Stability, sensitivity and limit theorems of stochastic dominance constrained optimization models

D. Dentcheva and W. Römisch

Stevens Institute of Technology, Hoboken Humboldt-University Berlin

www.math.hu-berlin.de/~romisch

Charles University Prague, Department of Statistics, April 11, 2013

Home Page

Title Page

Contents

→→

→

Page 1 of 25

Go Back

Full Screen

Close

Introduction and contents

The use of stochastic orderings as a modeling tool has become standard in theory and applications of stochastic optimization. Much of the theory is developed and many successful applications are known.

Research topics:

- Multivariate concepts and analysis,
- scenario generation and approximation schemes,
- analysis of (Quasi-) Monte Carlo approximations,
- numerical methods and decomposition schemes.

Contents of the talk:

- (1) Introduction, stochastic dominance
- (2) Quantitative stability results
- (3) Sensitivity of optimal values
- (4) Limit theorems for empirical approximations

Home Page

Title Page

Contents

44 >>

→

Page 2 of 25

Go Back

Full Screen

Close

Optimization models with stochastic dominance constraints

We consider the optimization model

$$\min \{ f(x) : x \in D, G(x, \xi) \succeq_{(k)} Y \},\$$

where $k\in\mathbb{N},\ D$ is a nonempty convex closed subset of $\mathbb{R}^m,\ \Xi$ a convex closed subset of $\mathbb{R}^s,\ f:\mathbb{R}^m\to\mathbb{R}$ is convex, ξ is a random vector with support Ξ and Y a real random variable on some probability space both having finite moments of order k-1, and $G:\mathbb{R}^m\times\mathbb{R}^s\to\mathbb{R}$ is continuous, concave with respect to the first argument and satisfies the linear growth condition

$$|G(x,\xi)| \le C(B) \max\{1, \|\xi\|\} \quad (x \in B, \xi \in \Xi)$$

for every bounded subset $B \subset \mathbb{R}^m$ and some constant C(B) (depending on B). The random variable Y plays the role of a benchmark outcome.

D. Dentcheva, A. Ruszczyński: Optimization with stochastic dominance constraints, *SIAM J. Optim.* 14 (2003), 548–566.

Home Page

Title Page

Contents

44 >>

Page 3 of 25

Go Back

Full Screen

Close

Stochastic dominance relation $\succeq_{(k)}$

$$X \succeq_{(k)} Y \quad \Leftrightarrow \quad F_X^{(k)}(\eta) \le F_Y^{(k)}(\eta) \quad (\forall \eta \in \mathbb{R})$$

where X and Y are real random variables belonging to $\mathcal{L}_{k-1}(\Omega, \mathcal{F}, \mathbb{P})$ with norm $\|\cdot\|_{k-1}$ for some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. By \mathcal{L}_0 we denote consistently the space of all scalar random variables.

Let P_X denote the probability distribution of X and $F_Y^{(1)} = F_X$ its distribution function, i.e.,

$$F_X^{(1)}(\eta) = \mathbb{P}(\{X \le \eta\}) = \int_{-\infty}^{\eta} P_X(d\xi) \quad (\forall \eta \in \mathbb{R})$$

and

$$F_X^{(k+1)}(\eta) = \int_{-\infty}^{\eta} F_X^{(k)}(\xi) d(\xi) = \int_{-\infty}^{\eta} \frac{(\eta - \xi)^k}{k!} P_X(d\xi)$$
$$= \frac{1}{k!} \| \max\{0, \eta - X\} \|_k^k \quad (\forall \eta \in \mathbb{R}),$$

where

$$||X||_k = \left(\mathbb{E}(|X|^k)\right)^{\frac{1}{k}} \quad (\forall k \ge 1).$$

A. Müller and D. Stoyan: Comparison Methods for Stochastic Models and Risks, Wiley, Chichester, 2002.

Home Page

Title Page

Contents

Page 4 of 25

Go Back

Full Screen

Close

Quit

The original problem is equivalent to its split variable formulation

$$\min \left\{ f(x) : x \in D, \ G(x,\xi) \ge X, \ F_X^{(k)}(\eta) \le F_Y^{(k)}(\eta), \forall \eta \in I \right\}$$

by introducing a new real random variable X and the constraint

$$G(x,\xi) \ge X$$
 P-almost surely.

