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Abstract Noise in electronic components is a random phenomenon that can ad-
versely affect the desired operation of a circuit. Transient noise analysis is designed
to consider noise effects in circuit simulation. Taking noise into account by means of
Gaussian white noise currents, mathematical modelling leads to stochastic differen-
tial algebraic equations (SDAEs) with a large number of small noise sources. Their
simulation requires an efficient numerical time integration by mean-square conver-
gent numerical methods. As efficient approaches for their integration we discuss
adaptive linear multi-step methods, together with a new step-size and path selection
control strategy. Numerical experiments on industrial real-life applications illustrate
the theoretical findings.

1 Transient noise analysis in circuit simulation

In current chip design the decreasing feature sizes, high clock frequencies and low
supply voltages cause several parasitic effect. As a consequence the signal-to-noise
ratio decreases, i.e., the difference between the desired signal and noise is getting
smaller. To address the signal-to-noise ratio the modelling and the simulation can
be improved by taking the inner electrical noise into account. An important re-
quirement for a transient noise simulation is the appropriate modelling of the noise

Werner R̈omisch
Inst. of Mathematics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany,
e-mail: romisch@math.hu-berlin.de

Thorsten Sickenberger (Corresponding author)
Dept. of Mathematics, Heriot-Watt University, Edinburgh EH144AS, United Kingdom,
e-mail: t.sickenberger@hw.ac.uk

Renate Winkler
Dept. of Mathematics, Bergische Universität Wuppertal, 42199 Wuppertal, Germany,
e-mail: winkler@math.uni-wuppertal.de

1



2 Werner R̈omisch, Thorsten Sickenberger, and Renate Winkler

sources in the time domain. We consider two different sources of inner electrical
noise, namely, thermal noise of resistors and shot noise of semiconductors. Thermal
noiseith of resistors is caused by the thermal motion of electrons andis described
by Nyquist’s theorem. Shot noiseishot of pn-junctions, caused by the discrete nature
of currents due to the elementary charge, is modelled by Schottky’s formula and
inherits noise intensities that depend on the deterministic currents (see e.g. [1,2]).

A noisy element is modelled as an additional stochastic current source in paral-
lel to the original electronic element. The noise intensityis given by the physical
characteristics and the noise models are added to the network equations. Combin-
ing Kirchhoff’s current law with the element characteristics and using the charge-
oriented formulation formally yields a stochastic differential-algebraic equation
(SDAE) of the type (see e.g. [3,4])

A
d
dt

q(x(t))+ f (x(t), t)+
m

∑
r=1

gr(x(t), t)ξr(t) = 0 , (1)

whereA is a constant singular incidence matrix determined by the topology of the
dynamic circuit parts, the vectorq(x) consists of the charges and the fluxes, andx
is the vector of unknowns consisting of the nodal potentialsand the branch currents
through voltage-defining elements. The termf (x, t) describes the impact of the static
elements,gr(x, t) denotes the vector of noise intensities (amplitudes) for the r-th
noise source, andξ := (ξ1, . . . ,ξm)T is an m-dimensional vector of independent
Gaussian white noise sources (see e.g. [1]).

Although this system (1) appears to be similar to a noise-free system, it requires a
completely different mathematical background. A serious mathematical description
begins by introducing the Brownian motion or the Wiener process that is caused
by integrating the white noise ”W (t) =

∫ t
0 ξ (s)ds =

∫ t
0 dW (s)” (see e.g. [5]). Prob-

lem (1) is then understood as a stochastic integral equation

Aq(X(s))
∣∣∣
t

t0
+
∫ t

t0
f (X(s),s)ds+

m

∑
r=1

∫ t

t0
gr(X(s),s)dWr(s) = 0, t ∈ [t0,T ] , (2)

where the second integral is an Itô-integral, andW denotes anm-dimensional
Wiener process (or Brownian motion) given on the probability space(Ω ,F ,P)
with a filtration (Ft)t≥t0. The solution is a stochastic process depending on the
time t and on the random sampleω where the argumentω is usually dropped. The
value at fixed timet is a random variableX(t, ·)=X(t) - for a fixed realization of
the driving Wiener process, the functionX(·,ω) is called a path of the solution. Due
to the influence of the Gaussian white noise, typical paths ofthe solution are rough
and nowhere differentiable.

