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LIPSCHITZ STABILITY FOR STOCHASTIC PROGRAMS WITH
COMPLETE RECOURSE*

WERNER RMISCH AND RDIGER SCHULTZ:

Abstract. This paper investigates the stability of optimal solution sets to stochastic programs
with complete recourse, where the underlying probability measure is understood as a parameter
varying in some space of probability measures. In [Math. Programming, 67 (1994), pp. 99-108] Sha-
piro proved Lipschitz upper semicontinuity of the solution set mapping. Inspired by this result, we
introduce a subgradient distance for probability distributions and establish the persistence of optimal
solutions. For a subclass of recourse models we show that the solution set mapping is (Hausdorff)
Lipschitz continuous with respect to the subgradient distance. Moreover, the subgradient distance
is estimated above by the Kolmogorov-Smirnov distance of certain distribution functions related to
the recourse model. The Lipschitz continuity result is illustrated by verifiable sufficient conditions
for stochastic programs to belong to the mentioned subclass and by examples showing its validity
and limitations. Finally, the Lipschitz continuity result is used to derive some new results on the
asymptotic behavior of optimal solutions when the probability measure underlying the recourse model
is estimated via empirical measures (law of iterated logarithm, large deviation estimate, estimate for
asymptotic distribution).

Key words, stochastic programs with recourse, Lipschitz stability, empirical distributions,
asymptotic analysis
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1. Introduction. We study quantitative stability and asymptotic properties (of
estimates via empirical measures) of optimal solutions to stochastic programs with
complete recourse. The latter are given by

(1.1) P(#)

where

(1.2)

and

min{g(x) / Q(Ax) x e C},

Q() -/s Q(z )#(dz)

Q(t) min{qTv Wv t, v >_ 0}.

For the data we assume that g :/R" -+ is a convex function, C c m is a non-
empty closed convex set, q E ’, and A, W are matrices of proper dimensions. As
indicated in (1.1), the integrating probability measure # is understood as a parameter
which we assume will vary in A/[l(8)--the space of all Borel probability measures on
s with finite first moment, i.e., fs Ilzll#(dz) < +c for all # E j(s). Further
assumptions that ensure (1.1)-(1.3) to be well defined will be given in 2.

It is well known that (1.1)-(1.3) models a two-stage decision process under un-
certainty with first-stage decision x, random entry z, and second-stage (or recourse)
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532 WERNER RMISCH AND RDIGER SCHULTZ

decision y. For a more detailed introduction to this class of models, including a basic
analysis of the function Q in (1.2), we refer to [6], [31]. Here we only mention that
Q is convex whenever it is well defined.

In the present paper, we concentrate on studying the impact of changes in the
underlying probability measure # on the problem (1.1). To this end, we assign to
# e AA1() the (global) optimal value (#) and the set of (global) optimal solutions
(#). The mappings and are common objects of study in the stability analysis
of optimization problems. In the context of stochastic programming, the above setup
(i.e., understanding the underlying measure as the quantity subjected to perturba-.
tions) has two principal origins: the numerical intractability of the integral in (1.2)
and the incomplete information on # that one is faced with in general. In the first
case, approximations of a complicated measure # by simpler ones give rise to a per-
turbation analysis. In the second case, perturbations come via attempts to construct
some "reasonable" measure # based on the (statistical) information that is available
on the random parameter z. For more details on the stability of stochastic programs
we refer to [3], [4], [7], [12], [19], [22], [26], [28], [30], [32], [33].

The subsequent analysis is entirely concerned with quantitative continuity prop-
erties of the optimal set mapping . As in our earlier work [22], [23], we dispense
with the assumption that the solution set of the unperturbed problem is a singleton.

For the model (1.1)-(1.3), uniqueness of optimal solutions is rather exceptional,
as is seen by the following example. Let us first mention that the example does fit the
setting of our central stability estimate; in particular, the function Q is here strongly
convex on a suitable subset (cf. Theorem 2.4).

