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Abstract: For convex stochastic programs with (linear) complete re-
course, we review and illustrate (quantitative) stability results
for optimal solutions if the underlying probability distribution is
subjected to perturbations. We show that the general results apply
to a recourse model for economic dispatch of electric power with
random demand,

1. Introduction

Consider the following stochastic program with (lincar) complete re-

course
(1.1) min {9(x) + Q,(x) : xec }
where
(1.2) Q,(x) = § Qh(x,2z)) p(dz)
I RS
(1.3) q(t) = min {qu t Wy =t , y}O}.

For the data in (1.1)-(1.3) we assume that g is a real-valued convex
function on Ifﬁ C is a nonempty, closedL_convex gybset of I#ﬁ B is a
(Borcl) probability measure on RS, q erR" weL(R", Rr) and h is a
mapping from R" x R® to R which is affine linear in x and globally
Lipschitzian in z. Under the basic assumptions
(1) {wy : yer", y20}=®r",
(A2) there exists u € R" such that w'u <£q .,
(A3) S iz lhp(dz) <+,

RS
we have that 6(h(x,z)) €R for all xERm, z € R® (this holds in view
of (A1) and {(A2)) and that Q  is a real-valued convex function on
R™ (here, (A3) is used together with properties of 0 as an optimal-
value function for linear programs with parameters in the right-hand
side of the constraints), cf. e.g. [81].
The problem (1.1) arises as a deterministic equivalent to an impro-
perly posed program
(1.4) min {g(x) : xeC, h(x,z) = 0}
where z € R® is a vector of random data.
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The program (1.4) is improperly posed in the sense that no decision
about feasibility of x € R" is possible before knowing the realiza-
tion of z., In many practical situations, however, a decision on x
has to be taken before knowing the realization of z, such that usu-
ally a deviation h(x,z) # O occurs. The basic idea in stochastic
programming with recourse now consists in allowing for a compensa~
tion of such deviations by a second-stage decision, which is forms-
lized in (1.3). The average costs of the compensation (c¢f. (1.2))
are added to the objective of (1.4) and we end up with (1.1}, In
this context, (Al) ensures that any deviation h(x,z) can bc compen-
sated, which leads to the terminus “"complete recourse”.

The present paper is concerned with the (quantitative) stability of
optimal value and optimal solutions to (1.1) when the underlying
probability measure p is subjected to perturbations. Qualitative
stability results for (more general) classes of stochastic programs
with recourse were obtained in [9 ] and [13], Such stability conside-
rations are motivated by two essential difficulties one is generally
confronted with when analyzing stochastic programs {among which re~
course problems like (1.1) form only a specific but important class,
cf. e.g. [ 8], £19] for further approaches):

Firstly, stochastic programs usually involve multidimensional inte-
grals (like (1.2), for instance) which allow for numerical trezatment
only when approximating the underlying measure by simpler ones (see
[5] and the references therein). Secondly, in practice information
on the underlying measure is often available only in the form of
statistical estimates, which leads to questions about the asymptotic
behaviour of optimal values and optimal solutions (see [41], [17]
and the references therein).

Based on metrizing the set §3CR3 )} of all (Borel) probability mea-
sures on R° in a suitable way we review in Section 2 for stochastic
programs fitting into (1.1) local Lipschitz and Hélder properties
for the optimal value and the set of optimal solutions, respective-
ly. In Section 3 we discuss consequences of these results for a spe-~
cific recourse modal arising in optimal power dispatch,

2. Stability Properties

When aiming at a quantitative stability analysis for (1.1) that co-
vers both approximations of y in the situation of complete informa~
tion and statistical estimates for p when only incomplete informa=
tion is available, it is recommendable to equip the set @(Iﬁi) with
a suitable probability metric. A metrization which, simultaneously,
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induces convergence for a sufficiently broad class of measures and
allows for a computation (or at least estimation) of the distance in
important specific situations is given by Lp— Wasserstein distances
Wp {p21) which are defined by