In current chip design one has to deal with a large number of equations as well as
of noise sources. Fortunately, the noise intensities are small compared to the other
quantities which can be used for the construction of efficient numerical schemes.

The focus here is on efficient numerical methods to simulate sample solution
paths, i.e., strong approximations of the solution of the arising large systems of
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SDAEs, since only such paths can reveal the phase noise. The calculation of hun-
dreds or even a thousand solution paths are necessary for getting sufficient numerical
confidence about the phase. Moreover, from the solution paths any other statistical
data and measurements can be computed in a postprocessing step.

In this paper we present variable step-size two-step methods, in particular stochas-
tic analogues of the trapezoidal rule and the two-step backward differentiation for-
mula, see Section 2. The applied step-size control strategyis described in Section 3.
Here we extensively use the smallness of the noise. In Section 4 new ideas for the
control both of time and chance discretization are discussed. Test results that illus-
trate the performance of the presented methods are given in Section 5.

2 Adaptive numerical methods

The key idea to design methods for SDAEs is to force the iterates to fulfill the con-
straints of the SDAE at the current time-point. We consider stochastic analogues of
methods that have proven very useful in the deterministic circuit simulation. Paying
attention to the DAE structure, the discretization of the deterministic part (drift) is
implicit, whereas the discretization of the stochastic part (diffusion) is explicit.

We consider stochastic analogues of the variable coefficient two-step backward
differentiation formula (BDF2) and the trapezoidal rule, where only the increments
of the driving Wiener process are used to discretize the diffusion part. Analogously
to the Euler-Maruyama scheme we call such methods multi-step Maruyama meth-
ods. The variable step-size BDF2 Maruyama method for the SDAE (2) has the form
(see [6] and, for constant step-sizes, e.g. [7])

A
α0,ℓq(Xℓ)+α1,ℓq(Xℓ−1)+α2,ℓq(Xℓ−2)

hℓ
+β0,ℓ f (Xℓ, tℓ)

+α0,ℓ

m

∑
r=1

gr(Xℓ−1, tℓ−1)
∆W ℓ

r

hℓ
−α2,ℓ

m

∑
r=1

gr(Xℓ−2, tℓ−2)
∆W ℓ−1

r

hℓ
= 0, (3)

ℓ = 2, . . . ,N. Here, Xℓ denotes the approximation toX(tℓ), hℓ = tℓ − tℓ−1, and
∆W ℓ

r = Wr(tℓ)−Wr(tℓ−1) ∼ N(0,hℓ) on the grid 0= t0 < t1 < .. . < tN = T . The
coefficientsα0,ℓ,α1,ℓ,α2,ℓ,β0,ℓ depend on the step-size ratioκℓ=hℓ/hℓ−1 and satisfy
the conditions for consistency of order one and two in the deterministic case. Let
the coefficients of the scheme be normalized in such a way thatα0,ℓ = 1 for all ℓ.

A correct formulation of the stochastic trapezoidal rule for SDAEs requires more
structural information (see [8]). It should implicitly realize the stochastic trapezoidal
rule for the so called inherent regular SDE of (2) that governs the dynamical com-
ponents. Both the BDF2 Maruyama method and the stochastic trapezoidal rule of
Maruyama type have only an asymptotic order of strong convergence of 1/2, i.e.,

‖X(tℓ)−Xℓ‖L2(Ω) := max
ℓ=1,...,N

(E|X(tℓ)−Xℓ|
2)1/2 ≤ c ·h1/2, (4)
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whereh := maxℓ=1,...,N hℓ is the maximal step-size of the grid. This holds true for all
numerical schemes that include only information on the increments of the Wiener
process. However, the noise densities given in Section 1 contain small parameters
and the error behaviour is much better. In fact, the errors are dominated by the
deterministic terms as long as the step-size is large enough[6,7].

In more detail, the error of the given methods behaves likeO(h2+ εh+ ε2h1/2),
whenε is used to measure the smallness of the noise, i.e.,gr(x, t)= ε ĝr(x, t), r =
1,...,m whereε ≪1. Thus we can expect order 2 behaviour ifh≫ε. Higher numer-
ical effort for higher deterministic order pays off only if the noise isvery small.

