needed to perform Q(ω)f . The number

n(Q) = sup
f∈Bd

∫
Ω

n(f, ω)P(dω)

is called the cardinality of the randomized algorithm Q and

eran(Q) = sup
f∈Bd

(∫
Ω

‖Idf −Q(ω)f‖2 P(dω)
)1

2

the error of Q. The minimal error of randomized algorithms is

eran(n,Bd) = inf{eran(Q) : n(Q) ≤ n} .
By construction it is clear that eran(n,Bd) ≤ e(n,Bd) holds.

Standard Monte Carlo (MC) method based on n i.i.d. samples: (Mathé 95)

eran(Q) = (1 +
√
n)−1 ≤ n−

1
2

if Bd is the unit ball of Fd = Lp([0, 1]d) for 2 ≤ p <∞.



Example:
Consider the Banach space Fd = Cr([0, 1]d) (r ∈ N) of r times continuously

differentiable functions with the norm

‖f‖r,d = max
|α|≤r
‖Dαf‖∞,

where α = (α1, . . . , αd) ∈ Nd
0 and Dαf denotes the mixed partial derivative of

order |α| =
∑d

i=1 αi, i.e.,

Dαf (ξ) =
∂|α|f

∂ξα11 · · · ∂ξ
αd
d

(ξ) .

It is long known (Bakhvalov 59) that there exist constants Cr,d, cr,d > 0 such that

cr,d n
− rd ≤ e(n,Bd) ≤ Cr,d n

− rd .

But, surprisingly it was shown only recently that the numerical integration on

Cr([0, 1]d) suffers from the curse of dimension (Hinrichs-Novak-Ullrich-Woźniakowski 14).

To obtain a convergence order for e(n,Bd) of essentially O(n−r), differentiability

requirements of higher order are necessary. At least the requirements have to

increase with increasing dimension d.



For example, for the Sobolev space with dominating mixed smoothness

W
(r,...,r)
2,mix ([0, 1]d) = {f : [0, 1]d → R : Dαf ∈ L2([0, 1]d) if ‖α‖∞ ≤ r}

it is known that e(n,Bd) = O(n−r(log n)
(d−1)

2 ) (Frolov 76, Bykovskii 85).

It is also known that W
(r,...,r)
2,mix ([0, 1]d) is a tensor product space, i.e.,

W
(r,...,r)
2,mix ([0, 1]d) =

d⊗
j=1

W r
2 ([0, 1])

and a kernel reproducing Hilbert space H for several variants of inner products

and corresponding kernels Kd : [0, 1]d× [0, 1]d → R (Thomas-Agnan 96) which satisfy

the conditions (Aronszajn 50)

Kd(·, x) ∈ H for every x ∈ [0, 1]d ,

f (x) = 〈f,Kd(·, x)〉H for all f ∈ H, x ∈ [0, 1]d .

and have product structure Kd(x, y) =
∏d

i=1K1(xi, yi).



Although many problems in tensor product spaces suffer from the curse of dimen-

sion (Novak-Woźniakowski 08, 10, 12), the idea of introducing weights in inner products

of mixed Sobolev spaces (Sloan-Woźniakowski 98) has led to a breakthrough.

We consider the linear space W 1
2,γ([0, 1]) of all absolutely continuous functions

on [0, 1] with derivatives belonging to L2([0, 1]) and the weighted inner product

〈f, g〉γ =

∫ 1

0

f (x)dx

∫ 1

0

g(x)dx +
1

γ

∫ 1

0

f ′(x)g′(x)dx

and the kernel

K1,γ(x, y) = 1 + γ
(1

2
B2(|x− y|) + B1(x)B1(y)

)
,

where B1(x) = x− 1
2 and B2(x) = x2 − x + 1

6.

