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Abstract:

We present an optimal-load-dispatch-model with
considering the demand as a random vector and
putting the equilibrium between total genera-
tion and demand as a probabilistic constraint.
Motivated by the fact that the probability
distribution  for the demand is not exactly
available, we study the stability of the model
with respect to perturbations of Mo

1. Modelling

The problem of optimal load dispatch consists
of allocating amounts of electric power to
generation units such that the total genera-
tion costs are minimal while an electric power
demand is met and certain additional con-
Straints are satisfied. Our purpose is to ob-
tain an optimal production policy for an ener-
gy production system consisting of thermal
power stations, pumped storage plants and an
energy contract for a time period up to one
day with a discretization into hourly or half=-
hourly intervals. Unit commitment and network
questions are excluded., The equilibrium bet-
ween total generation and demand is modeled as
a probabilistic (or chance-) constraint, thus
obtaining a high reliability for the equilib-
rium to hold if the demand is considered as a
random vector.

Other aspects of modelling, model behaviour
and computation in scheduling optimization are
stressed in .the related papers [231, £33, 8]

and in the book [14].

Let K and M denote the number of thermal power
stations resp. pumped storage plants the sys=-
tem comprises and N be the number of subinter-
vals in the discretization of the time period.
The (unknown) levels of production in the
thermal power stations and the pumped storage

plants are y: (1=1,¢0+,K; r=1,...,N), sg (j=1,
ene,M; r=1,...,N) (generation mode) and wﬂ
(J=t,eieeyM; Pal,...,N) (pumping mode). By z.

(r=1,...,N) we denote the (unknown) amounts
for energy purchased or sold according to the
contract.

The total generation costs are given by the
fuel costs of the thermal power stations
(which are assumed to be a strictly convex
quadratic function of the generated power, cf.
[13]) plus the costs (resp. takings) according
to the energy contract (which are a linear
function of the power). In our model the
pumped storage plants do not cause costs,
which, of course, simplifies the matter. We
refer to[2] for a model incorporating costs
for the pumped storage plants., Hence the ob=-
Jective of the model becomes

(1.1) yTHy + hTy + gTz

.probabilistic) constraints, for instance

where yEIRKN, zeRN, H EL(R ) - positive
definite, diagonal, heR N and gelRN. '
According to the discretization of the time

period we have s demand vector d (of dimension
N) which is understood as a random vector with

distributionfleﬁﬂﬁN} - the set of all Borel

probability measures on RN. Claiming that a
generation (y,s,w,z) fulfils the demand with
probability Po €(0,1) then means that

KN ,iRKN

r’

N 1 3 3

(1.2) ({deR :iﬁy + iﬁ(s -w.)+ 2z >d

, H =i r r
r=1,.oo,N})>p° .

In addition to this probabilistic constraint

we take into account conditions which charac-
terize the operation of the different plants:

(1.3) 2,<y<d , 0<s<3d, , O<Swg<a, ,
8,€248, ; _r
00 _ o0 J J oo
(1.4) s3° - 87 < g(sr ywe) €83°
J=1,.--,M, t=1,.ao,N:
(1.5) ?‘;i(sﬂ . wag) =b, , gi z = b, .

Restrictions for the power output are modeled
in (1.3). The inequalities (1.4) reflect the

balance between generation and pumping (mea-

sured in energy) in the pumped storage plants,
SOD
J
stock in the upper dam and vy are the pumping

and sg denote the initial resp. maximal

efficiencies which we put as the quotients of
the maximal stocks (in energy) in the upper
and in the lower dam. Here we assume that the
maximal stocks (in water) in the upper and in
the lower dam are equal and that no additio-
nal inflow resp. outflow occurs. The aqua-
tions (1.5) are balances over the whole time
period for the pumped storage plants resp.
according to the energy contract. The model
can be supplemented by further linear (non-

those reflecting fuel quotas in the thermal
power stations,
From the formal point of view our model can
be expressed as