3 Local error estimates

The smallness of the noise allows us to construct special estimates of the local error
terms, which can be used to control the step-size. We aim at anefficient estimate of
the mean-square of dominating local errors by means of a sufficiently large number
of simultaneously computed solution paths. This leads to anadaptive step-size se-
quence that is identical for all paths. For the drift-implicit Euler-Maruyama scheme
this step-size control has been presented in [9], see also [1,4].

In [8, 10] the authors extended this strategy to stochastic linear multi-step meth-
ods with deterministic order 2 and provided a reliable errorestimate. Let̃Lℓ approx-
imate the dominating local error inAq(Xℓ) by

L̃ℓ = cℓhℓ
2κℓ

κℓ +1

[
f (Xℓ, tℓ)− (κℓ +1) f (Xℓ−1, tℓ−1)+κℓ f (Xℓ−2, tℓ−2)

]
, (5)

wherecℓ is the error constant of the related deterministic scheme and κℓ is the step-
size ratio. The estimate (5) is based on already computed values of the drift term.
Recall that̃Lℓ is a vector valued random variable as is the solutionXℓ. In dependence
on the small parameterε and the step-sizehℓ theL2-norm of the local error behaves

like O(h3
ℓ + εh3/2

ℓ + ε2hℓ). The term of orderO(h3
ℓ) dominates the local error be-

haviour as long ash3
ℓ is much larger thanεh3/2

ℓ , i.e.,ε2/3 ≪ hℓ. Under this condition
also the expression‖L̃ℓ‖L2 approximates the local error at timetℓ.

Depending on the available information we will monitor different quantities to
satisfy accuracy requirements,

I. control‖(A+hℓβ0,ℓJℓ)
−1L̃ℓ‖L2 to match a given tolerance forXℓ,

II. control ‖L̃ℓ‖L2 to match a given tolerance forAq(Xℓ), or
III. control ‖A−L̃ℓ‖L2 to match a given tolerance forPq(Xℓ).

HereJ is the Jacobian of the drift functionf w.r.t. the first variable, andA− denotes
the pseudo inverse ofA with A−A = P, whereP is a projector onto the dynamic
components ofq(Xℓ) [11]. Since(A/hℓ +β0,ℓJℓ) = 1/hℓ · (A+hℓβ0,ℓJℓ) is the Jaco-
bian of the discrete scheme (3) this matrix (or a good approximation to it) and its
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factorization are usually available. In case ofM sampled paths, theL2-norm in (I)–
(III) is approximated by using theM valuesJi

ℓ andL̃i
ℓ (i = 1, . . . ,M) that use values

X i
ℓ, X i

ℓ−1, andX i
ℓ−2 from theith path. For example, in case (I) we use

∥∥∥(A+hℓβ0,ℓJℓ)
−1L̃ℓ

∥∥∥
L2

≈

(
1
M

M

∑
i=1

∣∣∣(A+hℓβ0,ℓJ
i
ℓ)

−1L̃i
ℓ

∣∣∣
2
)1/2

=: η̂ℓ . (6)

Especially in circuit simulation the different ways of scaling the defect will en-
able us to control different quantities of the solution. In (I) the local error estimate is
used unscaled to match a given tolerance based on a vector representing the charges
and the fluxes of the electronic network. Considering the second case (II), the scaled
error estimate can be used to match a given tolerance for the solutionXℓ = (e, jL, jV )
which represent the nodal potentials and some branch currents.

4 A solution path tree algorithm

In the analysis so far, we have considered a constant numberM of sample paths.
These number influences the approximation of the solution aswell as of the mean-
square norm in (6). There we make an additional error, the so-called sampling error
ϑℓ, and the error expansions reads‖L̃ℓ‖L2 = η̂ℓ +ϑℓ, whereη̂ℓ is the approximation
of the dominating local error term based on the sample paths.The idea is to control
also the number of sample paths using an estimate ofϑℓ. This yields an approximate
solution which consists of a tree of paths that is extended, reduced or kept fixed
adaptively.

Our aim in tuning the number of paths is to balance the local error and the sam-
pling error. LetSTOLℓ be the tolerance for the sampling errorϑℓ at time tℓ. One
possibility is to calculated this tolerance as an approximation of the higher deter-
ministic error term of orderO(h4

ℓ). We then derive the best numberMℓ of paths
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Fig. 1 A solution path tree: Variable time-pointstℓ, solution statesxi
ℓ and path weightsπ i

ℓ.
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by

Mℓ =

⌊
1

STOL2
ℓ

µ̂2
ℓ · σ̂

2
ℓ

µ̂2
ℓ + σ̂2

ℓ

⌋
, (7)

(see [4]), wherêµℓ andσ̂2
ℓ are estimates of the mean and the standard deviation of

the error estimate at time-pointtℓ, respectively. Here⌊x⌋ denotes the smallest integer
greater or equal tox.