Then the weighted tensor product mixed Sobolev space is

W
(1,...,1)
2,γ,mix([0, 1]d) =

d⊗
j=1

W 1
2,γj

([0, 1])

with the kernel

Kd,γ(x, y) =

d∏
j=1

K1,γj(xj, yj) =
∑
u⊆D

γu
∏
j∈u

(1

2
B2(|xj − yj|) + B1(xj)B1(yj)

)



and inner product

〈g, g̃〉γ =
∑
u⊆D

γ−1
u

∫
[0,1]|u|

(∫
[0,1]d−|u|

∂|u|

∂tu
g(t)dt−u

)(∫
[0,1]d−|u|

∂|u|

∂tu
g̃(t)dt−u

)
dtu ,

where D = {1, . . . , d}, the weights γi are positive and nonincreasing, and γu is

given in product form by

γu =
∏
i∈u

γi

for u ⊆ D, where γ∅ = 1. For u ⊆ D we use the notation |u| for its cardinality,

−u for D\u and tu for the |u|-dimensional vector with components tj for j ∈ u.

Theorem: (Sloan-Woźniakowski 98, Sloan-Wang-Woźniakowski 04)

Numerical integration is strongly polynomially tractable on W
(1,...,1)
2,γ,mix([0, 1]d) if

∞∑
j=1

γj <∞ ,

and there exist Quasi-Monte Carlo algorithms being strongly polynomially tractable.



Quasi-Monte Carlo methods

We consider the approximate computation of

Id(f ) =

∫
[0,1]d

f (ξ)dξ

by a Quasi-Monte Carlo (QMC) algorithm

Qn(f ) =
1

n

n∑
i=1

f (ξi)

with (non-random) points ξi, i = 1, . . . , n, from [0, 1]d.

We assume that f belongs to a linear normed space Fd of functions on [0, 1]d with

norm ‖ · ‖d and unit ball Bd such that Id and Qn are linear bounded functionals

on Fd.

Worst-case error of Qn over Bd:

e(Qn) = sup
f∈Bd

∣∣Id(f )−Qn(f )
∣∣



QMC methods in kernel reproducing Hilbert spaces

We assume that Fd is a kernel reproducing Hilbert space with inner product 〈·, ·〉
and kernel K : [0, 1]d × [0, 1]d → R, i.e.,

K(·, x) ∈ Fd and 〈f (·), K(·, x)〉 = f (x) (∀x ∈ [0, 1]d, f ∈ Fd).

If Id is a linear bounded functional on Fd, the quadrature error en(Qn) allows the

representation

e(Qn) = sup
f∈Bd

∣∣Id(f )−Qn(f )
∣∣ = sup

f∈Bd
|〈f, hn〉| = ‖hn‖d

according to Riesz’ representation theorem for linear bounded functionals.

The representer hn ∈ Fd of the quadrature error is of the form

hn(x) =

∫
[0,1]d

K(x, y)dy − 1

n

n∑
i=1

K(x, ξi) (∀x ∈ [0, 1]d),

and it holds

e2(Qn) =

∫
[0,1]2d

K(x, y)dx dy − 2

n

n∑
i=1

∫
[0,1]d

K(ξi, y)dy +
1

n2

n∑
i,j=1

K(ξi, ξj)

(Hickernell 98, Sloan-Woźniakowski 98)



Digital nets and sequences

Elementary subintervals E in base b:

E =

d∏
j=1

[
aj

bdj
,
aj + 1

bdj

)
,

where ai, di ∈ Z+, 0 ≤ ai < bdi, i = 1, . . . , d.

Let m, t ∈ Z+, m > t. A set of bm points in [0, 1)d is a (t,m, d)-net in base b if

every elementary subinterval E in base b with λd(E) = bt−m contains bt points.

t is called the quality parameter of the net.

A sequence (ξi) in [0, 1)d is a (t, d)-sequence in base b if, for all integers k ∈ Z+

and m > t, the set

{ξi : kbm ≤ i < (k + 1)bm}
is a (t,m, d)-net in base b.

