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In this paper, stochastic programming problems are viewed as parametric programs with respect to the 
probability distributions of the random coefficients. General results on quantitative stability in parametric 
optimization are used to study distribution sensitivity of stochastic programs. For recourse and chance 
constrained models quantitative continuity results for optimal values and optimal solution sets are proved 
(with respect to suitable metrics on the space of probability distributions). The results are useful to study 
the effect of approximations and of incomplete information in stochastic programming. 
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I. Introduction 

In  the  p re sen t  p a p e r  we s tudy  the b e h a v i o u r  o f  s tochas t ic  p r o g r a m m i n g  p rob lems  

with  respec t  to (smal l )  pe r tu rba t ions  o f  the  under ly ing  p robab i l i t y  d is t r ibut ions .  

Emphas i s  is p l a c e d  on quant i t a t ive  s tabi l i ty  results  for  op t ima l  values  and  sets o f  

op t ima l  so lu t ions  to s tochas t ic  p rograms .  To exp la in  our  aim, let us cons ide r  the  

fo l lowing  ra ther  genera l  s tochas t ic  p r o g r a m m i n g  m o d e l  

min{ fz f ( z , x ) t z (dz ) :  x c ~ " , t z ( { z ~ Z :  x~X(z ) } )~po}  (1.1) 

where  Z c R s is a Borel  set, f is a func t ion  f rom Z × ~m to ~, X is a se t -va lued  

m a p p i n g  f rom Z into R m, p 0 e [ 0 ,  1] is a p re sc r ibed  p robab i l i t y  level and  /~ is a 

p r o b a b i l i t y  d i s t r ibu t ion  on  Z. No te  tha t  s tochas t ic  p rog rams  with  ( l inear  and  quad-  

ra t ic)  recourse  (cf. (3.3) and  (3.4)) and  p r o g r a m s  with p robab i l i s t i c  (or  chance)  

cons t ra in ts  (cf. (5.1)) fit in to  (1.1). 

M o t i v a t e d  by  a n u m b e r  o f  app l i ca t ions ,  it seems pa r t i cu l a r ly  des i rab le  to es tabl ish  

the  s tabi l i ty  o f  s tochas t ic  p r o g r a m s  with respec t  to pe r tu rba t ions  o f  the  under ly ing  

d i s t r ibu t ion  /z in the  sense o f  the t o p o l o g y  o f  weak  convergence  on ~ ( Z ) - - t h e  

This research was presented in parts at the 4th International Conference on Stochastic Programming 
held in Prague in September 1986. 
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space of all Borel probability measures defined on Z (cf., e.g., [6]). Since we are 
aiming at quantitative stability results, we are interested in suitable metrics on ~ ( Z )  
which (at least locally) metrize the topology of weak convergence (cf., e.g., [16; 27, 
Chapter 2]). As we will see, such metrics are the bounded Lipschitz metric/3 for 
recourse models and the variational distance a~ for models with chance constraints. 
These metrics are defined as follows (of. [16, 27]): 

/3(/x, ~,):=sup{ fzg(Z)lx(dz)- fzg(Z)v(dz ) : g:Z-->~, llg[[BL<~ l}, 

o~ (~, ~,):= sup{l~(B)  - z,(B)l: B ~ .~}(m ~' ~ Y ' ( / ) ) ,  (1.2) 

where 

HglIBL: = sup Ig(z)]+ sup ]g(z)-  g(Z),,I 
z~Z z,~Z d(z, ~) 

z / -2 

is a subset of the Borel o--field N(Z)  of Z, (Z, d) is a separable metric space 
(with metric d). 

It is known that/3 metrizes the topology of weak convergence on ~ ( Z )  [16] and 
that a sequence (/x,) in ~ ( Z )  converges to/x ~ ~ ( Z )  in the sense of the (pseudo-) 
metric a~ if (/x,) converges weakly to/x and if Y3 is a/x-uniformity class ([7] and 
Remark 5.2). For interrelations of/3 and ~ to other probability metrics on ~ ( Z )  
we refer to the literature [16, 27] and to Remark 5.10. In this context we remark 
that, especially for the stability considerations in the recourse case, we will identify 
a subset of ~ ( Z )  for which the quantitative stability results (with respect to the 
metric/3) can be expected (cf. Section 3). 

Our approach to quantitative continuity of the (locally) optimal values and optimal 
solution sets to stochastic programming models relies on recent developments in 
the quantitative stability analysis of parametric optimization problems with param- 
eters varying in metric spaces. In particular, we make use of results obtained by 
Klatte [35, 36]. 

On the one hand, our general results are applicable to the stability analysis of 
stochastic programs with incomplete information on/x (see Corollary 3.4, Remark 
5.11). For investigations along this line we refer e.g. to [17-20, 23, 51-54, 56]. 

On the other hand, approximations to stochastic programs which arise when the 
(known) probability distribution /x is approximated by "simpler" (e.g. discrete) 
ones fit into our setting for sensitivity analysis. From the number of papers dealing 
with such approximations here we only quote [8, 24, 28, 31, 32, 37-39, 50, 57]. 

The papers by Kall [30], Robinson and Wets [46], Kafikov~i [34] and R6misch 
and Wakolbinger [49] concentrate on topics that have a lot in common with the 
questions addressed in the present paper. 

Using the results of [45] the authors of [30] and [46] obtain similar results 
concerning qualitative stability of optimal values and optimal solution sets of fairly 
general recourse models in the presence of perturbations of the distribution /x in 
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the sense of the topology of weak convergence on suitable subsets of ~ (Z) .  As 
distinct from this, in Sections 3 and 4 we investigate more specialized recourse 
models for which we obtain quantitative stability results under slightly sharper 
assumptions on the distributions. 

In [30], questions concerning the stability of chance constrained models are 
addressed. As one of the challenging problems in this respect, the author mentions 
the lack of comprehensible and (easily) verifiable assumptions to assure stability of 
the model with respect to the topology of weak convergence on ~ ( Z ) .  In Section 
5, we take up this question and show that the desired stability can be expected at 
least for distributions ~ which are "smooth" in a certain sense (Proposition 5.1 and 
Remark 5.2). 

The results in [49] on quantitative stability of optimal values for linear recourse 
and chance constrained models are extended by the following investigations in a 
twofold manner: We obtain (quantitative) stability results for optimal solution sets 
and we consider more general problem classes. 

The papers of Dupa~ovA [17-20], Wang [53] and Garstka [23] are aiming at 
similar goals. The authors establish the sensitivity of optimal values and optimal 
solutions of stochastic programs with respect to changes in the (finite-dimensional) 
parameters of the underlying probability distribution. Dupa~ovfi and Wang employ 
versions of the implicit function theorem and obtain, under certain assumptions, 
results about the existence of (differentiable and Lipschitzian, respectively) solution 
trajectories for stochastic programs (as functions of the finite-dimensional param- 
eters). 

Our paper is organized as follows. In Section 2 we quote the quantitative stability 
results from parametric optimization (Theorem 2.5 and 2.6) which are essential for 
the remainder of the paper and which are due to Klatte. In Section 3 we apply a 
result on the continuity with respect to the metric fl for special functionals which 
are given by integrals (Theorem 3.1) to derive H61der continuity of the optimal 
value function and upper semicontinuity of the optimal set mapping for general 
classes of recourse problems (Theorem 3.3). Under more restrictive assumptions we 
obtain in Section 4 quantitative continuity results for optimal solutions of recourse 
models with special structure that permits separability of the recourse function 
(Theorem 4.4 and 4.8). In Section 5 we derive stability results for general chance 
constrained models. In the main result of this section (Theorem 5.4) we give 
conditions under which the optimal values (optimal solution sets) of such models 
behave locally Lipschitzian (upper semicontinuous) with respect to a metric a~ 
(with suitably chosen ~) .  

2. On quantitative stability in parametric programming 

The classical approach to sensitivity of optimal values and optimal solutions for 
optimization problems depending on parameters relies on the implicit function 
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theorem and its generalizations (see e.g. [21] and the references therein). The 
following example is to illustrate the necessity of an alternative approach when 
aiming at sensitivity results for stochastic programs whose parameters are the 
underlying distributions. 

Example 2.1. Consider 

F(x, Ix) = f f (z ,  x)/z(dz) 
dz 

with 

f ( z ,x )=min_{v+ + v-: v+-  v - =  z - x ,  v+ >~O, v-~>0}. 

For a fixed distribution /z, the minimization with respect to x of F over ~1 is a 
stochastic linear programming problem with simple recourse. Let us take Z ~ R 1 as 
the closed interval [-½, ½] and assume that all distributions/x under consideration 
have a continuous density 0, on Z. Then one confirms that VxxF(0,/z), the second 

derivative (with respect to x) of F ( . , / x )  at x =0,  is equal to 20,(0) (cf. the proof  
of Proposition 4.1). Now let /Xo be the uniform distribution on Z. Consider the 
sequence ~n of distributions on Z given by the densities 

~ ( 1 -  t,) -1 if t~<~lt[<~½, 
O"(t)=[(t ,- te~)-l l t[  if 0~<[t]~< t,, 

where t, ~ (0, ½) and t, -~ 0. 
The sequence/z,  then weakly converges to ~o, since the densities are converging 

pointwise with the exception of a set with Lebesgue measure zero [6, Scheffe's 

Theorem]. 
We have that V~F(0,/Xo) = 2 and V~F(0,  ~ , )  = 0 for each n. The point Xo = 0 is 

the (global) minimizer of F( . , /x0)  over ~ .  Hence the function V~xF(- , . )  is not 
continuous at (x0,/zo). This lack of continuity prevents the application of the implicit 
function theorem as well as the exploitation of stability results for optimization 
problems with parameters varying in a metric space that have been obtained by 
Cornet and Vial [12] (assumption (v) at p. 1125 in [12] does not hold). 

