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Abstract:

Chance constrained stochastic programs are studied as parametric pro-
gramming problems with respect to the underlying probability distribu-
tion. Results on continuity properties of (local) optimal values and
optimal solution sets are established resp. reviewed from [15].

Let us consider the following chance constrained model
min{f(x): xeR™, p({zeR®: xex(2)}) 2 p_} (1)

where f is a real-valued function defined on R™, X is a set-valued
mapping from IR® into R™, Po€ [0,1] is a prescribed probability level
and p is a probability distribution on IR®, The multifunction X has e.g.
the following shape X(z):={x €Xge hi(x,z) 20, i€ I} (z€R®), where
XOCIRm is nonempty and closed, I is a finite index set and h; is a
continuous real-valued function defined on R™ x IR®. For theoretical
results on chance constrained problems (like e.g. convexity of the
constraint set) we refer to [4],[7],[11].

In the present paper we study the behaviour of (1) with respect to
(small) perturbations of the probability distribution p. Recently such
studies have found considerable interest in the literature which is
essentially caused by two lines of research in stochastic programming.
The first one is the stability analysis for stochastic programs with
incomplete information (see e.g.(5],[6]) and the second one is the use
of approximation techniques ([17],(20],(217]) and of computational methods
(e.g. those introduced in [18] for the calculation of probabilities etc.)
for solving chance constrained programs.

Our approach to the study of perturbations of (1) relies on (quali-
tative and quantitative) stability results for parametric optimization
problems with parameters varying in metric spaces obtained by D. Klatte
in [9]. As the space of parameters we consider ¥ (R®) - the space of

all Borel probability measures on R® equipped with a suitable metric.

Of course, at first sight it seems especially desirable to cover the
case of weak convergence of probability measures (see e.g.[2]) as it
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has been done in the stability analysis carried out by Kall [8] and
Wang [19]. In [87] , the author stresses the difficulties that arise
when looking for comprehensible sufficient conditions for the lower
semicontinuity of the constraint-set mapping understood as a multi-
function defined on P (R®) endowed with the topology of weak conver-
gence. In [19] additional smoothness assumptions on the measure p (de-
scribing the unperturbed problem) are imposed to establish the desired
lower semi-continuity of the constraint set. The present paper continues
the line of research begun in [15] and [16]. We present a suitable topo-
logy on P(R®) to gain stability results for the (locally) optimal value
and the (locally) optimal solutions. To this end, let us consider the
distance

s ! - 8
“%O(P.\?). Bs;% | p(B)~ v (B)I (p,ve P (R®))

o
where ‘%o is a proper subclass of Borel sets. In our situation 350 will

be chosen adapted to the multifunction X, i.e. in such a way that it
contains all the pre-images X (x) := {zele: x € X(z)]} (xeR™.

Simultaneously, 330 is taken rich enough in the sense that o(% forms
o

a metric. With (XQ§ selected according to these objectives we state a
fairly general qual?tative stability result (Proposition 1) and a
quantitative continuity property of the optimal value (Theorem 7). In
Remark 2 we reveal additional hypotheses to identify those measures y
at which stability with respect to the topology of weak convergence
holds. We present an example (Example 3) to show that under the hypo-
theses of Proposition 1 stability with respect to weak convergence may
collapse. '

Next we introduce some basic concepts and notations which are used
throughout. For ve P (R®) and p ¢ [0,1] the set C_(v) is given as
C_(») :={xeR™: p(X"(x)) 2 p} . hence problem (1) becomes

min {f(x): xeCpy (w)] . Given VS R™ and ve P (R®) we denote

c?V(\)):= inf‘{f‘(g): xeCpo(v)ﬂcl Vﬁ and

vy (V)= {xecpo(v)n el V: £(x) = (V)] -

By ¢l V and bd V we understand the closure resp. the boundary of V.
Following [13]1,[9] we call a nonempty subset M of IR™ a complete local

minimizing set (CLM set) for f on Cp () if there is an open set Q°OM
o

such that M =w0(u). Examples for CLM sets are the set of global mini-
mizers or strict local minimizing points.