(Niederreiter 87, Dick-Pilichshammer 10)





Theorem: (Leobacher-Pillichshammer 14)

For the star-discrepancy of a (t,m, d)-net {ξ1, . . . , ξn}, where n = bm, in base

b we have

D∗n(ξ1, . . . , ξn) = sup
ξ∈[0,1]d

∣∣∣ d∏
j=1

ξj −
1

n

n∑
i=1

1l[0,ξ)(ξ
i)
∣∣∣ ≤ 1

bm−t

d−1∑
k=0

(
m− t
k

)
(b− 1)k .

For the star-discrepancy of a (t, d)-sequence (ξi) in base b it holds

D∗n(ξ1, . . . , ξn) ≤ bt(b− 1)

n

r∑
m=0

d−1∑
k=0

(
m− t
k

)
(b− 1)k ,

where r =
⌊

log n
log b

⌋
.

Corollary:
For the star-discrepancy of a (t, d)-sequence (ξi) in base b one has

D∗n(ξ1, . . . , ξn) ≤ bt(b− 1)d(d− 1)

d!(log b)d
(log n)d

n
+ O

((log n)d−1

n

)
There exist specific construction methods for (t,m, d)-nets or (t, d)-sequences

called digital methods.



Specific sequences:

The Sobol’ sequence (Sobol’ 67) is a (t, d)-sequence in base b = 2, where t is a

non-decreasing function of d;

the Faure sequence (Faure 82) is a (0, d)-sequence with d ≤ b;

the classical Niederreiter sequences (Niederreiter 87);

the generalized Niederreiter sequences include both Sobol’ and Faure construc-

tions as special cases;

and the Niederreiter-Xing sequences.

(Dick-Pillichshammer 10, Dick-Kuo-Sloan 13).



n = 29 pseudo random numbers in [0, 1]2 generated by the Mersenne Twister



Sobol point set with n = 29 in [0, 1]2



Lattice point sets and lattice rules

Let g ∈ Zd, n ∈ N, n ≥ 2 and the lattice point set P(g, n) = {ξ1, . . . ξn}

ξi =
{(i− 1)

n
g
}
∈ [0, 1]d, i = 1, . . . , n ,

with {z} being defined as componentwise fractional part of z ∈ R+, i.e.,

{z} = z − bzc ∈ [0, 1). The vector g is called generating vector of the lattice

point set. The idea is to choose g such that the star-discrepancy of the lattice

point set has good convergence properties.

Proposition: (Leobacher-Pillichshammer 14)

It holds

D?
n(ξ1, . . . , ξn) ≤ d

n
+

1

2
Rn(g) ,

where Rn(g) =
∑

h∈C?d(n)∩L(g,n)

( d∏
j=1

max{1, |hj|}
)−1

and

C?
d(n)=

((
− n

2 ,
n
2

]
∩ Z
)d \ {0} , L(g, n) ={h ∈ Zd : 〈h, g〉 ≡ 0 (mod(n))}.

The set L(g, n) is called dual lattice.



The idea is now to select g ∈ Zd such that Rn(g) gets small. The basic idea is

to construct the generating vector component-by-component (CBC).

Algorithm: Let n ∈ N.

(1) Choose g1 = 1.

(2) For s = 2, . . . , d, choose gs ∈ {1, 2, . . . , N − 1} to minimize

Rn((g1, . . . , gs−1, z)) as a function of z ∈ {1, 2, . . . , N − 1}.

Corollary:
Let n ∈ N be prime. If the generating vector g is constructed by the Algorithm

above, then

D?
n(ξ1, . . . , ξd) ≤ d

n
+

2d

n
(log n + 1)d .

A Quasi-Monte Carlo algorithm that uses a lattice point set as samples is called

lattice rule.



Randomized QMC methods

A randomized version of a QMC point set has the properties that

(i) each point in the randomized point set has a uniform distribution over [0, 1)d

(uniformity),

(ii) the QMC properties are preserved under the randomization with probability

one (equidistribution).