Wo(pw) = [inf { S wz-%P 9(d[z.Z]) : 17€D€y.v}}]1/p
R® x R®

for all

pov € M (R®):= {p e PR®) : § uziP p(dz) <},

RS
where DO(p,v}:= {7) € @(RSXRS) : 17011';1 = ¢, ")Oﬂ'gl = 'x)} and
W; . W, are the first and second projections, respectively,

From the literature ( [73J, [12] ) it is known that (mp(Rs ¥, Wp)
is a metric space and that convergence in W_ is characterized by:
WP p) —> 0 for p emp(Rs) and p € P(R®) if and only if the
sequence (yn) converges weakly to p (for the definition consult [17)
and lim § 1z Paldz) = § wzt? pldz) .

n=se s RS
Now, let us denote by ¢ the function from (ml(ns ). W) to Rwhich
assigns to v e‘ml(]Rs) the (global) optimal wvalue of (1.1) with un-
derlying mcasure v . By Ay we denote the set-vslued mapping from
(ml(;Rs }. wl) to R™ which assigns to vemi(ns) the set of
{global) minimizers of (1.1) with underlying measure V.

Our first stability result asserts upper semicontinuity of Y and a
local Lipschitz property of ¢ at p (Recall that Y is upper semi-
continuous at p if for each open set U containing ‘\‘l(p) there exists
éo>0 such that \p(’\)) C U whenever Wl(p,v)< 50 .3, It is o con-
sequence of Theorem 2.4 and Remark 2.5 in [16] .

Thearem 2,.1:
Fix p € P(R® ) and suppose (A1) - (A3). Let Y (p) nonempty and
bounded. Then Y is upper semicontinuous at p and there exist con-
stants L>0 and & > 0 such that '\*}(v) $ 8 and

[P(p) - ¢ € LW (p,V)
whenever ‘\)eml(Rs Y. Wi(p.v) <§ .

The following example shows that, under the assumptions of the Theo-
rem, W is in general not lower semicontinuous at p (Recall that lo-
wer semicontinuity of Wy at p means that for each open set U satis-
fying UNY(p) £ @ there exists 6°>0 such that Uny(v) ¢ @
whenever W, (p,v) < 8§, o)
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Example 2,2:

In (1.1), let m =8 =1 =1, @ = 2, g(x) = ~x , C := [0,1],
g t= (1,1)7, W := (1,-1) and h(x,z) i= xz .

Then Q{t) = jt] and (A1), (A2) are satisfied.

Let p € P(R) be such that S lz| p(dz) = and p,. € PR)

(n €N ) be chosen such that Mn: S 1z} pn(dz) >1, M —>1 and

(p,) converges weakly to p.
Hence, we have W (p pn) —s 0 and
g(x) + Qw«) = X 4 x Ssznv(dz) (x€C, V€ W, (R)).

Then ‘q}(p) and W(Pn {0} for each ne N, thus implying that
Y is not lower semicontinuous at p.

However, for the case h{x,z) := 2 - Ax with a (non-stochastic) ma-
trix A EL(Rm, RrS) Hausdorff-continuity of Y at p has even bcen
quantified in {15 ], [16]. In this context, strong convexity proper-
ties of the function

Q¥(g) == § Tz -E) p(dz) (£ € R®)
B os

with 3 as in (1.3) play an important role.

(Q"e is strongly convex on a convex subset V of RS if thore exists
k > 0 such that for all §,8€v and A€lo0,1],

Qg+ (1 =A)E) €AQNE ) + (2 - )QN(E) - kML -A)IE - -Tuc)

For this situation, the next result is proved in {[167.

Theorem 2,3:

Let, in (1.1), g be convex quadratic and C a polyhedron,

Fix ¢ e.’P(Rs) and suppose (A1) ~ (A3). Let further '\y(y) nonempty,
bounded and the function Q> strongly convex on a convex open set
V containing A('Y(p)).

Then, there exist constants L>0 and é > 0 such that

d, Oy (p), Y0) € Lw (pwt32

whenever Y€ 4 (R®), w (pew) <§.
{Here d denotes the Hausdorff‘ distance on subsets of R" .}

Before discussing consequences for a specific recourse model, let us
add a few comments on the above results.