This formulation motivates the need of two different metrics for handling the two constraints of different nature:

The almost sure constraint $G(x,\xi) \geq X$ (\mathbb{P} -a.s.) and the functional constraint $F_X^{(k)}(\cdot) \leq F_Y^{(k)}(\cdot)$, respectively.

D. Dentcheva, A. Ruszczyński: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints, *Math. Progr.* 99 (2004), 329–350.

Properties:

(i) Equivalent characterization of $\succeq_{(2)}$:

$$X \succeq_{(2)} Y \quad \Leftrightarrow \quad \mathbb{E}[u(X)] \ge \mathbb{E}[u(Y)]$$

for each nondecreasing concave utility $u: \mathbb{R} \to \mathbb{R}$ such that the expectations are finite.

- (ii) The function $F_X^{(k)}:\mathbb{R}\to\mathbb{R}$ is nondecreasing for $k\geq 1$ and convex for $k\geq 2$.
- (iii) For every $k \in \mathbb{N}$ the SD relation $\succeq_{(k)}$ introduces a partial ordering in $\mathcal{L}_{k-1}(\Omega, \mathcal{F}, \mathbb{P})$ which is not generated by a convex cone if Y is not deterministic.

Extensions: By imposing appropriate assumptions all results remain valid for the following two extended situations:

- (a) finite number of kth order stochastic dominance constraints,
- (b) the objective f is replaced by an expectation function of the form $\mathbb{E}[g(\cdot\,,\xi)]$ where g is a real-valued function defined on $\mathbb{R}^m \times \mathbb{R}^s$.

Home Page

Title Page

Contents

44 | **>>**

◆

Page 6 of 25

Go Back

Full Screen

Close

The case of discrete distributions:

Let ξ_j , X_j and Y_j the scenarios of ξ , X and Y with probabilities p_j , $j=1,\ldots,n$. Then the second order dominance constraints (i.e. k=2) in the split variable formulation can be expressed as

$$\sum_{j=1}^{n} p_j [\eta - X_j]_+ \le \sum_{j=1}^{n} p_j [\eta - Y_j]_+ \quad (\forall \eta \in I).$$

The latter condition can be shown to be equivalent to

$$\sum_{j=1}^{n} p_j [Y_k - X_j]_+ \le \sum_{j=1}^{n} p_j [Y_k - Y_j]_+ \quad (\forall k = 1, \dots, n).$$

if $Y_k \in I$, k = 1, ..., n. Here, $[\cdot]_+ = \max\{0, \cdot\}$.

Hence, the second order dominance constraints may be reformulated as linear constraints for the X_i , j = 1, ..., n, in

$$G(x,\xi_j) \ge X_j \quad (j=1,\ldots,n).$$

D. Dentcheva, A. Ruszczyński: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints, *Math. Progr.* 99 (2004), 329–350. J. Luedtke: New formulations for optimization under stochastic dominance constraints, *SIAM J. Optim.* 19 (2008), 1433–1450.

Home Page

Title Page

Contents

← | **→**

Page **7** of **25**

Go Back

Full Screen

Close

Metrics associated to $\succeq_{(k)}$

Rachev metrics on \mathcal{L}_{k-1} :

$$\mathbb{D}_{k,p}(X,Y) := \begin{cases} \left(\int_{\mathbb{R}} \left| F_X^{(k)}(\eta) - F_Y^{(k)}(\eta) \right|^p d\eta \right)^{\frac{1}{p}}, \ 1 \le p < \infty \\ \sup_{\eta \in \mathbb{R}} \left| F_X^{(k)}(\eta) - F_Y^{(k)}(\eta) \right|, \ p = \infty \end{cases}$$

Proposition: It holds for any $X, Y \in \mathcal{L}_{k-1}$

$$\mathbb{D}_{k,p}(X,Y) = \zeta_{k,p}(X,Y) := \sup_{f \in \mathcal{D}_{k,p}} \left| \int_{\mathbb{R}} f(x) P_X(dx) - \int_{\mathbb{R}} f(x) P_Y(dx) \right|$$

if
$$\mathbb{E}(X^i) = \mathbb{E}(Y^i)$$
, $i = 1, \dots, k-1$.