(Owen 95, L’Ecuyer-Lemieux 02, Dick-Pillichshammer 10)

Examples of such techniques are

(a) random shifts of lattice rules,

(b) scrambling, i.e., random permutations of the integers Zb = {0, 1, . . . , b− 1}
applied to the digits in b-adic representations,

(c) affine matrix scrambling which generates random digits by random linear

transformations of the original digits, where the elements of all matrices and vec-

tors are chosen randomly, independently and uniformly over Zb.

The two properties (i) and (ii) allow for error estimates and may lead to improved convergence
properties compared to the original QMC method.
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Comparison of n = 27 Monte Carlo Mersenne Twister points and randomly binary shifted Sobol’ points in
dimension d = 500, projection (8,9)

A randomly scrambled Sobol’ sequence admits the following root mean-square

quadrature error convergence rate for f ∈ W (1,...,1)
2,γ,mix([0, 1]d) (Dick-Pillichshammer 10,

Theorem 13.25)√
Var(Qn(ω)(f )) =

√
E[Qn(ω)(f )− Id(f )]2 ≤ C(f )n−

3
2(log n)

d−1
2 .



Randomly shifted lattice rules

If 4 is a random vector having uniform distribution on [0, 1]d, put

Qn(ω)(f ) =
1

n

n∑
i=1

f
({(i− 1)

n
g +4(ω)

})
.

Theorem:
Let n be prime, Fd =W (1,...,1)

2,γ,mix([0, 1]d).

Then g ∈ Zd can be CBC-constructed such that for any δ ∈ (0, 1
2] there exists a

constant C(δ) > 0 such that the root mean-square worst-case quadrature error

attains the optimal convergence rate

eran(Qn) ≤ C(δ)n−1+δ ,

where the constant C(δ) increases when δ decreases, but does not depend on

the dimension d if the sequence (γj) satisfies the condition

∞∑
j=1

γ
1

2(1−δ)
j <∞ (e.g. γj = 1

j3
).

(Sloan-Kuo-Joe 02, Kuo 03, Nuyens-Cools 06)



ANOVA decomposition of multivariate functions and effective
dimension

Idea: Use decompositions of f , where most of the terms are smooth, but hope-

fully only some of them relevant.

Let D = {1, . . . , d} and f ∈ L1,ρ(Rd) with ρ(ξ) =
∏d

j=1 ρj(ξj), where

f ∈ Lp,ρ(Rd) iff

∫
Rd
|f (ξ)|pρ(ξ)dξ <∞ (p ≥ 1).

Let the projection Pk, k ∈ D, be defined by

(Pkf )(ξ) :=

∫ ∞
−∞

f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ Rd).

Clearly, Pkf is constant with respect to ξk. For u ⊆ D we write

Puf =
(∏
k∈u

Pk

)
(f ),

where the product means composition, and note that the ordering within the

product is not important because of Fubini’s theorem. The function Puf is

constant with respect to all xk, k ∈ u.



ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = PD(f ) and recursively (Kuo-Sloan-Wasilkowski-Woźniakowski 10)

fu =
∑
v⊆u

(−1)|u|−|v|P−vf = P−u(f ) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u(f )),

where P−u and Pu−v mean integration with respect to ξj, j ∈ D\u and j ∈ u\v,

respectively. The second representation motivates that fu is essentially as smooth

as P−u(f ).

If f belongs to L2,ρ(Rd), its ANOVA terms {fu}u⊆D are orthogonal in L2,ρ(Rd).

We set σ2(f ) = ‖f − Id(f )‖2
L2

and σ2
u(f ) = ‖fu‖2

L2
, and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

σ2
u(f ) .

The normalized ratios σ2u(f)
σ2(f)

serve as indicators for the importance of ξu in f .



Owen’s superposition (truncation) dimension distribution of f : Probability mea-

sure νS (νT ) defined on the power set of D

νS(s) :=
∑
|u|=s

σ2
u(f )

σ2(f )

(
νT (s) =

∑
max{j:j∈u}=s

σ2
u(f )

σ2(f )

)
(s ∈ D).