(1.6) min { f(x) : xexX, F({d:Ax;d});po}

where x = (y,s,w,z)eR" (m=N(K+2M+1)), f(x)
is defined by (1.1), xoc R™ is the bounded

convex polyhedron given by (1.3)-(1.5), M is
the probability distribution of the demand

and A€ LORmJRN) 1s a suitable matrix,
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2, Sensitivity Analysis

Let us consider the following more general
chance constrained model

(2.1) min {f(x):xe€ IR'P H({_zeIRS:xE X(z)});po}
where f is a real-valued function defined on

IRm, X is a set-valued mapping from RS into Rm,
P,€ [0,1]1 is a prescribed probability level

and is a probability distribution on RS,
For basic results on chance constrained prob-
lems consult [4], [15] and the references
therein, We are going to study the behaviour
of (2.1) with respect to (small) perturbations
of the probability distribution u. Our ap-
proach relies on stability results for para-
metric optimization problems with parameters
varying in metric spaces (see e.g. [13], [61],
[10]). As parameter space we consider the

space P(R®) of all Borel probability measures

on IR® equipped with a suitable metric. Because
of its central place in the convergence theory
for probability measures it seems appropriate
to metrize the topology of weak convergence on

SD(IRS) by a suitable distance function. This
has been done in the stability analysis car-
ried out in [5] (using the results of [101]).
An example in [12] indicates that stability of
(2.1) with respect to the topology of weak
convergence can not be expected in general
without additional smoothness assumptions on
the measure m. It turned out in [1173, £12]
that the distance

(2.2) wg(p,v) = sup {| u(B) - »(B)|: BE R}
(-f“"’e fP(Rs)), where T+ is a proper subclass of

Borel sets in RS, is a suitable metric on P(R®)
for the sensitivity analysis of (2.1). In the
following, ® will be chosen such that &g forms

a metric on 9(IRS) and that it contains all

the pre-images X-(x):={zeIRs: xEX(z)}(xeRm).
Next we introduce some basic concepts and no-
tations which are used throughout. For

veP(R®) we denote by F, the distribution
function of v and set for p € [0,1]
Cp(v):={xelR'" v(X“(x))2p} , hence problem
(2.1) becomes min {f(x) : xeCpo(F)}. Given
VER™ and ve P(R®) we denote

Py ()= inf { f(x) : x € Cp (v)ncl v} and
Yy(v)i= {xeCp (v)ncl V : f(x) =9 ()} .

where we employ the abbreviation cl for clo-
sure, Follpwing {103, (6] we call a nonempty

subset M of R" a complete local minimizing set
(CLM set) for f on Cpo(v) if there is an open

set Q>M such that M =’\{JQ{-\J). Examples for

CLM sets are the set of global minimizers
(which we shall denote by y(v) and, according-
ly, the global optimal value by p(v)) or
strict local minimizing points,

We call a multifunction I from a metric space

m .
T to R" ¢losed resp. upper semicontinuous
(“'°T°) at t €T according to the usual defini-

tions (cf. C13),
schitzian at (i
o

" is said to be pseudo-Lip-
.to)Gr‘(to) x T if there are

neighbourhoods UsU(t ), V=V(x_) and a posi-
tive constant L such that
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r(t')nV < (") + Ld(t',t")Bm
whenever t',t" €U, here d denotes the metric
in T and Bm is the closed unit bell in R™,

The following theorem asserts in a fairly ge-
neral frame sensitivity properties for solu-
tions of a parametric chance constrained prob-
lem. The proof which relies on stability re-
sults for abstract parametric programming
problems obtained by D. Klatte in [61] can be
found in [111(Th, 5.4.).

