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Abstract Noise in electronic components is a random phenomenon #ragd-
versely affect the desired operation of a circuit. Transigise analysis is designed
to consider noise effects in circuit simulation. Takingseinto account by means of
Gaussian white noise currents, mathematical modellingdsléastochastic differen-
tial algebraic equations (SDAESs) with a large number of $maike sources. Their
simulation requires an efficient numerical time integnatiy mean-square conver-
gent numerical methods. As efficient approaches for théagiation we discuss
adaptive linear multi-step methods, together with a nep-stee and path selection
control strategy. Numerical experiments on industrial-fiéaapplications illustrate
the theoretical findings.

1 Transient noise analysis in circuit simulation

In current chip design the decreasing feature sizes, higtkdtequencies and low
supply voltages cause several parasitic effect. As a coeseg the signal-to-noise
ratio decreases, i.e., the difference between the dedgadlsand noise is getting
smaller. To address the signal-to-noise ratio the modgHind the simulation can
be improved by taking the inner electrical noise into ac¢oém important re-

quirement for a transient noise simulation is the appro@maodelling of the noise
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sources in the time domain. We consider two different saiafenner electrical
noise, namely, thermal noise of resistors and shot noisemic®nductors. Thermal
noisei, of resistors is caused by the thermal motion of electronsisudéscribed
by Nyquist’s theorem. Shot noisg.; of pn-junctions, caused by the discrete nature
of currents due to the elementary charge, is modelled by t&sf®formula and
inherits noise intensities that depend on the deterministirents (see e.g. [1, 2]).

A noisy element is modelled as an additional stochasticeotiisource in paral-
lel to the original electronic element. The noise intensstgiven by the physical
characteristics and the noise models are added to the nedgoations. Combin-
ing Kirchhoff’s current law with the element characteistiand using the charge-
oriented formulation formally yields a stochastic diffetial-algebraic equation
(SDAE) of the type (see e.g. [3,4])

AS0(0) + F(x0).0) + ig (x(1),0&(1) =0, ®

whereA is a constant singular incidence matrix determined by tpelagy of the
dynamic circuit parts, the vectgyx) consists of the charges and the fluxes, and
is the vector of unknowns consisting of the nodal potentald the branch currents
through voltage-defining elements. The tefr(w, t) describes the impact of the static
elementsg(x,t) denotes the vector of noise intensities (amplitudes) ferrtth
noise source, and := (&1,...,&yn)" is an m-dimensional vector of independent
Gaussian white noise sources (see e.g. [1]).

Although this system (1) appears to be similar to a noiseggestem, it requires a
completely different mathematical background. A serioashematical description
begins by introducing the Brownian motion or the Wiener paxcthat is caused
by integrating the white noisaN(t) = /3 &(s)ds= /S dW(s)” (see e.g. [5]). Prob-
lem (1) is then understood as a stochastic integral equation

Aq(X(s))

t + t:f(><(s),s)ds+ri/totgr(X(s),s)dV\/r(s) —0, teftT], (@)

fo

where the second integral is arbdintegral, andW denotes amm-dimensional
Wiener process (or Brownian motion) given on the probab#ipace(Q,.%,P)

with a filtration (.%);>t,- The solution is a stochastic process depending on the
timet and on the random sample where the argumern is usually dropped. The
value at fixed time is a random variablX(t,-) = X(t) - for a fixed realization of
the driving Wiener process, the functid{-, w) is called a path of the solution. Due

to the influence of the Gaussian white noise, typical patlik@&olution are rough
and nowhere differentiable.

In current chip design one has to deal with a large numberwdgons as well as
of noise sources. Fortunately, the noise intensities asdl ®mmpared to the other
quantities which can be used for the construction of effiaemerical schemes.

The focus here is on efficient numerical methods to simulatepse solution
paths, i.e., strong approximations of the solution of thisirg large systems of
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SDAES, since only such paths can reveal the phase noise.altwdation of hun-
dreds or even a thousand solution paths are necessarytioggifficient numerical
confidence about the phase. Moreover, from the solutiorspatiy other statistical
data and measurements can be computed in a postprocegging st

In this paper we present variable step-size two-step mstlogarticular stochas-
tic analogues of the trapezoidal rule and the two-step baakwdifferentiation for-
mula, see Section 2. The applied step-size control strasedgscribed in Section 3.
Here we extensively use the smallness of the noise. In $edticew ideas for the
control both of time and chance discretization are disalisbest results that illus-
trate the performance of the presented methods are givegciins 5.

2 Adaptive numerical methods

The key idea to design methods for SDAEs is to force the iert fulfill the con-
straints of the SDAE at the current time-point. We considectsastic analogues of
methods that have proven very useful in the deterministaudisimulation. Paying
attention to the DAE structure, the discretization of theedwinistic part (drift) is
implicit, whereas the discretization of the stochastid gdiffusion) is explicit.