Theorem 2.1 can be extended to more general recourse problems {(quad-
ratic recourse, linear recourse with also q in (1.3) random), cF.
Theorem 2.4 in [16]. Verification of the strong-convexity assump-
tion in Theorem 2.3 is possible for specific instances of (1.3),
namely if either WEL(RS*L R®), g ¢ imw or weL(RZS R®),
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W= (H,-H), q" + ¢~ > 0 (where HeL(RS, R®) is non-singular,
a=(q", q-)T. a¥, q° € R® and the strict inequality understood com-
ponentwise). The existence of a density for p which is locally boun-

[}

ded below by a positive number and conditions on p that ensure Qt to
be continuously differentiable with locally Lipschitzian gradient
then imply strong convexity of Q* , cf. Theorem 3.5, Corollary 3.6
in [153. ¥

Theorem 2.3 does not hold for general convex g and C, and the expo-
nent 1/2 on the right-hand side of the estimate is best possible,
cf. Examples 4.5, 4.6 in [157, Remark 2.9 in [16].

Although calculation {or estimation) of distances between probabili-
ty measures is in general a formidable task, explicit formulae for
Lp-Wasserstein metrics are known in specific situations ([67, [7]).
For probability measures on R the following holds (cf. e.g. [12]):

o
Wypav) = SAF,(6) - Fylr)| ar

where F_ , Ev are the distribution functions for p,v e'nni(xz).
This formula is remarkable, since for measurcs p,\ie'nﬂp(Rs ) with
independent one-dimensional marginal distributions Fi’.oi (i=1,..,s)
we have (cf. Remark 2.11 in [16])

Wo(po) € Co(ig. W (p; vi)P)i/P
with a computable constant Co > 0,
The recourse model which we discuss in the next section has the pro-
perty that it only depends on the one-dimensional marginal distribu-
tions of the underlying probability measure, such that the above
formulae apply.

3. Application to optimal power dispatch with uncertain demand

In this section, we consider an energy production system consisting
of thermal power stations {tps), pumped (hydro) storage plants {psp)
{serving as base- and peak-~load plants, respectively) and an energy
contract (ec) with connected systems, The problem of optimal power
dispatch consists of allocating amounts of electric power to the
generation units of the system (i.e. tps, psp and ec) such that the
total generation costs are minimal while the actual power demand is
met and certain operational constraints are satisfied.

The peculiarities of the model we shall discuss are the following:
(a) The model is designed for a daily operating cycle and assumes
that o unit commitment stage has been carried out before, (b) the

transmission losses are modeled by means of an adjusted portion of
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the demand, (c) the cost functions of the thermal plants are taken
to be strictly convex and quadratic. A special feature of our model
is that we take into account the randomness of the electric power
demand.

Let K and M denote the number of tps and psp, respectively, and N be
the number of subintervals in the discretization of the planning pe-
riod. Let I C{ 1,...,K} denote the index set of available online
tps within the time interval r 6{1....,N} The {unknown) outputs of
the tps and psp at the time interval r are Yir (1=1,...,K) and Sjr
{generation mode of the psp j € {1....,M}), respectively. By wjr we
denote the input of the psp j during the pumping mode and by e. the
level of elecctric power which corresponds to the contract at time
interval r.

Denoting x:=(y,s,w,a)TGRm with m:=N{K+2M+1) our model for optimal
power dispatch developed in [14 ] has the following shape

(3.1) min {g(x) : x€C, Ax = z } .

In (3.1), g is a convex quadratic cost function defined on r"
cCcR" is a (nonempty) bounded convex polvhedron containing the re-
strictions for the power output, balances betwcen generation and
pumping in the psp, balances over the whole time horizon far the psp
and according to the energy contract, fuel quotas in the tsp etc.
The equation Ax = z in (3.1) reads componentwise (i.e. at time in-

terval r)