Effective superposition (truncation) dimension dS(ε) (dT (ε)) of f is the (1− ε)-

quantile of νS (νT ):

dS(ε) = min
{
s ∈ D :

∑
|u|≤s

σ2
u(f ) ≥ (1− ε)σ2(f )

}
≤ dT (ε)

dT (ε) = min
{
s ∈ D :

∑
u⊆{1,...,s}

σ2
u(f ) ≥ (1− ε)σ2(f )

}
It holds

max
{∥∥∥f − ∑

|u|≤dS(ε)

fu

∥∥∥
2,ρ
,
∥∥∥f − ∑

u⊆{1,...,dT (ε)}

fu

∥∥∥
2,ρ

}
≤
√
εσ(f ).

(Caflisch-Morokoff-Owen 97, Owen 03, Wang-Fang 03)



Integrands of two-stage linear stochastic programs

We consider the linear two-stage stochastic program

min
{∫

Ξ

f (x, ξ)P (dξ) : x ∈ X
}
,

where f is extended real-valued defined on Rm × Rd given by

f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x), (x, ξ) ∈ X × Ξ,

c ∈ Rm, X ⊆ Rm and Ξ ⊆ Rd are convex polyhedral, W is an (r,m)-matrix, P

is a Borel probability measure on Ξ, and the vectors q(ξ) ∈ Rm, h(ξ) ∈ Rr and

the (r,m)-matrix T (ξ) are affine functions of ξ, Φ is the second-stage optimal

value function

Φ(u, t) = inf{〈u, y〉 : Wy = t, y ≥ 0} ((u, t) ∈ Rm × Rr),

Let posW = W (Rm
+), D ={u ∈ Rm :{z ∈ Rr : W>z ≤ u} 6= ∅}.

Assumptions:
(A1) h(ξ)− T (ξ)x ∈ posW and q(ξ) ∈ D for all (x, ξ) ∈ X × Ξ.

(A2)
∫

Ξ ‖ξ‖
2P (dξ) <∞.



Lemma: (Walkup-Wets 69, Nožička-Guddat-Hollatz-Bank 74)

Φ is finite, polyhedral and continuous on the (m+r)-dimensional convex polyhe-

dral cone D×posW and there exist (r,m)-matrices Cj and (m+r)-dimensional

convex polyhedral cones Kj, j = 1, ..., `, such that

⋃̀
j=1

Kj = D × posW and intKi ∩ intKj = ∅ , i 6= j,

Φ(u, t) = 〈Cju, t〉, for each (u, t) ∈ Kj, j = 1, ..., `,

Φ(u, t) = max
j=1,...,`

〈Cju, t〉 .

The function Φ(u, ·) is convex on posW for each u ∈ D, and Φ(·, t) is concave

on D for each t ∈ posW . The intersection Ki ∩ Kj, i 6= j, is either equal to

{0} or contained in a (m+r−1)-dimensional subspace of Rm+r if the two cones

are adjacent.

Hence, the two-stage integrands are of the form

f (x, ξ) = 〈c, x〉 + max
j=1,...,`

〈Cjq(ξ), h(ξ)− T (ξ)x〉 ((x, ξ) ∈ X × Ξ).

f (x, ξ) = 〈c, x〉 + 〈Cjq(ξ), h(ξ)− T (ξ)x〉 if (q(ξ), h(ξ)− T (ξ)x) ∈ Kj.



ANOVA decomposition of two-stage integrands

Assumptions: (A1), (A2) and

(A3) P has a density of the form ρ(ξ) =
∏d

i=1 ρi(ξi) (ξ ∈ Rd) with continuous

marginal densities ρi, i ∈ D.

(A4) All common faces of adjacent convex polyhedral sets

Ξj(x) = {ξ ∈ Ξ : (q(ξ), h(ξ)− T (ξ)x) ∈ Kj} (j = 1, . . . , `)

do not parallel any coordinate axis for all x ∈ X (geometric condition).