Here, $\mathcal{D}_{k,p}$ denotes the set of continuous functions $f: \mathbb{R} \to \mathbb{R}$ that have measurable kth order derivatives $f^{(k)}$ on \mathbb{R} such that

$$\int_{\mathbb{R}} |f^{(k)}(x)|^{\frac{p}{p-1}} dx \le 1 \quad (p > 1) \quad \text{or} \quad \text{ess} \sup_{x \in \mathbb{R}} |f^{(k)}(x)| \le 1 \quad (p = 1).$$

Home Page

Title Page

Contents

★

◆

Go Back

Full Screen

Close

Note that the condition $\mathbb{E}(X^i) = \mathbb{E}(Y^i)$, $i = 1, \ldots, k-1$, is implied by the finiteness of $\zeta_{k,p}(X,Y)$, since $\mathcal{D}_{k,p}$ contains all polynomials of degree k-1. Conversely, if X and Y belong to \mathcal{L}_{k-1} and $\mathbb{E}(X^i) = \mathbb{E}(Y^i)$, $i = 1, \ldots, k-1$, holds, then the distance $\mathbb{D}_{k,p}(X,Y)$ is finite.

Proposition:

There exists $c_k > 0$ (only depending on k) such that

$$\zeta_{k,\infty}(X,Y) \le \zeta_{1,\infty}(X,Y) \le c_k \zeta_{k,\infty}(X,Y)^{\frac{1}{k}} \quad (\forall X,Y \in \mathcal{L}_{k-1}).$$

 $\zeta_{1,\infty}$ is the Kolmogorov metric and $\zeta_{1,1}$ the first order Fourier-Mourier or Wasserstein metric.

S. T. Rachev: Probability Metrics and the Stability of Stochastic Models, Wiley, 1991.

Home Page

Title Page

Contents

← | →→

Page 9 of 25

Go Back

Full Screen

Close

Structure and stability

We consider the kth order SD constrained optimization model

$$\min \left\{ f(x) : x \in D, \, F_{G(x,\xi)}^{(k)}(\eta) \le F_Y^{(k)}(\eta), \, \forall \eta \in \mathbb{R} \right\}$$

as semi-infinite program.

Relaxation: Replace \mathbb{R} by some compact inverval I = [a, b].

Proposition:

Under the general assumptions the feasible set

$$\mathcal{X}(\xi, Y) = \left\{ x \in D : F_{G(x,\xi)}^{(k)}(\eta) \le F_Y^{(k)}(\eta), \, \forall \eta \in I \right\}$$

is closed and convex in \mathbb{R}^m .

kth order uniform dominance condition (kudc) at (ξ, Y) :

There exists $\bar{x} \in D$ such that

$$\min_{\eta \in I} \left(F_Y^{(k)}(\eta) - F_{G(\bar{x},\xi)}^{(k)}(\eta) \right) > 0.$$

Home Page

Title Page

Contents

→

Page 10 of 25

Go Back

Full Screen

Close

Home Page

Title Page

Contents

(**I**

Page 11 of 25

Go Back

Full Screen

Close

Quit

Metrics on $\mathcal{L}_{k-1}^s \times \mathcal{L}_{k-1}$:

$$d_k((\xi, Y), (\tilde{\xi}, \tilde{Y})) = \ell_{k-1}(\xi, \tilde{\xi}) + \mathbb{D}_{k,\infty}(Y, \tilde{Y}),$$

where $k \in \mathbb{N}$, $k \geq 2$ is the degree of the SD constraint and ℓ_{k-1} is the L_{k-1} -minimal distance or (k-1)th order Wasserstein distance defined by

$$\ell_{k-1}(\xi,\tilde{\xi}) := \inf \left\{ \int_{\Xi \times \Xi} \|x - \tilde{x}\|^{k-1} \eta(dx,d\tilde{x}) \right\}^{\frac{1}{k-1}},$$

where the infimum is taken w.r.t. all probability measures η on $\Xi \times \Xi$ with marginal P_{ξ} and $P_{\tilde{\xi}}$, respectively.

Proposition:

Let D be compact and assume that the function G satisfies

$$|G(x,u) - G(x,\tilde{u})| \le L_G ||u - \tilde{u}||$$

for all $x \in D$, $u, \tilde{u} \in \Xi$ and some constant $L_G > 0$. Assume that the kth order uniform dominance condition is satisfied at (ξ, Y) .

Then there exist constants L(k) > 0 and $\delta > 0$ such that

$$d_{\mathrm{H}}(\mathcal{X}(\xi,Y),\mathcal{X}(\tilde{\xi},\tilde{Y})) \leq L(k) d_{k}((\xi,Y),(\tilde{\xi},\tilde{Y})),$$

whenever the pair $(\tilde{\xi}, \tilde{Y})$ is chosen such that $d_k((\xi, Y), (\tilde{\xi}, \tilde{Y})) < \delta$. Here, d_H denotes the Pompeiu-Hausdorff distance on bounded closed subsets of \mathbb{R}^m .