The next example shows that in our approach unique solvability is lost when 
perturbing the problem. 

Example 2.2. Consider the function F(x, tz) as in Example 2.1. Let/Xo again be the 
uniform distribution on Z 1 l = [ -~ ,  ~] and let /~n be the discrete distribution having 
mass 1/(2n) at each of the mass points ± ( 2 K + l ) / ( 4 n )  ( K - - - 0 , . . . ,  n - l ) ,  n ~ .  
One observes that the distribution functions of tzn converges pointwise to the 
distribution function of /~o as n ~co. Hence, the /zn converge weakly to tZo [6]. 
However, the minimizing set of F ( - ,  ~n) is the closed interval [ - l / ( 4 n ) ,  1/(4n)].  
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The material we are going to present next has been taken from the papers [35, 36] 

by Klatte. We refer the reader to those papers for proofs. We remark that the central 

notions introduced below already appear  (sometimes slightly modified) in papers 

by Aubin [2] and Robinson [45]. 
Consider the optimization problem 

P(t)  min{f(x,  t): x ~ M(t )}  
x 

depending on a parameter  t varying in some nonempty metric space (T, d). 

Assumptions on the function f :  R"  x T ~  ~ and the multifunction M from T into 

R "  are specified below. Given V c  R"  we set for t E T: 

My(t )  -- M( t )  n cl V ("cl"  means closure), 

~v( t) = inf{f(x, t): x c Mv(  t)}, 
tPv( t) = {x c Mv(  t): f (x ,  t) = ~v(t)}. 
By ~01oc(t) we denote the set of  all local minimizers of  P(t).  

Definition 2.3. Given P(t  °) for fixed t = t  °, a nonempty set X c R  r" is called a 

complete local minimizing set (CLM set) for f ( . ,  t °) on M ( t  °) with respect to V, 
if V is an open set of  Em such that V ~ X  and X = tpv(t°). 

Our notation follows Robinson [45], who introduced the above concept for an 

extended real valued f In Klatte 's papers, X is called a "strict local minimizing 

set" (SLM set). Later on we will briefly say that tPv(t °) is a CLM set for f ( . ,  t °) 
on M ( t  °) meaning that the set in question is a CLM set for f ( . ,  t °) on M ( t  °) with 

respect to V. 

Examples for CLM sets are the set of  global minimizers to P(t  °) or strict local 

minimizing points to P( t  °) (i.e. points z c R  m satisfying: there exists an open 

neighbourhood V of  z such that f (z ,  t °) < f (x ,  t °) for all x ~ ( M ( t  °) c~ cl V)\{z}). 

Note that a CLM set is always a subset of  ~Ojoc. 

Definition 2.4. A multifunction M from T into R '~ is said to be pseudo-Lipschitzian* 
at (x °, t°), where t°E T and x°c  M(t°) ,  if there exist a neighbourhood V of x ° and 

two positive reals 6M and LM such that 

and 

(M(t)c~ V ) c  M( t ° )+  LMd(t, t°)nm 

( M ( t  °) c~ V) c M ( t )  + LMd(t, t°)Bm 

for all t c T such that d(t, t °) < gM. (Bin denotes the closed unit ball in Rm.) 

The above is a relaxation of the concept of  a pseudo-Lipschitzian multifunction 
introduced by Aubin [2] (cf. also [47] and Section 5). 
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Theorem 2.5. Consider the parametric program P(  t), f ix  some t°e  T. 

(i) Assume that there exists a bounded open subset V o f  R ~ and a nonempty subset 

X o f  Vsuch  that X = ~v ( t  °) (i.e. X is a bounded C L M  set for f ( . ,  t °) on m ( t ° ) ) .  
(ii) Let the multifunction M be closed-valued and closed at t °. 

(iii) Suppose M is pseudo-Lipschitzian* at each pair (x °, t °) belonging to 
t~v( t °) x {to}. 

(iv) Suppose there are real numbers p ~ (O, 1], Lf>O and 8f>O such that f ( . ,  t) 
is continuous and 

If(x, t °) - f ( Y ,  t)l <~ Ls(llx -yl l  + d(t,  t°) p) 

for each x, y e cl V and each t e T satisfying d(  t, t °) < 6f. 
Then we have: 

(a) The multifunction Ov is upper semicontinuous (u.s.c.) at t °, i.e. for  each e > 0 

there exists 71 > 0 such that 

tOv(t)c ~Ov(t°)+eBm whenever d(t ,  to)< ~7. 

(b) There exist positive reals 8~ and L~ such that ~Ov(t) is a C L M  set for  f ( . ,  t) 

on m ( t ) and Iq~v(t)-q~v(t°)l <~ L~d ( t, t°) p whenever d ( t, t °) < 8~. [] 

The starting point for the following version of a quantitative continuity result for 
the mapping ~0v lies in the work done by Alt [1] and Auslender [3] for the standard 
nonlinear programming problem with differentiable and locally Lipschitzian data, 
respectively. 

Theorem 2.6. Consider the parametric program P(t),  f ix  some t° c T. 
(i) Assume that there exists a strict local minimizer z ~ R m of  order q >I 1 to P(  t°), 

i.e. there exist real numbers p > 0 and A > 0 such that 

f ( x ,  t °) > f ( z ,  t °) + AII x - z[I q 

for  all x c ( M ( t °) c~ B(  z, p))\{z}, where B(  z, p) denotes the closed ball around z with 
radius p. 

(ii) Let the multifunction M be dosed-valued. 
(iii) Suppose M is pseudo-Lipschitzian* at (z, t°). 
(iv) Suppose there are real numbers p e (0, 1], Lf > 0 and 8f > 0 such that f ( . ,  t) 

is continuous and 

If(x,  t °) - f ( y ,  t)l<~ L f ( l l x -  yll + d( t, t°) p) 

for each x, y c B(  z, p) and each t c T satisfying d ( t, t °) < 6f. 
Then there exist positive reals e, L4, and 84, such that with V: = B(z,  e) one has for 

each t ~ T with d(  t, t °) < 84, and for each x c ~Ov( t), 

I I z - x [ [ q ~ L ~ d ( t ,  t°) p. [] 
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Remark 2.7. The constants L~ and L,  in the above theorems can be set to C(1 + L:) 
for some constant C > 0 (not depending on L:). 

The above theorems differ from previous stability results in the more general 
hypotheses on the continuity o f f  and M. From the viewpoint of stochastic program- 
ming these generalizations are essential. As we will see later on, recourse functionals 
and multifunctions arising from chance constraints possess such continuity 
properties. 

3. Quantitative continuity of expectation functionals and applications to stability of 
recourse problems 

Let us start with a result that forms the basis for the analysis of the present section. 
Let (Z, d) be a separable metric space and ~ ( Z )  be the set of  all Borel probability 

measures on Z equipped with the bounded Lipschitz metric/3 which metrizes the 
topology of  weak convergence (cf. Section 1). 

Let h be a mapping from Z into R such that 

Ih(z) - h(~)[ <- L(max{d(z,  0), d(i ,  0)}). d(z, Z) (3.1) 

where L:ff~+- ~+ is continuous and monotonically increasing, and 0 ~ Z is some 

distinguished element. 
For p c [1, + ~ )  and /z  c 5~(Z) let us define 

M , ( ~ )  := (L(d(z, 0)). d(~, O ) : , ( d z ) J  . 

Theorem 3.1 [49, Theorem 2.1]. 
tz, v ~ ~ ( Z )  we have 

There exists C >  0 such that for all p c (1, + ~ )  and 

I f z h ( z ) ~ ( d z ) - I z h ( z ) z ' ( d z ) l  

<~ C(I+M,,(~)+Mp(~,))./3(~, ~,)1-1/,,. [] 

This theorem asserts H61der-continuity of  the mapping (acting from ( ~ ( Z ) ,  fi) 
into ~) 

~ I ~  h(z)~(dz) (3.2) 

with respect to all subsets of 5~(Z) that have the shape 

{/.t c ~ ( Z ) :  Mp(/z) ~< K} 

with some a priori given constants p ~ (1, +oo) and K ~ (0, +oo). In what follows we 
exclusively consider the important special case that Z is closed and belongs to some 
Euclidean space (with norm I1" [I) and L admits a representation L(t)  = Lo • t (Lo > O, 



204 W. R6misch, R. Schultz / Distribution sensitivity in stochastic programming 

t e ~+). In this situation Theorem 3.1 yields H61der-continuity of the mapping (3.2) 
with respect to all subsets 

~(Z; p, K) := {~ c ~(Z): fz llZll~"t~(dz) <- K } 

of ~(z). 
In their paper on stability of recourse-type problems, Robinson and Wets [46] 

impose the essential hypothesis that the (family of) recourse-integrands is uniformly 
integrable with respect to a family of probability measures, i.e. if o% is a family of 
continuous real valued functions on Z c R s and ~ is a family of Borel probability 

measures on Z then o~ is called uniformly integrable with respect to ~ if for each 
e > 0  there is a compact set A c  Z such that for each f e  o~ and each P e  ~, 

f z  ]f(()lP(d~:) < e. 
\ A  

An estimate using H61der's inequality now yields the following: If o% is uniformly 
bounded and equi-Lipschitzian (w.r.t. the Lipschitz property (3.1)) and ~ is tight 
[6] and contained in some set ~ ( Z ;  p, K)  then ~- is uniformly integrable in the 
above sense. The recourse integrands which will be considered in the present paper 
turn out to be uniformly bounded and equi-Lipschitzian on compact sets. Hence, 

such a family ofintegrands is uniformly integrable with respect to a set in ~ ( Z ;  p, K)  
formed by the members of a weakly converging sequence and its limit point. Thus, 
for the recourse problems considered below, our integrability assumption is more 
restrictive than the one used in [46]. This is not surprising considering the emphasis 
that we put on quantitative aspects. 