Example 1.1. In (1.1)-(1.3) let m- 2, s 1, g(x) =_ 0, A (1, 0), (0,0)T e C,
rh 2, q (1, 1)T, W (1,-1), and # be the uniform distribution on the closed
interval [-1/2, 1/2]. Then it is straightforward to see that (#) ker A N C
{(0, e c, e

One observes that Q, in (1.2) is always constant on translates of the null space
ker A of A. Hence, uniqueness of optimal solutions is guaranteed only if the constraint
set C picks just one element from the relevant level set of

Our investigations have been stimulated by recent results of Shapiro. In [29]
the author proves an upper Lipschitz continuity estimate for under the assump-
tion that, for the unperturbed problem P(#), the objective function grows at least
quadratically for feasible points near the set of optimal solutions. The right-hand
side of the estimate essentially consists of the maximal norm of elements arising in
the Clarke subdifferential [2] of the function Q Q, (cf. (1.2)) at points belonging
to a suitable neighbourhood. Here Q corresponds to the perturbed problem P(),

In the present paper we introduce a "subgradient distance" for #, E A/I()
based on the above maximal norm (cf. (2.1)). We. focus on the stability of mod-
els which fit into (1.1)-(1.3) and obey the additional properties that g is convex
quadratic, C is a nonempty polyhedron, and Q is strongly convex on a suitable
neighbourhood of A((#)). Then the Lipschitz upper semicontinuity extends to the
Lipschitz continuity of the Hausdorff distance of solution sets (Theorem 2.4). Since
the subgradient distance of #, E A/I() can always be estimated above by the
Kolmogorov-Smirnov distance of certain distribution functions related to #, and
the algebra in (1.3) (Corollary 2.5, Remark 2.6), this leads to a powerful tool for
quantitative statements on the stability of optimal solutions. In 3, one such appli-
cation is worked out in detail--in the presence of empirical measures we derive some
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LIPSCHITZ STABILITY FOR STOCHASTIC PROGRAMS 533

new results on the asymptotic behaviour of solution sets (law of iterated logarithm,
large deviation estimate, estimate for asymptotic distribution). In particular, previ-
ous results are extended to the case where solution sets are not necessarily singletons.
No additional assumptions on the underlying probability measure # are required for
the large deviation result.

Some further propositions and examples supplement and illustrate the main issue
of the paper. In Proposition 2.3 the persistence of optimal solutions under pertur-
bations in the "subgradient distance" is addressed. Proposition 2.15 displays some
handy conclusions for the special case of "simple recourse." Examples in 2 show
that Shapiro’s assumptions in [29] do not guarantee the lower semicontinuity of
(Example 2.11), that Theorem 2.4 is lost for general convex g and C (Example 2.9),
and that the setting of Theorem 2.4 does not guarantee stability of the optimal value
(Example 2.12).

Compared to Shapiro’s analysis in [29], we confine ourselves to a specific problem
class for which we eventually obtain stronger results (Lipschitz continuity instead of
Lipschitz upper semicontinuity). Our stability conditions can be verified compara-
tively easily (strong convexity of Q, to be verified using Proposition 2.13), and in
fact they turn out to be sufficient for Shapiro’s second-order growth condition to hold.
Moreover, the persistence established in Proposition 2.3 further develops the results
in [29].

Compared to [22], [23], where the stability analysis is based on the Ll-Wasserstein
distance and where HSlder continuity (with exponent 1/2) is obtained, the present
paper leads to Lipschitz continuity. To illustrate our improvements over previous
results, let us first mention that there exist sequences of measures where the results
from both [22], [23] and the present paper lead to the same convergence rates (cf. the
discussion after Proposition 2.13). On the other hand, there are important specific
modes of perturbation (contaminated distributions, empirical measures) where the
HSlder result in [22], [23] yields the rate 1/2, whereas the present approach leads to
the rate 1 (Proposition 2.14, 3).

2. Stability. The following basic assumptions are well known to ensure that the
function Q in (1.2) is well defined and convex on /m (cf. [6], [31])"

(A1)
(A2)
(A3)

{u E .s WTu <_ q} =/= O.
(complete recourse),

(dual feasibility),

For arbitrary #, E jl(s) and some fixed, nonempty, closed, convex set U C
we define the following subgradient distance d of # and w

(2.1) d(#, ; U)- sup{llz*ll" z* e O(Q,- Q)(Ax), x e U}.

Here "0" denotes Clarke’s subdifferential [2]. Since both Q and Q are convex, their
difference is locally Lipschitzian and, hence, the Clarke subdifferential in (2.1) is well
defined. Provided that U is bounded, one uses simple properties of the Clarke subdif-
ferential to show that d(., .; U)is a pseudometric on Jl (js). Note that d(#, ; U) 0
is possible for # : . Subsequent considerations involving d will use the fact that,
in finite dimension, the Clarke subdifferential may be represented as the convex hull
of limits of sequences of gradients collected at differentiability points and possibly
avoiding arguments in a set of Lebesgue measure zero (Theorem 2.5.1 in [2]). The
following lemma provides some more insight into d.
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534 WERNER R(MISCH AND RODIGER SCHULTZ

LEMMA 2.1. Let hi,h2 s
__

be locally Lipschitzian. Then it holds for
arbitrary e 8 that dH(Ohl(),Oh2()) < sup{llz*ll z* e O(hl h2)()}, where
dH denotes the Hausdorff distance of sets.