Note that L(k) gets smaller with increasing $k \in \mathbb{N}$ if $\|\xi\|_{k-1}$ grows at most exponentially with k. Hence, higher order stochastic dominance constraints may have improved stability properties.

Home Page

Title Page

Contents

44 >>

→

Page 12 of 25

Go Back

Full Screen

Close

Home Page

Title Page

Contents

I → →

Page 13 of 25

Go Back

Full Screen

Close

Quit

Let $v(\xi,Y)$ denote the optimal value and $S(\xi,Y)$ the solution set of

$$\min \{ f(x) : x \in D, x \in \mathcal{X}(\xi, Y) \}.$$

We consider the growth function

$$\psi_{(\xi,Y)}(\tau) := \inf \{ f(x) - v(\xi,Y) : d(x,S(\xi,Y)) \ge \tau, \ x \in \mathcal{X}(\xi,Y) \}$$

and

$$\Psi_{(\xi,Y)}(\theta) := \theta + \psi_{(\xi,Y)}^{-1}(2\theta) \quad (\theta \in \mathbb{R}_+),$$

where we set $\psi_{(\xi,Y)}^{-1}(t) = \sup\{\tau \in \mathbb{R}_+ : \psi_{(\xi,Y)}(\tau) \leq t\}.$

Note that $\Psi_{(\xi,Y)}$ is increasing, lower semicontinuous and vanishes at $\theta=0.$

Main stability result

Theorem:

Let D be compact and assume that the function G satisfies

$$|G(x,u) - G(x,\tilde{u})| \le L_G ||u - \tilde{u}||$$

for all $x \in D$, $u, \tilde{u} \in \Xi$ and some constant $L_G > 0$. Assume that the kth order uniform dominance condition is satisfied at (ξ, Y) .

Then there exist positive constants L(k) and δ such that

$$|v(\xi,Y) - v(\tilde{\xi},\tilde{Y})| \leq L(k) d_k((\xi,Y),(\tilde{\xi},\tilde{Y}))$$

$$\sup_{x \in S(\tilde{\xi},\tilde{Y})} d(x,S(\xi,Y)) \leq \Psi_{(\xi,Y)}(L(k) d_k((\xi,Y),(\tilde{\xi},\tilde{Y})))$$

whenever $d_k((\xi, Y), (\tilde{\xi}, \tilde{Y})) < \delta$.

(Klatte 94, Rockafelar-Wets 98)

Home Page

Title Page

Contents

44 >>

◆

Page 14 of 25

Go Back

Full Screen

Close

Proof: Let the pair $(\tilde{\xi}, \tilde{Y}) \in \mathcal{L}^2_{k-1}$ be such that $\hat{\delta} := d_k((\xi, Y), (\tilde{\xi}, \tilde{Y})) < \delta$, where $\delta > 0$ is the corresponding constant from the Proposition. Now, let $x \in S(\xi, Y)$ and $\tilde{x} \in S(\tilde{\xi}, \tilde{Y})$. Then there exists $\hat{x} \in \mathcal{X}(\xi, Y)$ such that

$$\|\hat{x} - \tilde{x}\| \le L_H \hat{\delta} \,,$$

where L_H is the Lipschitz constant of the feasible set mapping. We obtain

$$v(\xi, Y) - v(\tilde{\xi}, \tilde{Y}) = f(x) - f(\tilde{x})$$

$$\leq f(x) - f(\hat{x}) + f(\hat{x}) - f(\tilde{x}) \leq f(\hat{x}) - f(\tilde{x})$$

$$\leq L_f ||\hat{x} - \tilde{x}|| \leq L_f L_H \hat{\delta},$$

where L_f is the Lipschitz modulus of the function f on the compact set D. Analogously, we obtain the same estimate for $v(\tilde{\xi},\tilde{Y})-v(\xi,Y)$. Hence, we may set $L:=L_fL_H$. To derive the second estimate, let the pair $(\tilde{\xi},\tilde{Y})\in\mathcal{L}_{k-1}^2$ be selected as above and let $\tilde{x}\in S(\tilde{\xi},\tilde{Y})$. Then there exists $x\in\mathcal{X}(\xi,Y)$ such that $\|\tilde{x}-x\|\leq L_H\hat{\delta}$. According to the definition of the growth function $\psi_{(\xi,Y)}$ we have

$$f(x) - v(\xi, Y) \ge \psi_{(\xi, Y)}(d(x, S(\xi, Y))).$$

Furthermore, we obtain the following chain of estimates

$$2L\hat{\delta} \geq L_f \|\tilde{x} - x\| + L\hat{\delta} \geq f(x) - f(\tilde{x}) + v(\tilde{\xi}, \tilde{Y}) - v(\xi, Y)$$