We remark that similar relations may be established between our integrability 
assumption and those imposed by Kall in his paper [30]. Although these assumptions 
are more restrictive than other integrability assumptions encountered in stochastic 
programming, it, nevertheless, is still possible to fulfill the conditions induced by 
sets of the type ~ ( Z ;  p, K)  in important applications: 

Let /x e ~(RS;p,  K)  and /2 be a discrete approximation of ~ via conditional 
expectations (for details see [8,31]). Jensen's inequality then implies that also 
/2 c ~ ( ~ ;  p, K).  Or let /x,/x, • ~ (~s)  (n •N)  be Gaussian measures such that the 
/x, converge weakly to #. Then for any p I> 1 there exists K = K(p,/x) > 0 such that 
/x, ix, • ~ ( N ' ; p ,  K)  for all h e n  (cf. [10]). 

The exponent 1 - 1 / p  arising on the right-hand side of the estimate in Theorem 
3.1 is the best possible (cf. [49]). If in Theorem 3.1 the integrand h is bounded on 
Z or if the supports of the measures/x and v belong to some bounded set then the 
estimate holds with exponent 1 on the right-hand side. 

Next, we introduce stochastic programs with linear and quadratic recourse, 
respectively, which we study in the present section. Consider 

minlcTx+ f f l ( z ,x) tx(dz):xGC } (3.3) 
x k d Z 1 
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where C c ~'~ is a nonempty convex polyhedron and c ~ ~m, 

f l ( z ,  x):= min{qTv: Wv = a - Tx, v >i 0}, 

z : = ( q , a ,  T),  

Z1 = {(q, a, T): q ~ l ,  a c W ,  TcL(~ m, ~r),{UCRr: WTu <~ q}~ 0}, 

W e  L(R  t, W )  such that for all y ~ R r, {v ¢Rt: Wv = y, v >1 0} is nonempty, /z  ~ ~(Z1). 

In the literature the above problem is called a stochastic linear program with 
complete fixed (linear) recourse. According to the assumptions on Z1 and W the 

function f l  is well defined and real-valued on Z1 × ~m. For details we refer to [28, 55]. 
Furthermore, we are going to study linear stochastic programs with quadratic 
recourse which are given as follows: 

 nI  X+fz/  z 1 
where C c R"  is a nonempty convex polyhedron and c e N m, 

f2(z, x )  :-- max{--½vTHv + (a -- Tx)Tv: A v  <~ b, v >i 0}, 

z : = ( b , a ,  r ) ,  

Z2= {(b, a, r ) :  b e W ,  a e R  ~, r e L(R" ,R~) ,  {veN~: Av<~b, v>~O} ~O}, 

H E L(R ~, R ~) symmetric and positive definite, tx e ~(Z2). 

The assumptions on Z2 and H guarantee f2 to be a well defined real-valued 
function on Z2 x N~. 

For more details on stochastic programs with quadratic recourse we refer to the 

paper [48] which has inspired our work on this topic. Denote 

F,(x,~):=Cx+fzf(z,x)~(dz) (i = 1, 2). 

Proposition 3.2. For i = 1 linear recourse) as well as for  i-~ 2 (quadratic recourse) 

the following holds: 

Let  B c R ~ nonempty, compact. Let  p c (1, +oc) and K c (0, +oo). Fix some 

tx e ~ (  Z~ ; p, K ). Then there exists LF, > 0 such that 

[Fi(x, tx ) - Fi(y, u) I <~ L~,(llx - YH + fl( u, /x ) 1-'/p) 

for  all x, y e B and all u ~ ~ (  Zi ; p, K ). 

Proof. We have for i = 1, 2, 

IF~(x, . )  - F,(y, ~)l~ IF~(x, u) - ~ ( y ,  ~)[ + IV,(y, ~ ) - ~ ( y ,  ~)1- 
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To see that there exist/~i > 0 (i = 1, 2) such that the first term on the right-hand side 
is bounded above on B by f~ i l l x -y l [  recall from parametric programming the 
well-known fact that the functions f~ (i = 1, 2) are convex with respect to x. Therefore 
F~(.,/~) (i -- 1, 2) are Lipschitzian on compact sets. 

Concerning the second term we have for the linear recourse case by Theorem 3.3 
in [49] that there exists £ 1 > 0  (independent of y) such that 

[FI(y, /~)-  FI(y ,  v)[ <~ £1~ (v,/~)l-llv 

for all y ~ B and all v e ~(Z1 ; p, K).  This completes the proof for i = 1. 
We continue the proof for quadratic recourse. To this end let 

~(b, d) := s u p { - - ½ v Y H v  + dTv:  A v  ~ b, v >t 0} 
v 

and denote 

dom ~ := {(b, d) ¢ Rr+l: ~(b, d) ~ ~}. 

In view of the Theorems 5.5.1, 5.5.2 and Note 5.5.5 in [4] we have that ~ is continuous 
on dora ~ and that there exist a positive integer N,  ~tj c gcr+~, D j ~  L(g¢ r+t, ~r+t) 

( j =  1 , . . . ,  N) such that { ~ j : j =  1 , . . . ,  N} is a partition of dora ~ and 

(o(b, d )  = (Dj (b ,  d))X(b, d) if (b, d) c Mj. 

Now, put 

:=  m a x  IIDjll 
j = I , . . . , N  

and let F> 0. Then, for all j = 1 . . . .  , N, ~ is Lipschitzian with modulus [IDj]] • f on 

3/tj c~ {(b, d) e Nr+': Ilbl] + Ildll ~< e}- 

Using [26, Theorem 2.1] one shows analogously to [13, Theorem 2.2] that ~ is 
Lipschitzian with modulus /~- F on 

dom ~ c~ {(b, d) ~ Nr+': II b [1 + IId [I ~< r}. 

The remainder of the proof parallels the proof of Theorem 3.3 in [49]. 
For arbitrary y e B, z = (b, a, r ) ,  S = (/~, 4, T) we have 

If~( z, y )  -f2(-;, Y)[ 

= I~(b,  a - Ty )  - ~(E,  ~ - Ty)[ 

~</( max{n bl[ + ]la - ryl],  Ilgll + TY [lI(]l b -/~[I + II a - c~+ ( T -  T)yll) 

<~/~ max{llzH, II~ll}llz-ql (3.5) 

with a suitable constant /~ > 0. (Note that B is bounded.) Hence, for each y c B, 
g2:=f2( ' ,  y ) : Z 2 ~ N  fulfils the Lipschitz condition (3.1) with L ( t ) : =  L o . t ,  t e n  + 
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and Lo :=/~. Now, we obtain from Theorem 3.1 that there exists/]2 > 0 (independent 
of  y) such that 

J f z 2 f 2 ( z ' Y ) i x ( d z ) - f z 2  f2 ( z 'Y )~(dz ) l  ~ /]2/3(/' IX)I--1/P 

for all y c B and all l, c ~(Z2;  p, K).  Putting Lt~2 := max{/~2,/]2} we complete the 
proof. [] 

We end this section by studying the consequences of  Proposition 3.2 and Theorem 
2.5 for distribution sensitivity of  stochastic programs with linear and quadratic 
recourse, respectively. 

Let p ~ (1, +oo) and K c (0, +oo). The sets ~(Z~ ; p, K)  (i = 1, 2) equipped with 
the metric/3 serve as parameter spaces. Since for any fixed parameter/~ the programs 
(3.3) and (3.4) are convex (recall the convexity argument given in the preceding 
proof), there is no distinction between locally and globally optimal values (and 
local and global minimizers, respectively). Hence let us denote by ~0~ and 4'~ (i = 1, 2) 
the mappings assigning to each parameter the optimal value and the set of  optimal 
solutions, respectively (of (3.3) and (3.4), respectively). 

Theorem 3.3. For i= 1 (linear recourse) as well as for  i = 2 (quadratic recourse) the 
following holds: 

Consider (3.3) and (3.4) with the same general assumptions as above. Fix some 
I x ~ ~ ( Z i  ; p, K )  and assume that ~i(ix) is nonempty and bounded. Then we have that 
~bi is u.s.c, at t x with respect to the metric space ( ~ ( Z i ;  p, K ) , / 3 )  and there exist 
constants 8~, > 0 and L~, > 0 such that 

~O~( u) # fl and I~;o~( ~,) - ~,(ix )l <~ L~i/3( u, ix ) ' - l /"  

whenever u c ~ ( Z i  ; p, K )  and/3(~,, Ix) < 8~,. 