(3.2) [Ax] 1= ; y1r + E:Z(sjr ) +e =2z

and means that the total generated output meets the demand Z=(Zl""
,zN) at cach time interval.
We consider the demand z as a random vector and denote by p € @(]2]
the probability distribution of z and by Fr the distribution func-
tion of z. {r=1,...,N). Distinct from the approach in [14], where
the equilibrium between total generation and (random) demand has
been modeled by a probabilistic constraint, we here consider a sto-
chastic formulation of (3.1) as a recourse model, Its basic idea is
to introduce @ certain penalty cost for the deviation of the sched-
uled output from the actual demand for under- and over-dispatching,
respectively. To be more precise, we define
+
ace) ;Q{t):EN: Gfe e 20wy,

r=1 «q;tr » t.< 0
where q: and q; are the recourse costs for the under- and over-dis-
patching at time interval r €{1,...,N}, respectively.
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The power dispatch model then has the form
(3.3) min {g(x) + E[Q(z - Ax)] : x ec}

where E[ -] denotes the expectation (i.e. the integral over rY with
respect to the measure p).

Similar power dispatch models are considered in [2 ] (Chapter 3.3},
[3 Jand [20]. For more information on power dispatch, espscially
stochastic models, we refer to [187] and to several papers in [57].

Observing that Q(t) = inf {qu T Wy = t, y)O} holds with
q:=(qI,....q::,q;,...,q;',)‘r and W:=(I,~I) (I denoting the identity
matrix in L{R"}), (3.3) is a special instance of the general sto~
chastic program with recourse (1.1). It is well-known that (A1), (A2}
are satisfied if q: + q; >0 for each r=1,...,N (cf.e.g. £87).
Now, we are in the position to apply the general stability results
from Section 2 to the special recourse model (3.3). We still nced
the following ‘'distance' on ’P(ZRN )

N oo
d(v, . v,) = ?;, VRt = Fp (e} ] de

where Flr and F,. are the onc-dimensional marginal distribution
functions of ¥, "V, € ?(RN ).

Theorem 3.,1:

Consider (3.3) with general assumptions as above, let g €m1{ZRN)

and q: + q'; >0 for each r=1,...,N.

(i) Then v is upper semicontinuous at p {with respect to the dis-
tance d) and there egxist constants L >0 and &> 0 such that

| o(p) - ()| € L d(p,») whenever d(p,v)<§.

{ii) Assumc, additionally, that q; + q; >0 for each r=1,...,N,

j has bounded marginal densitics 9.- {r=1,...,N} and that there

exists co>0 such thzt T

o(t):= E @r(tr) 2 c, for all t=(t1....,tN)

in some open subset U of RN containing the set A('\p(p)).

Then there exist constants L1>O and 51>0 such that
dH('\V(P)-\V(V)) $ Ly d{y.v}l’/z whenever d(p,v) < 51.
Proof:

Part (i) is a consequence of Theorem 2,1. It remains to note that,
since (3.3) only depends on the marginal distribution functions Fr
{r=1,...,N), the final remark of Section 2 applies and Wi(y,v) may
be ecstimated by N o

c, E;_:“go}Fr(t) - Fye(0)fdt = € d(pw)
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where C°>>0 is a certain donstant and FV (r=1,...,N) are the mar-

ginal distribution functions of y € @(RT\‘ ).

To prove (ii), we first remark that, according to the assumptions,
Q: (for a definition see Section 2) is strongly convex on each boun-
ded convex open set V with A(\y(y)) CV CU (Theorem 3.5 in [15]).
To see this, we note that again p may be replaced by the measure F
being the product of the marginal distributions of p and that @ is
the density of p. Now, Theorem 2.3 applies and the proof is comp%;te.
This means that for our power dispatch model the optimal costs be-
have Lipschitz continuous, and, under suitable assumptions on the
marginal densities of the random demand vector, the optimal sets en-
joy a Hélder continuity property with respect to the computable dis-
tance d.

The following equivalent form of (3.3) via the introduction of a new
variable X’EZRN (called ‘tender') proves useful for numerical pur-
poses :

(3.4) min {g(x) +Q(X) : x€C, Ax = X },

N
where  Q(X):= 1: E [ﬁr(zr - Xr)] (X GJRN).
r=

(3.4) is a nonlinear convex scparable program in which the number of
variables occuring nonlinearly in the recourse part is N instead of

m > N.

For an extensive discussion of numerical methods for the solution of
(3.4) we refer to {10] (and also to their papers in [5]) and to the

recent work in [2](Chapter 4) and in (117.
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