= $f(x) - v(\xi, Y) \geq \psi_{(\xi, Y)}(d(x, S(\xi, Y))),$

Finally, we conclude

$$d(\tilde{x}, S(\xi, Y)) \leq L_H \hat{\delta} + d(x, S(\xi, Y))$$

$$\leq L_H \hat{\delta} + \psi_{(\xi, Y)}^{-1} (2L\hat{\delta})$$

$$\leq \Psi_{(\xi, Y)} (\max\{L_H, L\}\hat{\delta}).$$

This completes the proof.

Home Page

Title Page

Contents

∢ | →

→

Page 15 of 25

Go Back

Full Screen

Close

Dual multipliers and utilities

Let $\mathcal{Y} = C(I)$ and \mathcal{Y}^* its dual which is isometrically isomorph to the space $\mathbf{rca}(I)$ of regular countably additive measures μ on I having finite total variation $|\mu|(I)$. The dual pairing is given by

$$\langle \mu, y \rangle = \int_I y(\eta) \mu(d\eta) \quad (\forall y \in \mathcal{Y}, \ \mu \in \mathbf{rca}(I)).$$

We consider the closed convex cone

$$K = \{ y \in \mathcal{Y} : y(\eta) \ge 0, \, \forall \eta \in I \}$$

and its polar cone K^-

$$K^{-} = \{ \mu \in \mathbf{rca}(I) : \langle \mu, y \rangle \le 0, \forall y \in K \}.$$

The semi-infinite constraint may be written as

$$\mathcal{G}(x; P_{\xi}, P_{Y}) := F_{Y}^{(k)} - F_{G(x,\xi)}^{(k)} \in K$$

and the semi-infinite program is

$$\min \{ f(x) : x \in D, \mathcal{G}(x; P_{\xi}, P_Y) \in K \}.$$

Home Page

Title Page

Contents

← | **→**

←

Page 16 of 25

Go Back

Full Screen

Close

Lemma: (Dentcheva-Ruszczyński 03)

Let $k \geq 2$, I = [a, b], $\mu \in -K^-$. There exists $u \in \mathcal{U}_{k-1}$ such that

$$\langle \mu, F_X^{(k)} \rangle = \int_I F_X^{(k)}(\eta) \mu(d\eta) = -\mathbb{E}[u(X)]$$

holds for every $X \in \mathcal{L}_{k-1}$. Here, \mathcal{U}_{k-1} denotes the set of all functions $u \in C^{k-1}(\mathbb{R})$, for which there exists a nonnegative, non-increasing, left-continuous, bounded function $\varphi : I \to \mathbb{R}$ such that

$$\begin{array}{ll} u^{(k-1)}(t) &= (-1)^k \varphi(t) & \text{, μ-a.e. } t \in [a,b], \\ u^{(k-1)}(t) &= (-1)^k \varphi(a) & \text{, } t < a, \\ u(t) &= 0 & \text{, } t \geq b, \\ u^{(i)}(b) &= 0 & \text{, } i = 1, \dots, k-2, \end{array}$$

where the symbol $u^{(i)}$ denotes the *i*th derivative of u. In particular, the utilities $u \in \mathcal{U}_{k-1}$ are nondecreasing and concave on \mathbb{R} .

Proof: Let $\mu \in \mathbf{rca}(I)$, $\mu \geq 0$. Then μ is extended to $\mathcal{B}(\mathbb{R})$ by assigning measure 0 to Borel sets not intersecting I. The function $u \in \mathcal{U}_{k-1}$ is then defined by putting u(t) = 0, $t \geq b$, $u^{(k-1)}(t) = (-1)^k \mu([t,b])$, μ -a.e. $t \leq b$, $u^{(i)}(b) = 0$, $= 1, \ldots, k-2$. One obtains by repeated integration by parts for any $X \in \mathcal{L}_{k-1}$

$$\langle \mu, F_X^{(k)} \rangle = (-1)^k \int_{-\infty}^b F_X^{(k)}(\eta) du^{(k-1)}(t) = -\int_{-\infty}^b u(t) dF_X(t) = -\mathbb{E}[u(X)].$$