Proof. We check the hypotheses of  Theorem 2.5. The metric space (T, d) is given 
by ( ~ ( Z i  ; p, K ) , / 3 )  (i = 1, 2). As (nonempty) sets of global solutions 4'i(ix) (i = 1, 2) 
are CLM sets, boundedness of  ~bi(ix) implies hypothesis (i) of Theorem 2.5. 
Hypotheses (ii) and (iii) of  Theorem 2.5 trivially hold and (iv) is just the assertion 
of  Proposition 3.2. [] 

If  we restrict the parameter space to a tight subset of ~(Z1 ; p, K)  then, for the 
SLP-case, qualitative stability with respect to weak convergence of  probability 
measures (i.e. continuity of  ~ol and upper semicontinuity of  ~b~) is already implied 
by Theorems 2.2 and 3.2 in [46]. 

We continue with applying Theorem 3.3 in the situation where IX is incompletely 
known and estimated by empirical measures, thus giving an idea of  how to derive 
asymptotic statistical properties for optimal values of  stochastic programs. 
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Let/~ ~ ~ ( Z i )  (i = 1, 2) and  ( z j ) j~  be a sequence  of  independen t  r a n d o m  variables  
on a probabi l i ty  space (12, M, P)  with values in Zi and c o m m o n  dis tr ibut ion ~. Then  
the empir ical  measures  are given by 

~n(o~):=n -1 ~ a~,(~) (o~c12, n ~ ) .  
j = l  

(Here 6z denotes the measure with unit mass at z.) 

Corol lary  3.4. Assume  the hypotheses o f  Theorem 3.3, and let C be bounded. Then 

for  i = 1, 2 there exists a constant K~ > 0 such that 

E [ ] ~ ( / z )  - ~o,(/z,(o~))]] ~< K~(E[ f i ( l~ , / z , (w) )] )  ~-'/p (n c ~) .  

(Here E[  . ] denotes the mean value with respect to P.) 

Proof. Let i~{1,  2}. Then  we have f rom Theo rem 3.3 that  there exist constants  
6i > 0, L~ > 0 such that  

I~p,(/x) - ~,(v)l  <~ Lifl(lz, v) ' - ' /p  

whenever  v c ~ ( Z i  ; p, K )  and/3( /~,  v) < 6i. Note  that  the H61der modu lus  Li of  q~ 
has the special  structure 

= Ilzll2  (dz)) J 

with some constant  /(~ > 0 ( R e m a r k  2.7., Theo rems  3.1 and 3.3). Hence ,  for  fixed 

n ~ [~, there holds for  all w ~ Ai := {w ~ 12: f i ( /z , /z , ( to))  < 6i}, 

[( ),.] i+  n - 'E  Ilzj( )ll ~([.L, lJ~n(O))) l-lIp 
j = l  

and we obta in  apply ing  H61der 's  and Chebyshev ' s  inequali t ies 

E[I~,(~) - ~9/(/-Ln (0-)) )1]  

[( ~ K  1+ n -~ ~ E[llzj(oJ)ll2P]) 
j = l  

+ P(12\Ai)l-1/p(E[lq~i(l  ,z) -7 ¢,(/~. (co)) f ]) 1/p 

<~ {K [l +(Li ][zl]2P~(dz)) '/p ] 

1 _ ~,(~.(o,))f]),/~ } (E[/3( m + ~  (a,E.El,p~(~) ~.(o~))]) '-'/p. 
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Since C is bounded, we have for each ~,c ~(Zi )  that 

[~i(l")]<~max{J¢Tx'+ ffz ]fi(z,x)[t.'(dz) } , 

and in view of  (3.5), 

'¢i(u)[P <~ ~ii[l +(fz, [z[[2Pl.'(dz)) I/p ] 

with some constant / ( i > 0 .  Therefore, E[l~p~(/z)-~p~(/zn(w))[ p] is bounded with 
respect to n 6 t~ and the assertion is proved. [] 

Note that there exist (sharp) bounds for E[/3(/z,/z,(o2))] of the type cn -~/k with 
constants c > 0 and k > 2 [14]. Concerning k we remark that it is bounded below 
by the dimension of the (smallest) Euclidean space including the support of /z  and 
that it depends on the existence of certain moments o f / z  (see [14] for details). 

4. Stability of  solutions to recourse problems 

Now we study consequences of Theorem 2.6 with respect to quantitative stability 
of  optimal solutions to recourse problems. Having in mind Proposition 3.2, an 
inspection of  Theorem 2.6 indicates the central role of the concept of a strict local 
minimizer of some order q c [1, + ~ )  for quantifying upper semicontinuity of the 
optimal set-mapping ~O. In what  follows we emphasize the case when q = 2. 

It is well known (cf., e.g., [44, Theorem 2.2]) that for the standard nonlinear 
programming problem with inequality and equality constraints each point satisfying 
the Kuhn-Tucker  necessary optimality conditions as well as the sufficient second 
order condition [44, Definition 2.1] is a strict local minimizer of order 2. Of course, 
this argumentation needs twice differentiability of the problem data, although there 

exist generalizations to the locally Lipschitzian case (e.g. [3]). In the sensitivity 
analysis that follows, however, we restrict ourselves to the case where the original 
problem is twice differentiable. In view of the convexity of the problem and the 
polyhedrality of its constraint set, the above sufficient condition for the existence 
of a strict local (therefore global) minimizer of order 2 reduces considerably. It 
already holds if there exists an optimal solution where the Hessian of the objective 
is non-singular. In the sequel, this will be the key assumption to be verified. 

Let us consider the following program with linear recourse 

min{cW,+L  y,   dz  q 
where C c N '~ is a nonempty convex polyhedron and c e R m, 

f (y,  z) := min{qWv: [D, - D ] v  = z - y, v >~ 0}, (4.2) 
v 
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Z = R "~, D ~ L(~ m, W ~) nonsingular and/z  c ~ ( Z ) .  For convenience we denote the 
objective in (4.1) by F(y, lz) and split the vector q ~ R 2m into q+~ R" and q-~  R" 
consisting of the first and the last m components of q, respectively. 

We remark that the above class of problems was brought to our attention by the 
paper [9] of Birge and Wets, where such problems serve as approximations to more 
general recourse problems. 

Proposition 4.1. Consider (4.1) with the above assumptions, let q+ + q > 0 and suppose 
that for the one-dimensional marginal distributions 12~ of t2 :=/x o D (i = 1 , . . . ,  m) 
there exist densities ~ which are on int supp 12~ both continuous and strictly positive. 
Then VyyF(y, tz ) exists and is nonsingular for each y cint  supp/x. ("supp v" denotes 
the support of  the measure v.) 

Proof. The function f(y,  z) given by (4.2) is finite everywhere, since one always 
finds a feasible v and since by q + + q - >  0 the constraint set of the dual to the 
problem defining f is nonempty. 

Following [9] we have the expression 

where 

f (y ,  z) = ~ f ( y ,  z) 
i = 1  

f ( y ,  z) = [,q+o(i)(D-1)i'(z - y )  if (D-1)i . (z-y)  >1 O, 
[.qD(~)(D-')~.(y--z) if (D-1)f .(z-y)<O, 

+ 
qD(i~ := min{q Tv: [D, - D ] v  = D(i), v >t 0}, (4.3) 

qD(i) := min{q Tv: [D, - D ] v  = -D( i ) ,  v >i 0}. (4.4) 

(D-1)~. denotes the ith row of D -1, D(i) the ith column of D. By inspection of the 
dual problems to (4.3) and (4.4) one confirms 

q~(o=q7  and qD(~=q~-. 

Now 
f 

F(y, lx)=cVy+ F~(y, tx):=cVy+ | f ( y , z ) t z ( d z ) .  
i = 1  i = 1  dz 

Using the transformation ff = D- lz  the last expression becomes 

crY + E f~(y, Df)ldet D[12 (dr). 
i = 1  

Observe that 

f ( y ,  D~) ~q~(fi-(D-~)~'Y) if z']>~(D-~)i.y, 
=[qT-((D-1)i.y-ff~) if g~<(D-1)~.y. 
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Therefore 

Fi(Y,l~)=]detD[ " {q~ I~ tOi(t) d t -q~(D-1) i 'Y  

- (q~[+q;)  (t-(D-1)~.y)O~(t) dt},  

and we have 

• f(~ ~"Y at) (D-1)/r.. VyF~(y,/z) = [det D[ ( - q +  +(q+ +q~) 'O i ( t )  

Hence 

VyyF~(y,/z) = [det D[(q+ + q~-)O~((D-~),.y)(D-')~.(D-~)i.. 

(Note that the existence of VyyF~(y,/z) is ensured for y c i n t s u p p / z  since y ~  
int supp/z implies (D-a)i.y ~ int supp/2~.) Our suppositions now imply 

[detDl(q++qy)O~((D-')g.y)>O for i = l , . . . , m .  

Hence 

~TVyyF/(y,/z)~>O ( i=  1 , . . . ,  m) 

where equality holds only for those ~: which satisfy (D ~)i.s r = O. Since the rows of 
D -a are independent we obtain 

~XV~F(y, ~)~ > 0 

for all ~: ~ R", ~: ~ 0 and the assertion is verified. [] 

Remark 4.2. If  supp/z = R '~ then the restriction on y in the assertion of the above 
proposition can be dropped. In general, however this is not possible as is illustrated 
by the function F( - ,  ~0) in Example 2.1. This function does not possess a Hessian 
at the boundary of the support and has the Hessian 0 outside the support. 