Proof. For 0hi(), i 1, 2, we have the following representation (Theorem 2.5.1
in [2]):

Ohi() convh(),

where

h() {Z: there exist Cn e Diff(hl)9)Diff(h2) such that

n-+ and h(n) z as n- }.

Here Diff(hi) denotes the set of differentiability points of hi. Clearly, Diff(hl) N
Diff(h2) c Diff(hi) and, by aademacher’s theorem, 8 \ (Diff(hi) Diff(h2)) has
Lebesgue measure zero.

Assume that

dH(Oh(),Oh2()) > sup{llz*ll z* e O(hl h2)()}

for some E .
This implies

dH(hl (), h2()) > sup{IIZ*I] Z* e O(h h2)()},

and, hence, by the definition of the Hausdorff distance there exists a z*1,0 hl ()
(without loss of generality) such that

}[z,0 z[[ > sup{l[z*ll" z* e O(hl h2)())

for all z /:h. ().
Since z,0 /:h (), there exists a sequence of points , Diff(h) NDiff(h2) such

that hi()
Now consider the sequence {h(n)}. By the local Lipschitz property of h2 it has

an accumulation point z,0 that obviously belongs to h. (). In view of (2.2),

IIz;,0 z,0[ > sup{]lz*[I z* e O(hl h2)()},

but, on the other hand, z,o z,o h-h.(() C O(h h2)((), which is an obvious
contradiction.

In our quantitative stability analysis for optimal solutions of perturbed stochastic
programs, d will be the distance that measures "how far" away a perturbation P(u)
is from the original program P(#). In the context of stochastic programming Shapiro
[29] has also used information contained in the definition of d to derive quantitative
stability properties. Kummer [15] has obtained results on the quantitative stability
of general convex programs based on the Hausdorff distance of subgradients, which
appears in Lemma 2.1. Our considerations start with the following result by Shapiro

THEOREM 2.2. Suppose (A1)-(A3), (tt) : q}, and that

(2.3) there exists a convex open set Uo containing (#) and a constant a > 0
such that g(x) + Qu(Ax) _> (#)+ a. dist(x, (#))2 for all
x C Uo, where dist denotes the usual point-to-set distance.
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LIPSCHITZ STABILITY FOR STOCHASTIC PROGRAMS 535

Then the following estimate is valid for all E ./l(js):

dist(x, (#)) _< Ct-1" d(#, ; cl Uo),

where the left-hand side is defined to be zero if () r] Uo O.
Theorem 2.2 asserts the upper Lipschitz continuity of the solution set mapping

with respect to the pseudometric d. It does not contain the persistence of optimal
solutions, i.e., it is not clear whether the perturbed program P() has a nonempty set
of optimal solutions if d(#, ; cl Uo) is sufficiently small. The next proposition answers
this question.

PROPOSITION 2.3. Suppose (A1)-(A3) and that (#) is nonempty and bounded.
Let Uo C rn be an open, convex, bounded set containing (#). Then there exists a
constant > 0 such that

o -4 (.) c uo
for all jl(s) such that d(#, ; cl Uo) < .

Proof. We introduce the following notation:

G(x, ) := g(x) + Q(Ax), e -/1 (s),
Cd(#) := argmin{G(x, #)+ dTx x e C}, d e jm, and

Aft(M) := {x e ’: dist(x, M) < r}, M C/’, r > 0.

Select some r > 0 such that Aft(C(#)) c Uo. Since (#) is bounded and G(., #) is
convex, well-known results on the stability of convex programs apply. In particular,
Theorem 4.3.3 and Corollary 4.3.3.2 from [1] imply that there exists a constant 5 > 0
such that

(2.4) for all d e/i" with Ildll < 5’.

To apply results on the stability of certain generalized equations [15], we introduce
the set-valued mappings F: clUo Ktm, A/ll(8), given by F(x) OxG(x,)+
No(x). Here 0x denotes the subdifferential of G(., ) and Nc(x) the normal cone to
C at x, both in the sense of convex analysis [20].