Proposition:
(A1) implies that two-stage integrands

fx(ξ) := f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x) (x ∈ X, ξ ∈ Ξ)

are continuous and piecewise linear-quadratic.

For each x ∈ X , f (x, ·) is linear-quadratic on each convex polyhedral set Ξj(x),

j = 1, . . . , `. It holds int Ξj(x) 6= ∅, int Ξj(x) ∩ int Ξi(x) = ∅, i 6= j, and the

sets Ξj(x), j = 1, . . . , `, decompose Ξ. Furthermore, the intersection of two

adjacent sets Ξi(x) and Ξj(x), i 6= j, is contained in some (d − 1)-dimensional

affine subspace.



To compute projections Pkf for k ∈ D, let ξi ∈ R, i = 1, . . . , d, i 6= k, be

given. We set ξk = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd) and

ξk(s) = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd) ∈ Rd (s ∈ R).

We fix x ∈ X and consider the one-dimensional affine subspace {ξk(s) : s ∈ R}:

�
�
�
�
�
@
@

@
@
@

@
@
@

@

�
�
�
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Example with d = 2 = p, where the polyhedral sets are cones

It meets the nontrivial intersections of two adjacent polyhedral sets Ξi(x) and

Ξj(x), i 6= j, at finitely many points si, i = 1, . . . , p if all (d − 1)-dimensional

subspaces containing the intersections do not parallel the kth coordinate axis.



The si = si(ξ
k), i = 1, . . . , p, are affine functions of ξk. It holds

si = −
p∑

l=1,l 6=k

gil
gik
ξl + ai (i = 1, . . . , p)

for some ai ∈ R and gi ∈ Rd belonging to an intersection of polyhedral sets.

Proposition:
Let k ∈ D, x ∈ X and assume (A1)–(A4).

Then the kth projection Pkf has the explicit representation

Pkf (ξk) =

p+1∑
i=1

2∑
j=0

pij(ξ
k;x)

∫ si

si−1

sjρk(s)ds,

where s0 = −∞, sp+1 = +∞ and pij(·;x) are polynomials in ξk of degree 2− j,

j = 0, 1, 2, with coefficients depending on x, and is continuously differentiable

on Rd. Pkf is s-times continuously differentiable almost everywhere on Rd if the

marginal density ρk belongs to Cs−1(R).



Theorem:
Let x ∈ X , assume (A1)–(A4) and f = f (x, ·) be the two-stage integrand.

Then the second order ANOVA approximation of f

f (2) :=
∑
|u|≤2

fu where f = f (2) +

d∑
|u|=3

fu

belongs to W
(1,...,1)
2,ρ,mix (Rd) if all marginal densities ρk, k ∈ D, belong to C1(R).

Remark:
The second order ANOVA approximation f (2) is a good approximation of f if the

effective superposition dimension dS(ε) is at most 2. Then∥∥∥ d∑
|u|=3

fu

∥∥∥2

2,ρ
=

d∑
|u|=3

‖fu‖2
2,ρ ≤ εσ2(f )

and f belongs essentially to the tensor product Sobolev space W (1,...,1)
2,mix (Rd).

Hence, a favorable behavior of randomly shifted lattice rules may be expected.



Example: Let m̄ = 3, d = 2, P satisfy (A2) and (A3), h(ξ) = ξ, q and T be

fixed and W be given such that (A1) is satisfied and the dual feasible set is

{z ∈ R2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z2 ≤ 0}.
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Dual feasible set, its vertices vj and the normal cones Kj to its vertices

The function Φ and the integrand are of the form

Φ(t) = max
i=1,2,3

〈vi, t〉 = max{t1,−t1, t2} = max{|t1|, t2}

f (ξ) = 〈c, x〉 + Φ(ξ − Tx) = 〈c, x〉 + max{|ξ1− [Tx]1|, ξ2 − [Tx]2}

and the convex polyhedral sets are Ξj(x) = Tx +Kj, j = 1, 2, 3.