Home Page

Title Page

Contents

•

Page 17 of 25

Go Back

Full Screen

Close

Optimality and duality

Define the Lagrange-like function $\mathfrak{L}: \mathbb{R}^m \times \mathcal{U}_{k-1} \to \mathbb{R}$ as

$$\mathfrak{L}(x,u;P_{\xi},P_Y):=f(x)-\int_{\Xi}u(G(x,z))P_{\xi}(dz)+\int_{\mathbb{R}}u(t)P_Y(dt).$$

Theorem:

Let $k \geq 2$ and I = [a, b]. Assume the kth order uniform dominance condition at (ξ, Y) . If a feasible point $\hat{x} \in \mathbb{D}$ is an optimal solution, then a function $\hat{u} \in \mathcal{U}_{k-1}$ exists so that

$$\mathfrak{L}(\hat{x}, \hat{u}; P_{\xi}, P_{Y}) = \min_{x \in D} \mathfrak{L}(x, \hat{u}, P_{\xi}, P_{Y})$$
$$\int_{\Xi} \hat{u}(G(\bar{x}, z)) P_{\xi}(dz) = \int_{\mathbb{R}} \hat{u}(t) P_{Y}(dt)$$

If \hat{x} satisfies the dominance constraint and the above conditions for some $\hat{u} \in \mathcal{U}_{k-1}$, then \hat{x} is an optimal solution. Furthermore, the dual problem is

$$\max_{u \in \mathcal{U}_{k-1}} \left[\inf_{x \in D} \left[f(x) + \mathbb{E} \left[u(G(x; \xi)) \right] - \mathbb{E} \left[u(Y) \right] \right] \right]$$

and the duality relation holds.

Home Page

Title Page

Contents

← → →

←

Page 18 of 25

Go Back

Full Screen

Close

Proof: The Lagrangian Λ associated with the primal program can be formulated as follows:

$$\Lambda(x,\mu;P_{\xi},P_{Y}) = \begin{cases} f(x) + \langle \mu, \mathcal{G}(x;P_{\xi},P_{Y}) \rangle & \text{if} \quad x \in D, \, \mu \in K^{-}, \\ -\infty & \text{if} \quad x \in D, \, \mu \notin K^{-}, \\ +\infty & \text{if} \quad x \notin D. \end{cases}$$

The optimality conditions for the primal problem state that if a feasible point \bar{x} is an optimal solution, then a measure $\bar{\mu} \in K^-$ exists, so that

$$\Lambda(\bar{x}, \bar{\mu}; P_{\xi}, P_{Y}) = \min_{x \in D} \Lambda(x, \bar{\mu}; P_{\xi}, P_{Y})$$
$$\langle \bar{\mu}, \mathcal{G}(\bar{x}; P_{\xi}, P_{Y}) \rangle = 0.$$

The dual problem has the form (Rockafellar 74)

$$\max \Big\{ \inf_{x \in D} \{ f(x) + \langle \mu, \mathcal{G}(x; P_{\xi}, P_Y) \rangle \} : \mu \in K^- \Big\},$$

Using the Lemma, we associate a function $\bar{u} \in \mathcal{U}_{k-1}$ with the measure $\bar{\mu}$ and reformulate the Lagrangian Λ to the following form:

$$\Lambda(x, \bar{\mu}; P_{\xi}, P_{Y}) = \mathfrak{L}(x, \bar{u}; P_{\xi}, P_{Y}) = f(x) + \int_{\Xi} \bar{u}(G(x, z)) P_{\xi}(dz) - \int_{\mathbb{R}} \bar{u}(t) P_{Y}(dt)$$

whenever $x \in D$. The optimality conditions and the dual problem are reformulated using \bar{u} and the new Lagrangian has the desired form. The duality relation holds due to the convexity of the problem and the uniform dominance condition.