Of course, x 6 Cd(#) is equivalent to -d 6 F(x).
The compactness of cl Uo, elementary properties of the convex subdifferential,

and the normal cone operator No(.) together with relation (2.4) now imply that the
assumptions of Proposition 6 in [15] are fulfilled. Proposition 3 in [15] then says
that F, is a regular multifunction, i.e., there exists a constant 5 > 0 such that the
generalized equation

0 (x), x cl Uo

is solvable for any admissible multifunction satisfying

F,(x) C F(x) + 5B, for all x e cl Uo,

where Bm C ftm denotes the closed unit ball.
For the definition of admissibility we refer to [15]. For our purposes it is sufficient

to know that upper semicontinuous multifunctions with nonempty, closed, convex
image sets (hence, all the mappings F) are admissible.
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536 WERNER RMISCH AND RDIGER SCHULTZ

Let c A//I(Ki8) such that d(#, ; cl Uo) < 5. Lemma 2.1 now implies that

r.(x) c r (x) + for x e Uo.

By the regularity of F., this yields that (.) is nonempty whenever d(#,
Now select > 0 such that < min{fi’, }. Let. C A/tl(//8) such that d(#,.;clUo) <
ft. Then it holds that ()A cl Uo . Let us assume that (u) Uo. By convexity,
this yields (.) Cl bd Uo . Let (.) A bd Uo. It holds that

P() c Ft( + Bm and 0 e F().

Hence, there exists a e m, lid[ < 6’ such that
By (2.4) this implies C Afr((#)), contradicting Afr((#)) Cl bd Uo 0, and the

proof is complete.
Now we direct our attention to stochastic programs for which Theorem 2.2 extends

to the Lipschitz continuity of with respect to the Hausdorff distance of sets and the
pseudometric d of probability measures.

While Shapiro derived Theorem 2.2 via a general variational principle, we im-
pose an additional structure which enables us to use more specific techniques leading
to Lipschitz continuity instead of Lipschitz upper semicontinuity. Our techniques
combine estimates for strongly convex functions with Lipschitz continuity results for
optimal solutions to perturbed (convex) quadratic programs.

THEOREM 2.4. Suppose (A1)-(A3) and that (#) is nonempty and bounded. Let
g be convex quadratic and C be convex polyhedral. Assume that there exists a convex
open subset V of fl such that A((#)) c Y and the function Q is strongly convex
on V. Let U cl Uo, where Uo is an open, convex, bounded set such that (#) c Uo
and A(U) c V. Then there exist constants L > O, 5 > 0 such that

dH((#), (.)) _< L. d(#, .; U)

whenever. A/I 1(/), d(#, .; U) < .
Recall that Q is said to be strongly convex on V if there exists a constant > 0

such that for all , V, and A [0, 1]

Q.,(, + (1 ,)) _< ,Q,() + (1 ;)Qu() A(1 A)I[ CII
Proof. Given an open ball B (with respect to the norm II" I1 and around zero)

such that (#) c B, we select a5 > 0such that 0 - (u) c Boo for allu JMI(/R*),
d(#, u; U) < 5 (Proposition 2.3). We denote Co := C C? cl B. Note that the compact
set Co is again a polyhedron. Then it holds for all u C Jl (s), d(#,/2; U) < (5 that

(u) argmin{g(x) + Q(Ax) x Co}.

Furthermore, the compactness of Co guarantees

min{g(x) + Q(Ax) x Co} min{g(x) + Q,(y) Ax y, x Co}
X xy

min{Q(y) + min{g(x) Ax y, x e Co}’y e A(Co)}.
y x

Introducing r(y):= minx{g(x) Ax y,x e Co}, Z(y) := argmin{g(x) Ax
y, x e Co}, and Y(.) "= argmin{Q(y)+ 7r(y) y e A(Co)}, we obtain by verification
of the respective inclusions

() X(Y(u))
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LIPSCHITZ STABILITY FOR STOCHASTIC PROGRAMS 537

for all u E Jl(s), d(#, u; U) < .
The multifunction X(.) is Lipschitzian on its effective domain domX {y E/R

Z(y) = 0} (Satz 4.3.3 in [13], Theorem 4.2 in [14]). Therefore, there exists a constant
Lo > 0 such that

dH((#), ()) dH(X(Y()),X(Y(#))) <_ Lo sup Ily- y,
y()

whenever e M1(8), d(#, ; U) < 5.
Since r(.) is convex on A(Co) and Qt, is strongly convex on Y D A((#)), the set

Y(#) reduces to a singleton {y}. Moreover, the function G(y, #)"= Q(y) + 7r(y) is
strongly convex on V with modulus n > 0.