Theorem 2,1.:
Let in (2.1) ue PR®), p e (0,1) and { X" (x):

xeR"} ¢ B. Let further X be a closed multi-
function and f be locally Lipschitzian. Assume

that there exists a bounded open set ver™
such that y, () is a CLM set for f on CPo(/‘*)"

Let the multifunction p t-—-»Cp(P,) be pseudo-
Lipschitzian at each (xo,po) E\PV(H) X {po}.
Then 1, is usc at p with respect to the met-
ric og on P(R®) and there exist constants

L>0 and §>0 such that Yy (v) is a CLM set
for f on Cpo(\)) and

lpy(p) = Pyl € Lot (pov)
whenever “3}(}“") < 8.
If Kp(puysp) —= 0 holds for every sequence
(Fn) converging weakly to p, then the class
% is called a p-uniformity class. As an exam=

ple we consider R:={@, (-oc,z] : zeIR®}
which is a p-uniformity class if F, is a con-

then is the
Kolmogorov distance, i.e. o(E(H,u) =

sup{lFF (z) - F,(2)]: z¢eR®} (consult [12] for
a more detailed exposition.).

tinuous function. The metric <5

To obtain an implication of Theorem 2,1. that
finally may be applied to the above load dis-
patch model we assume that the distribution

of the unperturbed problem is logarithmic con-

cave, 1.e. u(AB, + (1-1)82))(H(Bl)))‘(ﬁ(ez))l-l
holds for all A¢f0,1] and all Borel sets 81,
B, in RS (£73). It is known that p is loga-
rithmic concave if it has a density fu such
that 1n fr‘ is a concave function on R° (C70.

Note that, hence, e.g. the (non-degenerate)
multivariate normal distribution is logarith-
mic concave. Furthermore, we note that for a

logarithmic concave H e@(le) the function
- 1ln FF is convex.,

A second prerequisite is the following lemma
which 1s an immediate consequence of Corolla-
ry 2 in [93].

Lemma 2,2, :

Let the multifunction I (from R to R™) be gi-
ven by f"(t):={xexo g(x) <t} where XOCIRrn
is a nonempty closed convex set and g is a
convex function from R™ to R. Let X, € r‘(to)

and assume that there exists iexo such that
g(x)< t, (Slater point).

Then M is pseudo-Lipschitzian at (xo,t ).

o]




For convex chance constraints we now have the
following corollary to Theorem 2,1.

Corollary 2.3.:

Let in (2.1) ue PR®) be logarithmic cancave,
Py € (0,1), f be locally Lipschitzian and X be

a multifunction from R® to R" given by
X(z):={xeX°: Ax>z} with a nonempty, com-

pact, convex set XOCIRm and AetJRm,le).

Assume that there exists >'<ex° such that

Fu(Ax)>p,

Then ¥ 1is usc at M
0(3-3 on ?(IRS) and there exist 'constants L> 0
and §>0 such that y(v) # @ and

FP(p)-p(v)] € Loy (uov)  whenever “J}(P'“)< .
Proof:

We write (2.1) in the equivalent fornm

(2.3) min{f(x): xe Xy =ln Fu(Ax) £ =1n po} .

According to the assumptions the set Y(u) of
global minimizers to (2.3) is nonempty and _
compact. Hence the assumptions in Theorem 2.1.
concerning the CLM set may be fulfilled with a
bounded open set Vt:xo (recall that Xo is

bounded) and the mappings Y and Yy resp. y and
Py coincide. Since p is logarithmic concave

-1n Fu(Ax) is convex, and
strict monotonicity of the logarithm implies
g(x) < =~1ln P,+ Hence Lemma 2,2, and the fact

that the logarithm is Lipschitzian on bounded
sets provide that the multifunction p —=C ()

is pseudo-Lipschitzian at each (xo.pc) be-
longing to Wlp) x {po}. Obviously, the multi=-

function X is closed and {X7(x): xeR"}c & .
The assertion now follows from Theorem 2,1. []

with respect to the metric

the function g(x):=

We remark that Corollary 2,3, applies to the
load dispatch model (1.6) if one assumes that
the probability distribution p for the demand
is logarithmic concave and that there exists
a generation policy x € X, such that ﬁafo}?po'

i.e. a feasible generation policy that strict-
ly fulfills the chance constraint (1.2). As
one conclusion of Corollary 2.3. we then aqb-
tain that the optimal generation costs behave
Lipschitzian if one replaces K by approxima-
tions of sufficient accuracy.
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