Now we are going to apply Theorem 2.6 to problem (4.1) understood as a 
parametric programming problem with respect to the underlying probability 
measure• As in the previous section, letp c (1, +co) and K c (0, +co) to fix a parameter 
set ~ ( Z ;  p, K).  

Theorem 4.3. Consider problem (4.1) with general assumptions as above, let q+ + q- > 0 
and assume that for some fixed l~ ~ ~ ( Z ;  p, K)  (representing the unperturbed problem ) 
the set ~(t~ ) is nonempty and belongs to int supp/~. Suppose further that for the 
one-dimensional marginal distributions I~i of  I~ := I~ o D ( i = 1 , . . . ,  m) there exist 
densities Oi which are both continuous and strictly positive on int supp/2i. Then t~(~ ) 
is a singleton (say ~b(/~)= (37}) and there exist LI, > 0 and ~ > 0 such that we have 
for any v c ~ ( Z ;  p, K)  for which fl(i ~, v) < 71~ that 

~ (u )~ f )  and ][37-y][~L1+fl(i.t, v) (1-1/p~/2 for all y~ f i ( v ) .  
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Proof. In view of Proposition 4.1 and the argumentation at the beginning of this 
section the unperturbed problem has a strict local minimizer of order 2. Hence O(/z) 
is a singleton and hypothesis (i) of Theorem 2.6 holds. Hypothesis (iv) is implied 
by Proposition 3.2 whereas the remaining hypotheses of Theorem 2.6 trivially hold. 
Theorem 2.6 now completes the proof. [] 

Next, we extend the above stability result to the more general class of problems 
given by 

1 
where C c N m is a nonempty convex polyhedron and c c N ~, 

f ( x ,  z ) : -  min{qTv: [D, - D  ]v = z - Tx, v >10}, 
v 

Z = W, D c L(W, N r) nonsingular, T c L(W ~, W) with full rank and /x ~ ~ (Z) .  As 
in (4.1) we split q into q+ and q-. Unless m = r, a solution to (4.5), if it exists, 
cannot always be ensured to be uniquely determined. Hence, in general there is not 
much hope of identifying strict local minimizers of any order, and Theorem 2.6 
cannot be applied directly. However, under an additional assumption on the linear 
part of the objective in (4.5) we can show the assertion of Theorem 4.3 to hold with 
little modification. 

Theorem 4.4. Consider (4.5) with general assumptions as above and let the vector 

c E ~ m  admit a representation c v = ~TT with some ~ W. Suppose further q++ q- > 0 

and that for the one-dimensional marginal distributions 12i o f  fi, :=/z o D (i = 1 , . . . ,  r) 
there exist densities Oi which are both continuous and strictly positive on int supp/2i. 
Assume that for some fixed tx ~ ~ ( Z ;  p, K )  the set tp(lz) is nonempty and that we 

2 have Tx c in t  supp/x for any x ~ ~(Iz ). Then there exist L~ > 0 and rl,  > 0 such that 

we have for any t,c ~ ( Z ;  p, K )  for which fl(ix, v) < ~7~ that 

tO(~,)#O and dH(O(v), t O ( t z ) ) ~ L ~ ( p ,  tz) ('-'/v)/2 

where dn denotes the Hausdorff  distance. 

Proof. Denote T(C) :=  {y ~ Nr: y = Tx, x c C} and consider 

myin{ ~Ty + f f ( y , z ) z , ( d z ) : y 6 T ( C ) } ,  (4.6) 
d Z  

where 

f ( y ,  z) := min{qTv: [D, - D ] v  = z - y, v ~ 0}. 
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Since T(C)  is again a nonempty convex polyhedron (4.6) fits into (4.1). Let 0(v) 
denote the solution set of (4.6) and put 

Cy := {xe R'~: y =  Tx, x 6  C}. 

Using the representation of c T one then confirms 

4'(b') = U Cy. (4.7) 
y~q,(~) 

Theorem 4.3 now yields that there exists ~ > 0  such that u c ~ ( Z ; p ,  K)  and 
/3(~,,/z) < ~7~ imply 0(v) # 0. Note that for any y e q~(v) we have Cy # 0 and hence 
by (4.7), 

4'(~)~0. 
Now observe that by Theorem 4.3, 0(/~) is a singleton (let 0(/x) = {)5}); (4.7) implies 
4'(/x) = C;. Furthermore, we have by (4.7), 

dH(4'(Ix), O(~')) ~< sup dH(Cy, Cy), 
y~tO(v) 

By Hoffman's theorem (cf. [43, p. 760]) there exists LH>0  which is independent 
of y such that 

dH(Cy, Cy) ~< LH" II;--YlI. 

Hence 

dH(4'(~),4'(~))~<LH" sup IIN--Yll 

and in view of Theorem 4.3 the right-hand side of the last inequality can be estimated 
above by 

L . .  L~3(v, ~)(1 1/.)/~. [] 

Remark 4.5. In Theorems 4.3 and 4.4, the estimates on the distance of the solution 
sets hold with exponent ½ on the right-hand side, if there exists a compact set 
containing all the supports of the involved probability measures. 

To show that the exponent on the right-hand sides in the estimates in the Theorems 
4.3 and 4.4 is the best possible we give the following example. 

Example 4.6. Let F(x, ~)  and/x0 be as in Example 2.1, let /x,  (n ~ N) be given by 
the distribution function 

I °, D.(s)  = ~,+½' 

I s + ½ ,  

kl ,  

Let P (~ )  =min{F(x, /x) :  4'(/-tn) = [-1/¢-~, 1/4-hi and 
fl(/xn,/~o) <~ 4/n. Now, we have d~(4'(/~), 4'(/-to))= 1/C-n, i.e. the exponent ½ which 
is obtained from Theorem 4.3 in view of Remark 4.5 cannot be increased. 

s < 1 ,  

- ~ < ~ s < - l / v ~ ,  
- 1 /  Vr-ff <~ s < 1/ Vrff, 

1/v~<~s<½, 

½~S. 

x ~ ~}. Then 0(~o) = {0}, 
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Now we turn our attention to stochastic programs with quadratic recourse. We 
will study quantitative stability of optimal solutions when the recourse problem has 
box-diagonal structure. 

Consider 

n ~ n { c T y + f z f ( y , z ) i x ( d z ) : y ~ C  } (4.8) 

where C c N" is a nonempty convex polyhedron and c c W ~, 

f(y,  z):= max{-½vV/)v + (z --y)Tv: a ~< v ~< b}, 

Z = ~ ' ,  a, b c R ~ (a <~ b), D ~ L(R m, W") diagonal with positive elements d~ (i = 
1 , . . . ,  m), IX c ~ ( Z ) .  We denote the objective in (4.8) by F(y, Ix). 

Proposition 4.7. Suppose in (4.8) that for the one-dimensional marginal distributions 
Ix~ of Ix ( i = 1 , . . . ,  rn ) there exist densities O~ which are both continuous and strictly 
positive on int supp Ix~. Then VyyF(y, Ix) exists and is nonsingular for all y c W" such 
that 

{s ~ R ~ : / ) a  + y ~< s <~/~b + y} c i n t  supp Ix. (4.9) 

Proof. We find that f(y, z) is separable, namely 

m 

f(y, z) = E f(Yi, zi) 
i--I 

where 

[ (1/ (2d,)(z~- y~)2, 

f (yi ,  zi) = ~ ai(  zi - Yi) - ½dia2i , 

[ b~(z~- y~)- ½dib~, 

for i=  1 , . . . ,  m. Denote 

Fi(Yi) := j f (y , ,  z,)ix,(dz,) 

where "ix~(dz~)" indicates that the integral is taken with respect to the marginal 
distribution. If  the second derivatives (d2/dy2)Fi(yi) exist for i =  1 , . . . ,  m, then 
VyyF(y, t.1,) is a diagonal matrix with elements (d2/dy~)F~(y~) on the main diagonal. 
Hence it remains to show that these derivatives exist and that they are positive. We 
have 

Fi(y,) = 
f bidi+Yi 1 

a~d~+y, ~ (t--yi)2Oi(t) dt 

~ aidi +Yi 
+ ~oo [ai(t-yi) -½d,a2]O,(t) dt 

+ [bi(t-y,) -½ d~b~]O,(t) dt. 
bidi+Yi 

i f  z i - y  i c [aidi,  bidi] , 

if z i - Y i < a i d i ,  

if z i - Y i ) b i d i ,  
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In view of  condition (4.9) now (d/dyi)F~(y~) exists and we obtain by direct compu- 

tation 

dyi - - ~  Jad+y tO~(t) d t+  y, Oi(t) dt 
l ~ t " d a i d i + y i  

f?+" f) - a ,  O , ( t )  d t  - b i O , ( t )  dt, 
i d i + Y i  

and finally 

Oi(t) dt. 
" ~ d i i  ~ a i d i d - Y i  

These expressions are positive for i = 1 , . . . ,  m, and the proof  is complete. [] 

In analogy to Remark 4.2 we note that, in case supp/~ = ~m, condition (4.9) in 
the above theorem is not a restriction. Let us now view problem (4.8) as a parametric 
program with respect to the underlying probability measure. With p ~ (1, + ~ )  and 
K c (0, +oo) we fix the parameter space ~ ( Z ;  p, K)  and obtain the following con- 

sequence of  Theorem 2.6. 