We recall that a multifunction [T from a metric space T to R™ is said
to be closed at t e T if t,—>t , X —>X,, X € r"(tk) (k €eiN) imply

X, € F(t)), ™ is said to be upper semicontinuous (usc) at t_ if for
any open set () 2T (t,) there exists a neighbourhood u(t,) such that
M (t)cQ) whenever teU(to), [T is said to be locally lower semicontin-
uous (locally 1lsc) at (xo,to)e F(ty) x T if for any open set Q ‘D{xo}
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there exists a neighbourhood U(t ) such that 0 N I(t) £ B whenever
teU(to) and finally " is said to be pseudo-Lipschitzian at

(xo,to)e r(e) x T (cf. [14]) if there are neighbourhoods U = uct,),
V = v(xo) and a positive constant L such that

med)nve M) + L d(t‘,t')Bm whenever t',t"e U,

here d denotes the metric in T and Bm is the closed unit bell in R™
Note that the above property especially implies that " is locally lsc
at (xo;to)'

Our first proposition is an adaptation of a general parametric pro-
gramming result ([9], Prop. 1, [13] Prop. 3.2 and Prop. 3.3) to the
situation of distribution sensitivity in stochastic programming.

Proposition 1:

Let p € P(R®), Po€ (0,1) and {X7(x): xelR"‘} € 3,- Let X be a closed

multifunction and f be continuous. Assume that there exists a bounded

open set VCIR™ such that Yy(p) is a CLM set for f on Cp (u). Let the
o

multifunction p~—>C_(p) be locally lsc at (x o'Pg) for some x o€ ¥y
Then (i) ?y is continuous at p and Yy 18 usc at p with respect to the
metric &, on P(R%®), and
%o

(ii) there exists & >0 such that Yy (v) is a CLM set for f on
C. (v) whenever ve P@R®) and x_ (p,v)<d .
Po %o
Proof:
Let us consider the metric space (?(Rs),a% ). It is known from Berge's
o

classical stability theory for parametric optimization problems (applied
to min{f(x): xec, (O)n cl V} , ve P(R®)) that assertion (i) holds if

the multif‘unction (f‘rom PR®) intoR™ v '_"Cp (v)Ncl VvV is closed at
o

U and locally 1sc at (x_,p). (cf. e.g. [1]1 , Theorem 4.2.2). In the

proof of Theorem 5.4 in [15] it was shown that v l—?Cp (v) is closed
)

at p since X is closed. Since Xo€ V, it remains to show that v '—*Cp )
o

is locally 1lsc at (x ,p) Let £>0 be arbitrary, but fixed. Since
pr—>cC_(p) is locally l1sc at (x 1Py) s there exists d,> 0 such that

c (p)nB(x ,E) # B for every pelR with |p-p |<d . Let v ¢ PR®) be such
that & =0t (,v)< dye Put pi= p +d . Then we have for every yeC, ()

%o
that

v(XT(y)) 2 p(X7(y)) -Ip(X"(y))= 2(X"(y))l 2 p- g (0v) = pg.
Hence we obtain y¢ Cp (v) and Cp Wns(x, )2 C (p)n B(x,.£) £ 8.
o o

Thus the multifunction v »-.—»Cp (v) is locallytlsc at (xo,p). Since ¥,
o

is usc at p (with respect to o« _ ) and wv(p) is contained in the

%o
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open set V, there exists J>0 such that %,(V) <V for every ve P R®?)
such that 0‘3 (p,v)<d . This completes the proof.[]
)

Remark 2:

Proposition 1 may also be viewed as a qualitative distribution stability
result with respect to perturbations of p in the epace (P (R®), © W

(v, denoting the topology of weak convergence, cf. (2]) if B, is a p-

unifor‘mity class of Borel subsets of R®, Recall that B0 is a p-uniformity

class if &, (u ,p) —0 holds for every sequence (pn) converging weakly

%o

to p (C3]). Let us consider two particular classes 3, of Borel sets:

1) Fgi= {8, (~00,2] : zelRﬂ} is a p-uniformity class if the distribution

function of p € P(R®) is continuous.
(i1) Bc:" {B SIR®: B is convex and Borel'& is a p-uniformity class if

1] € P 0R®) is absolutely continuous w.r. to Lebesgue measure on R® .