We consider stochastic analogues of the variable coeffibiemstep backward
differentiation formula (BDE) and the trapezoidal rule, where only the increments
of the driving Wiener process are used to discretize theslidh part. Analogously
to the Euler-Maruyama scheme we call such methods mufiilgtzruyama meth-
ods. The variable step-size BRMaruyama method for the SDAE (2) has the form
(see [6] and, for constant step-sizes, e.g. [7])

Ao, q(Xe) 4+ a1,00(Xe—1) + a2,,q(Xr—2)

A h + Bo,e F(Xe )
m : AW[ m A\Néfl
+aoy r;gr(xﬁflatffl)hiér —ayy rzlgr(xffz,tzfz) h; =0, )

¢ =2,...,N. Here, X, denotes the approximation t(t;), h =t, —t,_1, and

AW =W (t)) =Wk (t,_1) ~ N(0,hy) on the grid 0=ty <t; < ... <ty = T. The

coefficientstg ¢, a1 ¢, a2 ¢, o, depend on the step-size rakip=h,/h, 1 and satisfy
the conditions for consistency of order one and two in themeiistic case. Let
the coefficients of the scheme be normalized in such a wayayat= 1 for all £.

A correct formulation of the stochastic trapezoidal ruleS®AES requires more
structural information (see [8]). It should implicitly rése the stochastic trapezoidal
rule for the so called inherent regular SDE of (2) that gosehe dynamical com-
ponents. Both the BDFMaruyama method and the stochastic trapezoidal rule of
Maruyama type have only an asymptotic order of strong cajerere of ¥2, i.e.,

IX(te) = XellLp(@) =, max (E[X(t) XA <c-h2, 4)
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whereh := max_; _nhy is the maximal step-size of the grid. This holds true for all
numerical schemes that include only information on theanwnts of the Wiener
process. However, the noise densities given in Section fagoamall parameters
and the error behaviour is much better. In fact, the erroesdaminated by the
deterministic terms as long as the step-size is large en@@h

In more detail, the error of the given methods behaves@ike&+ eh+ £2h1/?),
whene is used to measure the smallness of the noise,g.ex,t) = &g (x,t), r =
1,....mwheree <« 1. Thus we can expect order 2 behaviourif €. Higher numer-
ical effort for higher deterministic order pays off only fe noise is/ery small.

3 Local error estimates

The smallness of the noise allows us to construct speciatatss of the local error
terms, which can be used to control the step-size. We aim effiairent estimate of
the mean-square of dominating local errors by means of amuftly large number
of simultaneously computed solution paths. This leads tadaptive step-size se-
guence that is identical for all paths. For the drift-imftlEEuler-Maruyama scheme
this step-size control has been presented in [9], see aldh [1

In [8, 10] the authors extended this strategy to stochasiat multi-step meth-
ods with deterministic order 2 and provided a reliable eestimate. Let, approx-
imate the dominating local error ig(X;) by

- 2
L, =c/hy Ke

P f(Xe,te) = (ke + 1) F(Xo—1,te-1) + ke F (Xe—2,t0-2) [, (5)

wherec, is the error constant of the related deterministic scherdecars the step-
size ratio. The estimate (5) is based on already computevalf the drift term.
Recall thal, is a vector valued random variable as is the solutann dependence
on the small parameterand the step-sizie, theL,-norm of the local error behaves
like O(h3 + sh§/2+ €2h). The term of ordeO(h?) dominates the local error be-
haviour as long abf is much larger thaah?/z, i.e.,£2/3 < h,. Under this condition
also the expressiofL||, approximates the local error at tirye

Depending on the available information we will monitor difént quantities to
satisfy accuracy requirements,

. control || (A+ thongg)ili:gHLz to match a given tolerance fo,
II. control ||L,||., to match a given tolerance féq(X,), or
1. control ||A~L,||L, to match a given tolerance f&q(X,).

HerelJ is the Jacobian of the drift functiohw.r.t. the first variable, and~ denotes
the pseudo inverse & with A—A = P, whereP is a projector onto the dynamic
components ofj(X,) [11]. Since(A/h; + Bo¢Je) = 1/h; - (A+hBo ) is the Jaco-
bian of the discrete scheme (3) this matrix (or a good appration to it) and its
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factorization are usually available. In caseMbfsampled paths, thie,-normin (I)—
(1) is approximated by using th®l valuesJ; andL; (i = 1,...,M) that use values
X}, X;_q1, andX;_, from theith path. For example, in case (I) we use

- 1 M 2 12
H(A+ heBo,sz)flLeHLz = <M-Z’(A+ hzﬁo,eJ}r)flL'e‘ ) =fe. (6)
i=

Especially in circuit simulation the different ways of sogl the defect will en-
able us to control different quantities of the solution.l)tlie local error estimate is
used unscaled to match a given tolerance based on a veateseefing the charges
and the fluxes of the electronic network. Considering theisécase (I1), the scaled
error estimate can be used to match a given tolerance foothgam X, = (e, ji, jv)
which represent the nodal potentials and some branch ¢srren

4 A solution path tree algorithm

In the analysis so far, we have considered a constant nuMbarsample paths.
These number influences the approximation of the solutiomedisas of the mean-
square norm in (6). There we make an additional error, theatied sampling error
9, and the error expansions reads||., = f; + 9¢, wherer), is the approximation
of the dominating local error term based on the sample patiesidea is to control
also the number of sample paths using an estimafe.dfhis yields an approximate
solution which consists of a tree of paths that is extendediuced or kept fixed
adaptively.