The best number of pathsMℓ depends on the time-pointtℓ and is realized by
approximate solutions generated on a tree of paths that is extended, reduced or kept
fixed adaptively. In [4, 12] the authors describe the construction of a solution path
tree in detail. The method uses probabilitiesπ i

ℓ (ℓ = 1, . . . ,N; i = 1, . . . ,Mℓ) to weight
the solution paths. Figure 1 gives an impression, how a solution path tree looks
like. Here the dashed lines indicates the optimal redistribution of the weights after a
reduction step (see [4] for a detailed description of the path tree generation).

At each time-step the optimal expansion or reduction problem is formulated by
means of combinatorial optimization models. The path selection is modelled as
a mass transportation problem in terms of theL2-Wasserstein metric (see [13] in
context of scenario reduction in stochastic programming).The algorithm has been
implemented in practice. The results presented in the next section show its perfor-
mance.

5 Numerical results

Here we present numerical experiments for the stochastic BDF2 applied to a test cir-
cuit examples. To be able to handle real-life problems, a slightly modified version of
the schemes has been implemented in Qimonda’s in-house analog circuit simulator
TITAN. We consider a model of an inverter circuit with a MOSFET transistor, under
the influence of thermal noise. The related circuit diagram is given in Figure 2. The
MOSFET is modelled as a current source from source to drain that is controlled by
the nodal potentials at gate, source and drain. The thermal noise of the resistor and
of the MOSFET is modelled by additional white noise current sources that are shunt

Uop

Uin

R

C

12

3

Fig. 2 Thermal noise current sources in a MOSFET inverter circuit marked by grey diamonds.
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Fig. 3 Simulation results for the noisy inverter circuit:
Left: 1 path, 127 (+29 rejected) steps; Right: 100 paths, 134 (+11 rejected) steps.

in parallel to the original, noise-free elements. To highlight the effect of the noise,
we scaled the diffusion coefficient by a factor of 1000.

In Figure 3 we present simulation results, where we plotted the input voltage
Uin and values of the output voltagee1 versus time. Moreover, the applied step-
sizes, suitably scaled, are shown by means of single crosses. We compare the results
for the computation of a single path (left) with those for thecomputation of 100
simultaneously computed solution paths (right). The additional solid lines show two
arbitrarily chosen solution paths, the dashed line gives the mean of 100 paths and the
outer thin lines the 3σ -confidence interval (computed as a statistical estimate for the
standard deviation) for the output voltagee1. We observe that using the information
of an ensemble of simultaneously computed solution paths smoothes the step-size
sequence and considerably reduces the number of rejected steps, when compared to
the simulation of a single path. The computational cost thatis mainly determined by
the number of computed (accepted+ rejected) steps is reduced.

Additionally we have applied the solution path tree algorithm to this example.
The upper graph in Figure 4 shows the computed solution path tree together with
the applied step-sizes which are used simultaneously for all path segments. The
lower graph shows the simulation error (solid line), its tolerance (dashed line) and
the used number of paths (marked by×), vs. time. Here the tolerance is determined
by an approximation of the deterministic local error of order O(h4) (see [10]) and
the maximal number of paths was set to 250. The results indicate that there exists a
region from nearlyt =1·10−8 up to t =1.5·10−8 where we have to use much more
than 100 paths. This is exactly the area in which the MOSFET isactive and the
input signal is inverted. Outside this region the algorithmproposes approximately
70 simultaneously computed solution paths.

Especially in circuit simulation the solution path tree algorithm provides an ad-
vantage. It helps the designer to identify critical noisy elements of the circuit. In this
example the active MOSFET featuring nonlinear noise causesa high fluctuation
in the local error estimate whereas the additive noise of thelinear resistor behaves
harmless.
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Fig. 4 Simulation results for the noisy inverter circuit: Solution path tree and step-sizes (top),
sampling error, its error bound and the number of paths (bottom).
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