Home Page

Title Page

Contents

44 | **>>**

← | **→**

Page 19 of 25

Go Back

Full Screen

Close

Sensitivity of the optimal value function

Let the infimal function $v:C(D)\to\mathbb{R}$ be given by

$$v(g) = \inf_{x \in D} g(x).$$

If D is compact, v is finite and concave on C(D), and Lipschitz continuous with respect to the supremum norm $\|\cdot\|_{\infty}$ on C(D). Hence, it is Hadamard directionally differentiable on C(D) and

$$v'(g;d) = \min \{d(x) : x \in \arg\min_{x \in D} g(x)\}.$$

Let \mathcal{U}_{k-1}^* denote the solution set of the dual problem. Any $\bar{u} \in \mathcal{U}_{k-1}^*$ is called shadow utility. For some shadow utility \bar{u} and $g_{\bar{u}} = \mathfrak{L}(\cdot, \bar{u}; P_{\xi}, P_{Y})$, the duality theorem implies $v(g_{\bar{u}}) = v(P_{\xi}, P_{Y})$.

Corollary: Let D be compact and the assumptions of the duality theorem be satisfied. Then the optimal value function $v(P_{\xi}, P_Y)$ is Hadamard directionally differentiable on C(D) and the directional derivative into any direction $d \in C(D)$ is

$$v'(g_{\bar{u}};d) = v'(P_{\xi}, P_Y;d)) = \min \{d(x) : x \in S(P_{\xi}, P_Y)\}.$$

Home Page

Title Page

Contents

44 >>

←

Page 20 of 25

Go Back

Full Screen

Close

Limit theorems for empirical approximations

Let (ξ_n, Y_n) , $n \in \mathbb{N}$, be a sequence of i.i.d. (independent, and identically distributed) random vectors on some probability space. Let $P_{\xi}^{(n)}$ and $P_Y^{(n)}$ denote the corresponding empirical measures.

Empirical approximation:

$$\min \left\{ f(x) : x \in D, \sum_{i=1}^{n} \left[\eta - G(x, \xi_i) \right]_{+}^{k-1} \le \sum_{i=1}^{n} \left[\eta - Y_i \right]_{+}^{k-1}, \eta \in I \right\}$$

Optimal value:

$$v(P_{\xi}, P_{Y}) = \inf_{x \in D} \mathfrak{L}(x, \bar{u}; P_{\xi}, P_{Y})$$

= $\inf_{x \in D} \mathbb{E} [f(x) + \bar{u}(G(x, \xi)) - \bar{u}(Y)]$
= $\inf_{x \in D} P(f(x) + \bar{u}(G(x, z)) - \bar{u}(t)),$

where \bar{u} is a shadow utility and $P := P_{\xi} \times P_{Y}$.

Home Page

Title Page

Contents

• | >>

→

Page **21** of **25**

Go Back

Full Screen

Close

Proposition:

Let the assumptions of the main stability theorem be satisfied. Let D and the supports $\Xi = \operatorname{supp}(P_{\xi})$ and $\Upsilon = \operatorname{supp}(P_Y)$ be compact.

Then Γ_k is a Donsker class, i.e., the empirical process $\mathcal{E}_n g$ indexed by $g \in \Gamma_k$

$$\mathcal{E}_n g = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n g(\xi_i, Y_i) - \mathbb{E}(g(\xi, Y)) \right) \xrightarrow{d} \mathbb{G}(g) \quad (g \in \Gamma_k)$$

converges in distribution to a Gaussian limit process $\mathbb G$ on the space $\ell^\infty(\Gamma_k)$ (of bounded functions on Γ_k) equipped with supremum norm, where

$$\Gamma_k = \{g_x : g_x(z,t) = f(x) + \bar{u}(G(x,z)) - \bar{u}(t), (z,t) \in \Xi \times \Upsilon, x \in D\}.$$

The Gaussian process \mathbb{G} has zero mean and covariances $\mathbb{E}[\mathbb{G}(x) \mathbb{G}(\tilde{x})] = \mathbb{E}_P[g_x g_{\tilde{x}}] - \mathbb{E}_P[g_x] \mathbb{E}_P[g_{\tilde{x}}]$ for $x, \tilde{x} \in D$.

 Γ_k is a parametric family of functions having a uniform Lipschitz modulus with bracketing number $\leq C\varepsilon^{-m}$ and, hence, a Donsker class.

Home Page

Title Page

Contents

∢ | ▶I

←

Page 22 of 25

Go Back

Full Screen

Close

Proposition: (functional delta method)

Let B_1 and B_2 be Banach spaces equipped with their Borel σ fields and B_1 be separable. Let (X_n) be random elements of B_1 , $h: B_1 \to B_2$ be a mapping and (τ_n) be a sequence of positive
numbers tending to infinity as $n \to \infty$. If

$$\tau_n(X_n - \theta) \stackrel{d}{\longrightarrow} X$$

for some $\theta \in B_1$ and some random element X of B_1 and h is Hadamard directionally differentiable at θ , it holds

$$\tau_n(h(X_n) - h(\theta)) \xrightarrow{d} h'(\theta; X),$$

where $\stackrel{d}{\rightarrow}$ means convergence in distribution.