Hence, at least, if pe P (R®) has a density and all pre-images X~ (x)

(xe IR™) are convex, Prop. 5.1 appears to be a useful stability result

w.r. to perturbations of p in (?ORS),“cw).

Furthermore, the above proof shows that it is just the shape of the

metric o&% which allows to carry over the local lower semicontinuity
o

of the mapping pl--»c (p) at some (x ) to the mapping V|——»C (\7) at

P

o'Yo

(xg/8). In the general situation, local lower semicontinuity of‘

po—vc (p) at (xo,po) implies x € cl({xeR™: p(x~(x))> p }), if now a

metric d on P (R®) is chosen auch that the functions t (x):= (X (x))
Hn

converge pointwise to t (x):= p(X"(x)) as d(p,,p) — 0 one obtains that

v HCP (v) 1s locally lsc at (x_,p) with respect to (? @R®),d) (cf.

(17], Corr. 3.2.1). For the topology of weak convergence, however, the

desired pointwise convergence of t  as p_ —»p holds, if

n
p(bd X7(x)) = 0 for all xelR™, i.e. all sets X“(x) are p-continuity sets
(C2], Portmonteau Theorem). We refer to a corresponding discussion in

[81, p. 404.

By the following example we illustrate what has been said in the above

remark. We present a multifunction QHCP ) (from (P®R®), T ) to IR™
o

not locally lsc at some (x o'}) although the multifunction pv—"c (n) is
locally lsc at (x,,p,).

Example 3:

Let X(z):= {x€ (-00,0] : x 3 z} T % (R) be the uniform distribution on

[-1,0], éxe? (R) the distribution with unit mass at x€lR.
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Define pi= -‘12‘60 + -‘}_, Ho
Hoi= (% + -"}‘-)Jl + (% - %)po (neiN).
Tw i

One confirms by —> B as n —>o0o0, but oc%R(pn,p) —» 0. Furthermore,
pr—vcp(p) is locally lsc at (x_,p,):= (0,-‘;) since cp(p) ={0} for
pe [é , 1] and cp(p) = [2p-1,0] for pe(o,;}). On the other hand,
cp (p,) = 8 for all nec N. Thus, the mapping v ==>C, (v) is not locally

o o
lsc at (xo,p).

To see that assertion (i) in Proposition 1 does no longer hold when
the multifunction p»—»cp(p) is not locally lsc at (xo,po) at any
X,€ W y(p) consider the next example.

Example 4:
Let p € T(R) be given by the distribution function
0 x<=-1
1
X + 1 -16€x<- 3
1 1 1
F (x) = b -gEx< 3
X Féxc 1
1 1€ x

Let further p := , X(z):={xeR: x>z} and f(x):= (x+ '8)
then with V:= (- z) the set Y, (u) = {- 3} 18 a CLM set for f on
(p) However, the mapping p.—-.c (1) is not locally lsc at (x,.p,)

1
Wlth X = ‘80

Let
o Xx<=-1
1'%"(1"}}\')" -1 xz-%
1 1 1 1
Fy 00 = f ’ #1 -fﬁx< z (nen)
= +(1--ﬁ)x zetx< 1
1 1€ x

with 3 ={(-00,x] : xe IR} we have {X"(x): xeR} €3 and
,&o(p /) —>0 (n—c0). On the other hand 'u,v(pn) = {0} and
q;v(p ) = '61 for all n. Hence Y, and @, ere not usc resp. continuous

at p.

In view of the consequences for the stability of local optimal values
resp. locally optimal solutions it is interesting to ask for conditions
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under which multifunctions (especially the mapping p;—bcp(p)) behave
locally 1sc. In the literature this question is related to ceértain
constraint qualifications ([1]3,[12],[14]).