Theorem 4.8. Consider (4.8) with general assumptions as above and suppose that for 

some fixed tz c ~ ( Z ;  p, K )  the set ~(iz ) is nonempty and (4.9) holds for ally ~ ~b(tx ). 
Further, assume that for the one-dimensional marginal distributions ixi of  i ~ ( i=  
1 , . . . ,  m) there exist densities which are both continuous and strictly positive on 

int supp/ , i .  Then tp(tx ) is a singleton (say ~b(/x)--{)7}) and there exist L ~ > 0  and 
3 ~7~ > 0 such that we have for any v c ~ ( Z ;  p, K )  for which fl(l~, v )<  ~7~ that 

~O(v)#0 and Hfi-ylI<~L34,t~(~,~')(1-1/p)/2 f o ra l l yc~b(u ) .  [] 

The proof  is a repetition of  the proof  of Theorem 4.3 using Proposition 4.7 instead 
of Proposition 4.1. 

It is possible to generalize Theorem 4.8 in exactly the same way as this has been 
done for linear recourse in Theorem 4.4, As can be seen from the proofs, the stability 
results of  the present section remain unchanged if one has strict positivity of  the 
densities only on a neighbourhood around some point determined by the optimal 
solution set of the unperturbed problem. 

5. Stability in chance constrained programming 

In this section we present stability results for (locally) optimal sets and optimal 
values of chance constrained stochastic programs. The problem we shall consider is 

min{f(x):  x ~ R m, ~({z c Rs: x c X(z)})/> Po}, (5.1) 
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where f is a function from Em into E, X is a measurable multifunction from Es 
into R m, poe [0, 1] and /z is a Borel probability measure on Es. (X  is measurable 

iff {z6RS: X ( z ) c ~ A ¢ O } c  ~ ( ~ s )  for each closed A ~  Rm.) 

Since X is measurable,  the preimages X- (x ) :=  {ze E ' :  x e X(z)}  are Borel for 

each x e R ~. 

Our approach to stability in the chance constrained case is based on Theorem 

2.5. The results we obtain extend those of [49, Section 4], since we consider more 
general problems (5.1) and we also deal with the stability of local solutions. In 
order to apply the parametric programming framework (of Section 2), we first have 

to choose a suitable distance on ~(E~). Of  course, it again appears to be useful to 

choose a distance metrizing the topology ~'w of weak convergence on ~(R~). But, 

unfortunately, as turned out in [30], it seems to be difficult to establish general 

verifiable sufficient conditions to ensure lower semicontinuity of  the multifunction 

u ~ Cp(u):= {x e [2m: u (X- ( x ) )  >~p} (5.2) 

considered as a map from (~(R~), ~'w) to ~m. Recall that a multifunction F from a 

topological space (T, ~') to E "  is lower semicontinuous (1.s.c.) at some to ~ T if, for 

each x ~ F(to) and each e > 0, there exists a ~--neighbourhood U of to such that for 

each t e U, F( t )  n B(x, e) ~ O. 
In our first result (which is close to [50, Corollary 3.2.1]) we show that such a 

verifiable condition can be established if the subset ~0 := {X-(x) :  x e R m} of ~(E~)  

forms a /z -uni formi ty  class. Recall that Go is a /z-uniformity class if s u p { l ~ ( B ) -  
/Z,(B)I:/3 6 ~o}-~ 0 as n ~ oo holds for every sequence (/z,) in ~ ( R  ~) converging 

weakly t o / z  (see e.g. [5, 7]). 

Proposition 5.1. Let tz e ~(Rs) ,  poe (0, 1). Assume that Go := {X-(x) :  x ~ R r~} is a 
/z-uniformity class and that the multifunction p--> Cp(/z ) (from • to Era) is l.s.c, at 
Po. Then u--> C,0(u ) (from (~(Rs) ,  "rw) to R m) is l.s.c, at/z. 

Proof. Let x e Cpo(/z) and e > 0. Then there is a 6 > 0 such that, for each p ~ R with 

[P -P0[ < ~, Cp(IZ) c~ B(x, e) # O. Now we choose a zw-neighbourhood U of /z  such 

that sup{i /z (B)-  u(B)]: B E Go} < 6 holds for each v e U. 

Let v e U and put p := Po + sup{l/z(/3) - v(/3)[: B ~ Go}. Then we have for each 

y ~ Cp(/Z ) that 

v ( X - ( y ) )  >1/z(X-(y)) - I /Z (X- (y ) )  - v (X  (y))[ >~Po. 

Hence y e Cpo(~, ) and Cpo (u) c~ B(x, e) = Cp(Iz ) ~ B(x, e) ~ O. Thus u~--> Cpo(U ) is 1.s.c. 
at/z.  [] 

Remark 5.2. Proposition 5.1 shows that the multifunction v ~ Cpo(V) is 1.s.c. at those 
measures /Z c ~ (R  s) which are "smooth"  in some sense. The "smoothness"  condi- 
tions on/Z are connected with the multifunction X (describing the constraints) and 
with the properties of  the mapping p~--~ Cp(/z) at the prescribed probabili ty level 
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Po. It is known from [7] that a class ~o of  Borel subsets of R ~ is a /z-uniformity  

class if lim~,o sup{/z ((0B)~): B ~ ~o} = 0. (Here OB denotes the topological boundary 
of  B and A ~ denotes the e-enlargement of  A c R~.) 

Let us consider two special classes ~o of Borel sets: 
(i) ~R := {(--OO, Z] = X~=I (--O0, Z~]: Z = (Zl, . . . ,  Zs)-r~ A s} is a/x-uniformity class 

for those /z ~ ~ (R  ~) whose probability distribution function F ,  is continuous. 
(ii) ~ c  := {B _ ~ :  B is convex and Borel} is a/x-uniformity class if/x is absolutely 

continuous w.r.t. Lebesgue measure on R s ([5, Theorem 2.11, pp. 22-23]). 

Hence, at least, i f /x  is absolutely continuous and all preimages X - ( x )  (x c g~") 
are convex, Proposition 5.1 appears to be useful (e.g. for qualitative stability results 
for chance constrained problems). Simple examples show that the lower semicon- 
tinuity of p ~ Cp(/X) at Po cannot be dispensed with in Proposition 5.1 (cf. also [50, 
Theorem 3.2]). However, since we are interested in quantitative stability results, we 
do not pursue this line of research here. Proposition 5.1 indicates that the so-called 
"variational (or uniform) distance" (which is sometimes also called " ~ -  
discrepancy" e.g. in [22]) a~(/z, u) (/X, v ~ ~(R~)) (see (1.2)) might be a suitable 
(pseudo-) metric on ~ (N ' )  for our purposes. Note that a ~  is the well-known 
"Kolmogorov distance" on ~(Rs).  Indeed, it turns out in the following that vari- 

ational distances a s ,  where N contains the set {X (x): x ~ Rm}, are suitable for the 
application of  the concepts of Section 2. 

As a quantitative analogue to Proposition 5.1 our next result asserts a Lipschitz 
property of the multifunction ~-~Cpo(~ ) at / Z ~ ( R  ~) which is needed for the 
application of  Theorem 2.5. To state the result we need the following Lipschitz 
property of  multifunctions which was introduced in [2] (see also [47]). 

A multifunction F from ~d into R '~ is called "pseudo-Lipschitzian" at (x,p) ,  
where p ~ ~d, X ~ F(p) ,  if there exist neighbourhoods U of p and V of  x, and a 
constant L/> 0 such that 

(F(pl)c~ V ) c  r ( p z ) +  LIIP,-P=IIB~ for all p l , p zc  U. 

Proposition 5.3. Let /X c ~(Ns), poC (0, 1), Xo~ Cpo(IZ) and No := {X-(x) :  x c R m} 
c N(N') .  Assume that the multifunction F(p):=Cp(/Z) ( p e R )  is pseudo- 
Lipschitzian at (Xo, Po). Then there are a neighbourhood V of xo and constants L>  0 
and 60> 0 such that for every v c ~ (R  s) with a~o(/z , u) < 60, 

(Cpo(/x) c~ V) c Cvo (v) + La~o(/z, v)Bm, 

(Cvo(~) n v )  = C,o(/x) + L~0(/x, ~)B~. (5.3) 

Proof. Since the multifunction F is pseudo-Lipschitzian at (xo,Po), there are a 
neighbourhood V of Xo and positive constants L and 6o such that for all Pl, P2 c E, 
with p~ ~<P2 and Ip,-pol < 80 (i -- 1, 2), 

( C.I ( tz ) n V) c Cp2 ( /X ) + Lip, - p2I B,. . (5.4) 
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(We may  assume w.l.o.g, that  p~ <~ P2, since Cp~(ix ) ~ Cp~(ix) trivially holds if p, > P2 .) 
Let u ~ ~ ( ~ s )  be such that  a~o(/Z, v) < 6o, and x ~ Cpo(tX ) c~ V. We put  6 := a~o(/X, u), 

Pl := Po and  P2 := Po + 6. By (5.4) there exists y ~ Cpo+~(iz) such that  11 x - y  [[ <~ L6. Since 

t , ( y )  :=/x({z 6 N~: y ~ X(z )} )  ~>po+ t3, 

we obta in  

t ,  (y)  >~ po + It,~(y) - t~(y)[ >~ po + t ,  (y  ) - t~(y). 

Thus y ~ Cpo(~), and we have shown that  there exists y ~ Cpo(U ) with 

IIx-Yll  ~< L6 = tC~o(/X , ~,). 