The ANOVA projection P1f is in C1, but P2f is not differentiable.



Quasi-Monte Carlo error estimates

If the assumptions of the theorem are satisfied, one may argue for randomly

shifted lattice rules as follows∥∥∥∫
Rd
f (ξ)ρ(ξ)dξ − 1

n

n∑
j=1

f (ξj)
∥∥∥
L2

=
∥∥∥∫

[0,1]d
g(t)dt− 1

n

n∑
j=1

g(tj)
∥∥∥
L2

≤
∑

0<|u|≤d

∥∥∥∫
[0,1]|u|

gu(t
u)dtu − 1

n

n∑
j=1

gu(t
j)
∥∥∥
L2

≤ C(δ)n−1+δ +

d∑
|u|=3

∥∥∥∫
[0,1]d

gu(t)dt−
1

n

n∑
j=1

gu(t
j)
∥∥∥
L2

≤ C(δ)n−1+δ + O(
√
ε)

if the effective superposition dimension of f satisfies dS(ε) ≤ 2 and the trans-

formed functions gu, |u| = 1, 2, belong to the weighted tensor product Sobolev

space on [0, 1]d. The functions g and gu are defined by

g = f ◦ ϕ−1 on (0, 1)d and gu = fu ◦ ϕ−1
u on (0, 1)|u| ,



where

ϕ := (ϕ1, . . . , ϕd), ϕi(t) :=

∫ t

−∞
ρi(s)ds (i ∈ D).

Since fu, |u| = 1, 2, is first and mixed second order partially differentiable in the

sense of Sobolev and ϕ−1 can be assumed to be smooth, gu, |u| = 1, 2, is also

first and mixed second order partially differentiable in the sense of Sobolev.

However, in general, the mixed derivatives of gu are not quadratically integrable.

Hence the Sobolev spaces have to be modified by introducing weight functions.

(Kuo-Sloan-Wasilkowski-Waterhouse 10).

Here, we assume for simplicity that the mixed derivatives of gu, |u| = 1, 2, belong

to the mixed Sobolev spaces.

Since the constants involved in our estimates may be chosen to be uniform with

respect to the first-stage decision x varying in a compact set X , the final es-

timate carries over to the L2-distance of the optimal values of the original and

approximate two-stage program.



Question: How restrictive is the geometric condition (A4) ?

Partial answer: If P is normal with nonsingular covariance matrix, (A4) is a

generic property. Namely, it holds

Proposition: Let x ∈ X , (A1) be satisfied, P be a normal distribution with

nonsingular covariance matrix Σ and assume that Σ is transformed to a diagonal

matrix by an orthogonal transformation.

Then for almost all covariance matrices Σ the second order ANOVA approxima-

tion f (2) of f belongs to the mixed Sobolev space W (1,...,1)
2,ρ,mix(Rd).

Question: For which two-stage stochastic programs is the effective superposi-

tion dimension dS(ε) of f is less than or equal to 2?

Partial answer: In case of a (log)normal probability distribution P the effective

dimension depends on the mode of decomposition of the covariance matrix in

order to transform the random vector to one with independent components.



Dimension reduction in case of (log)normal distributions

Let P be the normal distribution with mean µ and nonsingular covariance matrix

Σ. Let A be a matrix satisfying Σ = AA>. Then η defined by ξ = Aη + µ is

standard normal.

The (lower triangular) standard Cholesky matrix A = LC performing the facto-

rization Σ = LCL
>
C seems to assign the same importance to every variable and,

hence, is not suitable to reduce the effective dimension.