The next Lemma, which is due to Rockafellar [147], reflects this
approach and gives also quantitative information about the continuity
of certain constraint-set-mappings.

Lemma 5:

Let g: R™ x RY —R" be continuously differentiable and (x o’'Po )e R™ le
with g(x ,po) * 0. Assume that the “Mangasarian-Fromowitz constralnt
qualification® holds, i.e.

there exists a yelRm such that

y1§7xgi(xo,po)> 0 for all ie{1,...,r} with gi(xo'po) s 0.

Then the multifunction pk—a{xelRm: g(x,p) * o} (from IRY to R™) is pseudo-
Lipschitzian at (x_.,p.).

Proof: follows immediately from Corollary 3.5. and Remark 3.6. in [147].

As we will see lateron it is possible to derive a local Lipschitz
property for ¢, at p if the mapping p—C_(p) is even pseudo-
Lipschitzian at suitable (xo,po). In this context let us recall that
without Mangasarian-Fromowitz condition the constraint-set-mapping

may fail to be pseudo-Lipschitzian even when it is already locally lsc.
This will be illustrated‘by the next example which is a mapping of the
type pr—»cp(p).

Example 6:

Let pe? (R) be given by a distribution function F iy (+) which is contin-
uously differentiable and for which F (x) = x5 + % on some neighbour-
hood around 0. Let further p_ = %, X(z):={xeR: x 2 z}. Then

C (p) = {xe Rr: Fp(x) 2 pj. Consider X, = 0. Then p+>C_(p) is locally

lsc at (xo,po) but not pseudo-Lipschitzian at (xo,po).

Theorem 7:

Assume the hypotheses of Proposition 1 and let additionally f be locally
Lipschitzian and the multifunction p+—>C_(p) be pseudo-Lipschitzian at
each (x_,p,) belonging to Yy (p) x {py} - Then there exist constants

L>0 and d>0 such that

PPy (p) - (W)« Lo&,%o(pn’)

whenever «_ (p,v)<d .

%o
The above theorem has been proven in [15] (Theorem 5.4) relying on
quantitative stability results obtained by D. Klatte in [9] (Theorem 1).

Now, let us consider a particular chance constrained model with random
right-hand side. The multifunction X (from IR® into R™) is given as
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X(z) :={erRm: gi(x) 0, i=1l,...,r, Ax 2 z}
where A€ LOR™R®) and 9;: R™— R continuously differentiable (i=1,...,r).
Note that X" (x) € B for each xeR™ and

C, (1) ={xeR™: g;(x) 2 0, {=1,...,r, F (Ax) 2 p}

where FlJ denotes the distribution function of p e? (R®) and pe(0,1).

Corollary 8:

Let p e P(R®) with continuously differentiable Fp' po€ (0,1) and f be
locally Lipschitzian. Assume that there exists a bounded open set

vciR™ such that *¥y(p) is a CLM set for f on Cp (p). Suppose further
)

that for each xoe.q—v(p) there exists yeaRm such that
yTvgi(x0)>0, for all ief{l,...,r} with g,(x ) = 0, and

yTAT

Then Ikv is usc at p and there exist constants L> 0 and d >0 such that
¥y(v) is a CLM set for £ on Cp (v) and

VF“(Ax0)>O if Fp(Axo) =Py

0
L (1) = € L sup (IF (2)-F,(2)]
ze IR H
whenever sup lep(z)—EJ(z)léé .

zefR

\
\

Proof:
According to Lemma 5 the mapping p+——=>C (p) is pseudo-Lipschitzian at
any (xo,po)e va(p) X {po}. The assertion now follows from Proposition 1

and Theorem 7 with % :=8R (noting that « (p,w) = sup |F (z)-F, (2)1).
%R zeR® P 0

For another chance constrained model which was introduced in [10] a
quantitative stability result relying on Theorem 7 (with ’%0:=‘BC)
has been developed in [15].
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