Now,  let x ~ Cpo (u) ~ V and put  8 := C~o(/Z, ~,), Pl := P o -  8, P2 := Po- I t  follows that  

t~(x)  >i t~(x) - I t .  ( x )  - t~(x) l  i> t~(x) - t3 >~ p o -  ~ = p~. 

(5.4) now implies that  there exists y e Cpo(tX ) with I I x - y l [  <~ L~. Hence,  (5.3) is 
shown and the p r o o f  is complete .  [] 

In the following,  let No be a class of  Borel sets in R ~ having the p roper ty  that  

~ o ( ' ,  ") is a metr ic  on ~ ( R ' ) .  
We are now in the posi t ion to state the main  result of  this section, which is an 

immedia te  consequence  o f  Theo rem 2.5. 

Theorem 5.4. L e t f : R m - > N  be Lipschitzian on bounded sets, /x~ ~ ( N ' ) ,  poe  (0, 1), 

and let the multifunction X be closed and { X - ( x ) :  x c R m } ~  ~o  C ~3(R~). Assume  

that there exists a bounded open set V in R ~ such that Ov(t x)  is a C L M  set for  f on 

Cpo(l~ ). Suppose F ( p )  := Cp(IX) (p  ~ R) is pseudo-Lipschitzian at each pair (Xo, Po) 

with Xo c Ov(l~). Then the multifunction Ov ( f rom ( ~ ( R s ) ,  a~o) to ~m) is upper 

semicontinuous at t x, and there exist constants L >  0 and 6 > 0 such that Ov(~') is a 

C L M  set for  f on Cpo(p ) and 

holds whenever a~o(iX , ~,) < & 

Proof.  In  order  to app ly  T h e o r e m  2.5, we put  (T, d ) : =  (3~(g~s), a~o) and M ( v ) : =  
Cpo(v) for  each v ~ ~ ( ~ s ) .  First we show that  the mul t i funct ion u~--> Cpo(V) is closed 

at ~. Let (/xn) and (xn) be sequences  such that  ~n c ~ (Rs ) ,  x,  ~ Cpo(/X,), for  all n 6N,  
x,  -> x c R r" and  a~o(/Xn,/x) -> 0 for  some /x  ~ ~ ( ~ s ) .  We have to show that  x c Cpo(l~). 

Since the mul t i funct ion  X is closed, the same holds for  x~--~X-(x)  and,  hence,  we 
have 
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This implies 

t z ( X - ( x ) ) = i n f t z ( c l (  U X - ( y ) ) ) .  
tS>0 k \ y~B(x ,  ~) 

Now, let e > 0 be arbitrary, but fixed. Then there exists 8o > 0 such that 

/Z (X- ( x ) )+½e>/Z(c l  U X - ( y ) ) .  
y~B(x,~o) 

Furthermore, there exists no e N such that a~o(/z,/Z,) <~e and ]]x-x~]] < 80 for each 

n/> no. Then we have that 

/z(x-(x))  >t/z(X-(x))-/z(X-(x~)) - I / z ( x  (x~))-/zo(X-(xo))l 

+ /zo(X-(x~)) 

/z(X-(x)) -/z(X-(xo)) - ~o(m /z~) +po 

> - ½ e - ½ e + p o = P o - e .  

Since e > 0 was arbitrary, this yields x e Cpo(/z). Using the same arguments, it also 
follows that Cpo(U) is a closed subset of R m, for every u ~ ~(N~). Hence hypothesis 
(ii) of Theorem 2.5 holds. From Proposition 5.3 we obtain that the multifunction 

u~--~Cpo(U) (from ~(R ~) to Rm) is pseudo-Lipschitzian* at each pair (Xo,/z)e 
ffv(/z)x{/z} (see Definition 2.4). Furthermore, condition (iv) of Theorem 2.5 is 

satisfied with p = 1. Hence, Theorem 2.5 yields the desired result. [] 

Theorem 5.4 may also be viewed as a qualitative stability result with respect to 
(small) perturbations of/Z in the metric space (~(Rs),  a~o) (and in the metrizable 
space (~(Ns),  rw) if No is a /z-uniformity class (cf. Remark 5.2)). Of  course, the 
topology on ~(Ns) generated by a~o becomes coarse if No (and, hence, the set of 
all preimages X - ( x )  (x e Era)) is rich. 

Next we show how to verify that the multifunction F(p)  := Cp(/Z) (from R to Nm) 

is pseudo-Lipschitzian at some pair (Xo, Po), where Xo e Cpo(/Z). The following result 
provides a corresponding criterion for the multifunction 

p ~ r ( p )  := {x c ~m: g(x, p) ~< 0}, (5.5) 

where g is a real-valued function defined on R '~ x ~. This result is, in fact, a special 
case of much more general results by Rockafellar [47]. 

Lemma 5.5. Let g :Em x ff~ ~ R be locally Lipschitzian and (Xo, Po) be such that 
g(xo, Po) <~ O. I f  g(xo, Po) --- 0 then assume that for every pair (x, p) e ag(xo, Po) we 
have x ~ O. Then F (defined by (5.5)) is pseudo-Lipschitzian at (Xo, Po). (ag(xo, po) 
denotes the Clarke generalized gradient of  g at (Xo, Po).) 

Proof. Use Corollary 3.5 in [47] with d :=  1, C : = { x e ~ :  x~<0} and F:=g. [] 

In the following, we want to consider two particular models of  chance constrained 
programs and show how to apply Theorem 5.4 to these cases. The first model (with 
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random right-hand sides) is given by 

X ( z ) : = { x 6 W " : h ( x ) ~ z }  ( z ~ S ) ,  (5.6) 

where h : ~ ' ~  ~ is continuous. Clearly, the multifunction X is measurable and 
even closed, and we have that 

X - ( x )  =( -o0 ,  h (x) ]~  ~R for every x ~ W "  

and 

C p ( ~ ) = { x e ~ :  F.(h(x))>~p}, 

where F .  is the distribution function of p~ ~ ~(~s) .  
For (5.1) with X given by (5.6) we have the following: 

Corollary 5.6. Let f be Lipschitzian on bounded sets, poe (0, 1) and ~ ~ ~ ( ~ )  with 
locally Lipschitz continuous distribution function F, .  Assume that there exists a bounded 
open set V in ~ such that $v(i  ~) is a C L M  set for f on Cpo(l~ ). Let h :~m-~R ~ be 
continuously differentiable and suppose for its Frdchet derivative h ' that im( h ' ( xo) ) = R ~ 
and 
O ~ O F,  ( h ( xo) ) hold for every Xo ~ t#v(l~ ) with F~, ( h ( xo) ) = po. Then, tPv is upper 
semicontinuous ( u.s.c.) at i x (as a multifunction from ( ~ ( ~ ) ,  a~R ) into ~ )  and there 
are constants L > O, ~ > 0 such that Or(v) is a C L M  set for f on Cpo (v), and 

- . )  

holds whenever a~R(~ , v) < ~. 

Proof. In order to apply Theorem 5.4 we put ~o := ~R and have to show that the 
multifunction F from R to E~ defined by 

r ( p )  := {xc  Rm: g(x,p):=-p--t~(x)~O},  

where t~(x):= F . (h (x ) )  (x ~ Rm), is pseudo-Lipschitzian at each pair (Xo, Po) with 
x 0 c Ov(~). Let XoC Ov(l~)c F(po). g is locally Lipschitzian (from ~ " x  R into ~), 
since t.  has this property, and it holds that Og(xo, P0) = {(x, 1): x c ~", - x  c Ot.(Xo)} 
(see the calculus rules for the Clarke generalized gradient [11, pp. 38-39]). From 
Theorem 2.3.10 in [11] we obtain Ot.(Xo)= h'(xo)XOF.(h(xo)). Now, let g(xo, Po)= 
po-F . (h (xo ) )  =0. Since O~OF~(h(xo)) holds and h'(xo) maps R m onto ~',  we get 
O~Ot.(Xo). Hence, the assumptions of Lemma 5.5 are fulfilled and F is pseudo- 
Lipschitzian at (Xo, Po)- [] 

Remark 5.7. Let F ,  be continuously differentiable on Es and VF.  denote its gradient. 
Then O~OF~,(z)={VF,(z)} holds for every z c R  s if /z has a density which is 
continuous and strictly positive on Es. This fact can be proved similarly as Lemma 
4.9 in [49]. For the special case of linear chance constrained problems, i.e., f ( x )  := 
cXx, h ( x ) :=Ax  ( x ~ R ~ ) ,  where c~W" and A~L(Rm,~s) ,  Corollary 5.6 applies 
under a set of conditions which are similar to those of Corollary 4.7 in [49]. Using 
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a special  a p p r o a c h  it was  shown there that  the (globally) op t imal  values are 

Lipschi tz ian a t / z  (with respect  to the L 6 v y - P r o k h o r o v  metr ic  on ~ ( ~ s ) ,  cf. Remark  

5.10). It  is wel l -known tha t  Cpo(lZ) = {x ~ E " : / ~  ( ( - co ,  h (x ) ] )  i> Po} is convex  for  every 

Po ~ [0, 1] if  the c o m p o n e n t s  of  h are concave  and  the probabi l i ty  m e a s u r e / z  c 3~(gU) 
is quas i -concave.  For  an extensive s tudy of  quas i -concave  measures  we refer to 

P rekopa ' s  work  (e.g. [40, 41]). 