Our aim in tuning the number of paths is to balance the locarend the sam-
pling error. LetsTtoL, be the tolerance for the sampling er@r at timet,. One
possibility is to calculated this tolerance as an approtimneof the higher deter-
ministic error term of orde©(h}). We then derive the best numbk¥, of paths

solution path tree

| | | | |
o t t t3 ta t

Fig. 1 A solution path tree: Variable time-poirtis solution stateg), and path weightsz .
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by

N2 . A2
M, = {1 - UfzJ : (7)
STOLS [iF + O}

(see [4]), wherdl, and &[2 are estimates of the mean and the standard deviation of
the error estimate at time-poitt respectively. Heréx| denotes the smallest integer

greater or equal ta.

The best number of pathd, depends on the time-poitt and is realized by
approximate solutions generated on a tree of paths thatéadsd, reduced or kept
fixed adaptively. In [4, 12] the authors describe the comsivn of a solution path
tree in detail. The method uses probabiliti%@ =1,...,N;i=1,...,M) toweight
the solution paths. Figure 1 gives an impression, how aisolyiath tree looks
like. Here the dashed lines indicates the optimal redigtidin of the weights after a
reduction step (see [4] for a detailed description of thé pate generation).

At each time-step the optimal expansion or reduction prakikeformulated by
means of combinatorial optimization models. The path $ieleds modelled as
a mass transportation problem in terms of theWasserstein metric (see [13] in
context of scenario reduction in stochastic programmiige algorithm has been
implemented in practice. The results presented in the remtio® show its perfor-
mance.

5 Numerical results

Here we present numerical experiments for the stochasti,BPplied to a test cir-
cuit examples. To be able to handle real-life problems ghti modified version of
the schemes has been implemented in Qimonda’s in-housegarieduit simulator
TITAN. We consider a model of an inverter circuit with a MOSF&ansistor, under
the influence of thermal noise. The related circuit diagraugiven in Figure 2. The
MOSFET is modelled as a current source from source to drainigrcontrolled by
the nodal potentials at gate, source and drain. The theraise of the resistor and
of the MOSFET is modelled by additional white noise currentrses that are shunt

oll

Fig. 2 Thermal noise current sources in a MOSFET inverter circuit ntabyegrey diamonds.
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Fig. 3 Simulation results for the noisy inverter circuit:
Left: 1 path, 127 (+29 rejected) steps; Right: 100 paths, 134 (+11 rejected) steps.

in parallel to the original, noise-free elements. To hightithe effect of the noise,
we scaled the diffusion coefficient by a factor of 1000.

In Figure 3 we present simulation results, where we plottedinput voltage
Uin and values of the output voltageg versus time. Moreover, the applied step-
sizes, suitably scaled, are shown by means of single cros&esompare the results
for the computation of a single path (left) with those for ttemputation of 100
simultaneously computed solution paths (right). The aolditl solid lines show two
arbitrarily chosen solution paths, the dashed line givesithan of 100 paths and the
outer thin lines the 8-confidence interval (computed as a statistical estimatié
standard deviation) for the output voltagie We observe that using the information
of an ensemble of simultaneously computed solution patfmtmes the step-size
sequence and considerably reduces the number of rejeefes] athen compared to
the simulation of a single path. The computational costithadainly determined by
the number of computed (acceptedejected) steps is reduced.

Additionally we have applied the solution path tree aldoritto this example.
The upper graph in Figure 4 shows the computed solution pa¢éhtogether with
the applied step-sizes which are used simultaneously fquadlh segments. The
lower graph shows the simulation error (solid line), itetahce (dashed line) and
the used number of paths (marked:by vs. time. Here the tolerance is determined
by an approximation of the deterministic local error of ar@h*) (see [10]) and
the maximal number of paths was set to 250. The results itedibat there exists a
region from nearlyt =1-108 up tot =1.5-10-8 where we have to use much more
than 100 paths. This is exactly the area in which the MOSFEAcive and the
input signal is inverted. Outside this region the algorithroposes approximately
70 simultaneously computed solution paths.

Especially in circuit simulation the solution path treealithm provides an ad-
vantage. It helps the designer to identify critical noisggneénts of the circuit. In this
example the active MOSFET featuring nonlinear noise caaseigh fluctuation
in the local error estimate whereas the additive noise ofitiegar resistor behaves
harmless.
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Fig. 4 Simulation results for the noisy inverter circuit: Solutionttparee and step-sizes (top),
sampling error, its error bound and the number of paths (bottom).
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