A universal principle is principal component analysis (PCA). Here, one uses

A = (
√
λ1u1, . . . ,

√
λdud), where λ1 ≥ · · · ≥ λd > 0 are the eigenvalues

of Σ in decreasing order and the corresponding orthonormal eigenvectors ui,

i = 1, . . . , d. (Wang-Fang 03, Wang-Sloan 05) report an enormous reduction of the ef-

fective truncation dimension in financial models if PCA is used. Our numerical

results confirm this observation.

However, there is no consistent dimension reduction effect for any such matrix

A (Papageorgiou 02, Wang-Sloan 11).



Computational experience

We consider a stochastic production planning problem which consists in minimiz-

ing the expected costs of a company during a certain time horizon. The model

contains stochastic demands ξδ and prices ξc as components of

ξ = (ξδ,1, . . . , ξδ,T , ξc,1, . . . , ξc,T )>.

The company aims to satisfy stochastic demands ξδ,t in a time horizon {1, . . . , T},
but its production capacity based on their own units does eventually not suffice to

cover the demand. Hence, it has to buy the necessary extra amounts on markets

or from other providers. The model is of the form

max
{ T∑

t=1

(
c>t xt +

∫
RT
qt(ξ)>ytP (dξ)

)
: Wy + V x = h(ξ), y ≥ 0, x ∈ X

}
We assume that the stochastic demands and prices ξδ,t, ξc,t may be modeled as

a multivariate ARMA(1,1) process, i.e.,(
ξδ,t
ξc,t

)
=

(
ξ̄δ,t
ξ̄c,t

)
+

(
E1,t

E2,t

)
, for t = 1, . . . , T, and(

ξ̄δ,1
ξ̄c,1

)
= B1

(
γ1,1

γ2,1

)
,

(
ξ̄δ,t
ξ̄c,t

)
= A

(
ξ̄δ,t−1

ξ̄c,t−1

)
+ B1

(
γ1,t

γ2,t

)
+ B2

(
γ1,t−1

γ2,t−1

)





for t = 2, . . . , T , where γ1,t, γ2,t ∼ N(0,1) and i.i.d. and T = 100.

We used PCA and CH for decomposing the covariance matrix of ξ. PCA has

led to effective truncation dimension dT (0.01) = 2 while for CH dT (0.01) = 200.

As QMC methods we used a randomly scrambled Sobol sequence (SOB) and

a randomly shifted lattice rule (LAT) with weights γj = 1
j3

and for MC the

Mersenne-Twister.

We used n = 128, 256, 512 for the Mersenne Twister and for Sobol’ points. For

randomly shifted lattices we used n = 127, 257, 509. The random shifts were

generated using the Mersenne Twister. We estimated the relative root mean

square errors (RMSE) of the optimal costs by taking 10 runs for each experiment,

and repeated the process 30 times for the box plots in the figures.

The average of the estimated rates of convergence under PCA was approximately

−0.9 for randomly shifted lattice rules, and −1.0 for the randomly scrambled

Sobol’ points. This is clearly superior compared to the MC rate −0.5.

The box-plots show the first quartile as lower bound of the box, the third quartile as upper bound and the
median as line between the bounds, Outliers are marked as plus signs and the rest of the results lie between the
brackets.



log10 of the relative errors of optimal values obtained with MC, LAT (randomly shifted lattice rule) and SOB
(scrambled Sobol’ points) using PCA



log10 of the relative errors of optimal values obtained with MC, LAT (randomly shifted lattice rule) and SOB
(scrambled Sobol’ points) using Cholesky



Conclusions

• Our analysis provides a theoretical basis for applying modern randomized

Quasi-Monte Carlo methods accompanied by dimension reduction techniques

to two-stage stochastic programming problems.

• The analysis confirms our numerical experience that modern randomized

QMC methods are often superior compared to Monte Carlo and never worse.

They allow for a distinct reduction of sample sizes from n to almost
√
n.

• Of course, the implementation effort increases for QMC.

• The analysis also applies to sparse grid quadrature techniques.

• The analysis appears to be extendable to mixed-integer two-stage models and

to multi-stage situations. This is supported by our numerical experience, too.
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