Application:

 $B_1=C(D),\ B_2=\mathbb{R},\ h(g)=\inf_{x\in D}g(x),\ h$ is concave and Lipschitz w.r.t. $\|\cdot\|_{\infty}$, and $h'(g;d)=\min\{d(y):y\in \arg\min_{x\in D}g(x)\}.$

Home Page

Title Page

Contents

← →

←

Page 23 of 25

Go Back

Full Screen

Close

Theorem:

Let the assumptions of the Donsker class Proposition be satisfied. Then the optimal values $v(P_\xi^{(n)},P_Y^{(n)})$, $n\in\mathbb{N}$, satisfy the limit theorem

$$\sqrt{n}\left(v(P_{\xi}^{(n)}, P_Y^{(n)}) - v(P_{\xi}, P_Y)\right) \xrightarrow{d} \min\{\mathbb{G}(x) : x \in S(P_{\xi}, P_Y)\}$$

where \mathbb{G} is a Gaussian process with zero mean and covariances $\mathbb{E}[\mathbb{G}(x)\,\mathbb{G}(\tilde{x})] = \mathbb{E}_P[g_xg_{\tilde{x}}] - \mathbb{E}_P[g_x]\mathbb{E}_P[g_{\tilde{x}}]$ for $x,\tilde{x}\in S(P_\xi,P_Y)$. If $S(P_\xi,P_Y)$ is a singleton, i.e., $S(P_\xi,P_Y)=\{\bar{x}\}$, the limit $\mathbb{G}(\bar{x})$ is normal with zero mean and variance $\mathbb{E}_P[g_{\bar{x}}^2]-(\mathbb{E}_P[g_{\bar{x}}])^2$.

The result allows the application of resampling techniques to determine asymptotic confidence intervals for the optimal value $v(P_{\xi}, P_Y)$, in particular, bootstrapping if $S(P_{\xi}, P_Y)$ is a singleton and subsampling in the general case.

A. Eichhorn and W. Römisch: Stochastic integer programming: Limit theorems and confidence intervals, *Math. Oper. Res.* 32 (2007), 118–135.

Home Page

Title Page

Contents

(

→

Page 24 of 25

Go Back

Full Screen

Close

Conclusions

- Quantitative continuity properties for optimal values and solution sets in terms of a suitable distance of probability distributions have been obtained.
- A limit theorem for empirical optimal values is proved which allows to derive confidence intervals.
- Extensions to multivariate dominance constraints are desirable, e.g., for the concept

$$X \succeq_{(m,k)} Y \quad \text{iff} \quad v^{\top} X \succeq_{(k)} v^{\top} Y, \quad \forall v \in \mathcal{V},$$

where $\mathcal V$ is convex in $\mathbb R^m_+$ and $X,Y\in L^m_{k-1}$. For example, $\mathcal V=\{v\in\mathbb R^m_+:\|v\|_1=1\}$ is studied in (Dentcheva-Ruszczyński 09) and $\mathcal V\subseteq\{v\in\mathbb R^m:\|v\|_1\leq 1\}$ in (Hu/Homem-de-Mello/Mehrotra 11).

Home Page

Title Page

Contents

Page 25 of 25

Go Back

Full Screen

Close

References

- D. Dentcheva, R. Henrion and A. Ruszczyński: Stability and sensitivity of optimization problems with first order stochastic dominance constraints, *SIAM Journal on Optimization* 18 (2007), 322–337.
- D. Dentcheva and W. Römisch: Stability and sensitivity of stochastic dominance constrained optimization models, Preprint Nr. 978, DFG Research Center Matheon Berlin, 2012 and *SIAM J. Optim.* (revised).
- Y. Liu, W. Römisch and H. Xu: Quantitative stability analysis of stochastic generalized equations, Optimization Online, June 2012 and *SIAM J. Optim.* (revised).
- Y. Liu and H. Xu: Stability and sensitivity analysis of stochastic programs with second order dominance constraints, *Stochastic Programming E-Print Series* 3-2010 and *Math. Progr.* (to appear).

Home Page

Title Page

Contents

∢ | ▶|

◆

Page 26 of 25

Go Back

Full Screen

Close