Secondly  we consider  a special  l inear  chance  const ra ined mode l  (with r a n d o m  
matr ix) ,  which  was first s tudied by Van de Panne  and Popp  [42]. This model  is 

given by 

X ( z ) : = { x ~ m : z T x > ~ b }  ( zoOm),  b ~ R ,  

and /z ~ ~ ( E m )  is the mul t ivar ia te  normal  dis tr ibut ion N(a ,  2 ) ,  where  a c E "  and  

2 ~ L(R m) is nonsingular .  Clearly,  we have tha t  the mul t i funct ion  X is closed and  
X - ( x )  ~ ~ c ,  for  every x ~ R r~. Fur thermore ,  as shown in [42], it holds that  

Cpo(iZ) = {x ~ ~m: ~({Z ~ ~m: ZTX >i b}) ~>Po} 

= { x ~ m :  @-l(po)o-(x)+b--aTx<~O } 

where  

O'(X);=(XX, x)l/2=(i,j~=lOrijxixj)l/2 ( X C ~  m ) 

and @ denotes  the s tandard  normal  dis tr ibut ion function,  poC (0, 1). Given  c E R m 

we now consider  the p r o b l e m  

min{eTx: x ~ Cpo(/Z)}. (5.7) 

Lemma  5.8. Cpo(iZ) is a convex subset of  ~'~ / fp0~[½,  1). I f  pod( I ,  1), b > 0  and 
(5.7) has a global minimizer, then this minimizer is unique. 

Proof .  The  first assert ion was shown in [42, pp.  421-422].  Let poe  (½, 1), b > 0 and  

assume that  (5.7) has two global  minimizers  x, y c  Cpo(l~), x ¢ y .  Hence,  {ax+ 
( 1 - a ) y :  a c [0, 1]} is con ta ined  in the solut ion set o f  (5.7) and it holds that  

~- l (po)o ' (ax  + (1 - a)y)  + b - aT(ax + (1 -- a ) y )  = 0 

for  each a c [0, 1]. This implies  that  for  each a c [0, 1], 

cr(ax + (1 - a ) y )  = a~r(x) + (1 - a )c r (y )  

holds.  Since Z is nons ingular ,  tr( .  ) is a n o r m  on R m. Hence,  the lat ter  equali ty can 
only be t rue if there is a cons tant  K c R such that  x = Ky. From @-l(po)o'(Ky) + b = 
KaTy, we obta in  that  K > 0. Hence  it fol lows that  K ~ - l ( p o ) t r ( y ) +  b = Kary  and,  
thus,  b = Kb. This contradic ts  x ~ y. [] 
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Corollary 5.9. Let b > 0 ,  poe(½, 1) and assume that (5.7) has a global minimizer 

x* • Cvo(lZ). Let V:= B(x*,  r) for some r > 0 .  Then tpv is u.s.c, at IX (from (~(Rm),  
a ~ )  to Nm) and there exist L > 0  and ~ > 0  such that qJv(U) is a C L M  set for cTx 

on Cpo(l,) and  

holds whenever  a ~ ( ~ ,  ~,) < & ( N o t e  that ~ v ( t t  ) = c T x *, q'V(~) = {X*}.) 

Proof. For the application of Theorem 5.4 we put Go := ~ c ,  f ( x ) :=  cTx and note 
that q,v(/Z) = {x*} is a CLM set for (5.7). It remains to show that the multifunction 

p~--~{x c~m: c])-a(p)cr(x)+ b- -a  Tx~<0} = Cp(/X) 

is pseudo-Lipschitzian at (x*, Po)- To prove this we define a function g : • "  x ~ ~ R 
by 

b - aTx, p < 0.5, 

g ( x , p ) : = { ~ - l ( p ) o - ( x ) + b - - a T x ,  p e [0.5, l - e ] ,  (x e Rm), 

I c I ) - l ( 1 - e ) o ' ( x ) + b - a T x ,  p >  l - e ,  

where e > 0 is chosen such that Po< 1 - e ,  and we consider the multifunction 
F ( p )  := {x • N ' :  g(x, p) ~< 0} (p • N). Noting that F ( p )  = Cp (/z) for every p belonging 
to a certain neighbourhood of Po, it suffices to show that F is pseudo-Lipschitzian 
at (x*, P0). To this end we use Lemma 5.5 and note first that the function g is locally 
Lipschitzian. Since g is continuously differentiable at (x*, Po), it remains to show 

that Vxg(X*, Po) # 0. One has that 

V xg( X*, PO) = CI)-I ( po) V xO'( X*) -- a, 

1 
VxO'(X*) - I;x*, 

~(x*) 

and, hence, V~g(x*, po)TX * = q~-l(po) O'(X*) -- aTx * = - b  ¢ O. Therefore we can apply 

Lemma 5.5 and the proof  is complete. [] 

Note that Corollaries 5.6 and 5.9 are qualitative stability results with respect to 
the topology of  weak convergence, since the hypotheses on /x-uniformity classes 
(cf. Remark 5.2) are fulfilled. 

Remark 5.10. Let Go___ ~(~s ) ,  /x e ~ ( ~ ' )  and assume that there exists a constant 
M > 0 such that 

sup tx((aB)~)<~Me for all e > 0  (5.8) 
B~O 

(where aB denotes the topological boundary of B and (aB) ~ its open e-enlargement). 
Then 

p~o(p~, v) ~ a~o(/~ , v) ~< (M + 1)P~o(/~, ~') 
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holds for every ~,c N(R s) (Lemma 4.1 in [49]), where P~0 denotes the Lrvy-  

Prokhorov type metric (w.r.t. No), i.e., 

p~o(/X, i,):= inf{e > 0:/x(B) ~< l,(B ~) + e, u(B)  <~ tx(B ~) + e, for all B ~ No}. 

A discussion of (5.8) for No = NR and No := Nc can be found in [49, Remark 4.2]. 
From the literature it is further known that p := p~(Rs) (called Prokhorov metric on 
~(Rs))  can be estimated in terms of  the metric/3 [16] and that/3 is majorized by 
so-called Wasserstein metrics [25]. Hence the results of  the present section are 
available for a variety of  probability metrics. For Gaussian measures the results 
even can be related to the parameters of the distributions since explicit formulae 
for Wasserstein distances are available [25]. 

R e m a r k  5.11. Assume that /z  is estimated by empirical measures. Then it is possible 
to bring together the results of  Section 5 with theorems on the speed of Glivenko- 
Cantelli convergence or with Dvoretzky-Kiefer-Wolfowitz type inequalities (cf. 
[22]) and one obtains also for chance constrained problems convergence rates in 
the spirit of  those developed at the end of Section 3 (Corollary 3.4). 

6.  C o n c l u s i o n s  

The approach to distribution sensitivity of stochastic programs followed in the 
present paper is based on the assumption that the underlying distribution itself as 
an element of a suitably metrized space of probability measures is Considered as a 

parameter. We showed how to apply recent achievements in parametric programming 
(cf. Klatte [35, 36]) to obtain quantitative information on stability of optimal values 
and optimal solutions. For optimal values of stochastic programs with linear and 
with quadratic recourse we established H/ilder continuity (with exponent 1 - 1 / p )  
with respect to the metric /3 on sets of probability measures with bounded 2pth 
moment (Theorem 3.3). In two directions this extends earlier results: also quadratic 
recourse is considered and for linear recourse more general models than in [49] are 
covered. The approach also yields upper semicontinuity of optimal solutions 
(Theorem 3.3). In a more general frame, this property and the continuity of optimal 
values have been obtained by Robinson and Wets [46] and Kall [30]. The original 
contributions in Sections 4 and 5 concern: 

- quantitative stability results (w.r.t. weak convergence) for optimal solutions of 
recourse problems, 

- qualitative and quantitative stability results for chance constrained problems. 
In Theorems 4.3, 4.4 and 4.8 we derived (in terms of the Hausdorff distance) 

HSlder continuity of optimal solution sets for recourse models with special structure. 
The exponent of HSlder continuity is ½(1 - 1/p)  on sets of probability measures with 
bounded 2pth moment. In Example 4.6 this exponent has been shown to be best 
possible. 
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The crucial point in Section 5 is to investigate stability with respect to the metrics 
a~. This permits the proof  of results (upper semicontinuity of optimal solutions, 
Lipschitz continuity of optimal values - -  Theorem 5.4) which in this generality do 
not hold with respect to weak convergence (cf. the discussion in [30]). However, 
under additional hypotheses discussed in Remark 5.2 conclusions on qualitative 
stability w.r.t, weak convergence may be drawn. For particular models with one 
joint chance constraint (a nonlinear model with random right-hand side, a linear 
model with random technology matrix [42]) we established quantitative stability 
under verifiable conditions (Corollaries 5.6 and 5.9). 

Concerning possible applications for our general results we discussed the situation 
where an incompletely known original distribution is estimated by empirical ones 
(Corollary 3.4, Remark 5.11). In this context it is important to mention that, in 
probability theory, theorems on the speed of Glivenko-Cantelli  convergence, 
Dvoretzky-Kiefer-Wolfowitz type inequalities and rates of convergence in a number 
of limit theorems are formulated in terms of probability metrics [5, 14, 15, 22]. In 
Corollary 3.4 we demonstrated how to combine such a result with the material 
developed in the present paper. In this way we obtained an asymptotic statistical 

property for optimal values of recourse problems. 
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