Decrease, if necessary, 5 > 0 such that (.) C Uo whenever . jl(S),
d(#,; U) < 5 (Proposition 2.3). Let y (). Then 2(y) C (). Since (u) C Uo
and {y} Af((y), it follows that y A(Uo) c V. Consider the point 21-(y + y)
belonging to A(Co) N V.

Then

(1a(,,,) < ( + ),,

1G 1< (,1 + a(.,) 11-
by the strong convexity of G(., #) on V.

This implies (if IlY YII 0)

Ily- yll
I(Q Q)(y) (Q Q)(y)l

I/ Yt, Y
Ily II

2
sup Ily yl[ - -sup{llz*l]" z* e O(Q Q,)(y) y e A(U)}
y() n

-e(., ; u).

Together with (2.5) this completes the proof. [3

COROLLARY 2.5. Adopt the setting of Theorem 2.4. Then there exist nonsingular
matrices Bi (i 1,..., t) and a constant L > 0 such that

dH((#), (u))

_
L sup IFo(_B)(-B-lt) Fo(_B)(-B-It)I-._ tA(U)

Hence,

By Lebourg’s mean value theorem [2] there exists a point y* on the line segment [yu, y]
(belonging entirely to A(U)) such that the above estimate continues
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538 WERNER RMISCH AND RDIGER SCHULTZ

whenever E .l(Js) i8 chosen such that the right-hand side is sufficiently small.
The notation F refers to the distribution function of the probability measure in the
subscript.

Proof. Using Theorem 2.5.1 in [2] we obtain the following representation of
d(#, ; U):

(2.6) d(#..; U) sup{llV(Q Q.)(Ax)II" x e g \ E}.

where E contains those x E jm such that Q- Q, is not differentiable at Ax and
A(E) has Lebesgue measure zero.

Recall that the integrand Q in (1.2) is a piecewise linear convex function on 8
and that there exist basis submatrices B1,..., B of W such that the simplicial cones
BI.(_);... ,B(+) are linearity regions of Q (in general not the maximal ones) (cf.
[6], [16], Satz 6.7). Of course, Ugi--1 B(_) Kt8, and B (i 1,..., t) can be chosen

sin such a way that B(_)A Bj(+) j, is always contained in a hyperplane in

*. Thus, 7{" *\ Ui=I int B(_) is contained in a finite union of hyperplanes
in *.

Let us now confirm that for some single hyperplane ?-/o c * the set Z
{ 8 ( + 7-to) > 0} has Lebesgue measure zero. It holds that

+?-lo + {t " aTt 0}
{t " aT(t--)- 0} a-({aT}),

where a" m // denotes the linear transformation induced by aT and a-1 is the
preimage.

Hence, Z,o { e oa-({aT}) > 0}. Now oa- is aprobability
measure on/ and aT is an atom of a-1. Since a- has at most countably
many atoms, Z,o is contained in a countable union of hyperplanes and has Lebesgue
measure zero.

Therefore the sets

Z’-{(e’#((+)>0} and Z’={e8"((+?-/)>0}

have Lebesgue measure zero.
Now select E in (2.6) as the preimage A-I(z t2 Z,). Then both Q and Q are

differentiable at Ax for all x U \ E and we have for those x

V(Q, Q)(Ax) V (JR Q(z Ax),(dz) / Q(z Ax)#(dz)
8\{Ax+7-/} 8\{Ax+T/}

/ VQ(z Ax)(, #)dz,

where the first identity is valid because ,(Ax + "H) #(Ax + /) 0. The second
identity follows from Lebesgue’s theorem on dominated convergence. Indeed, since Q
is globally Lipschitzian on , the difference quotients related to VQ are bounded
above by a uniform constant yielding the integrable majorant making Lebesgue’s
theorem work.

We continue the above identity as follows:

V(Q, Q,)(Ax) =/A L VQ(z Ax)(, #)(dz)
x+ ) int B(/I_)

i=1
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LIPSCHITZ STABILITY FOR STOCHASTIC PROGRAMS 539

d,( #)(Ax / B,(+))
i--1

di(Fo(-B)(-BlAx) Fto(_B)(-BIAx)),
i--1

where -d is the gradient of Q on int B(_), 1,... ,g. Note that for the second
identity we have also used that #(Ax + int B(_)) #(Ax + B(_)), ,(Ax +

sint B(_)) (Ax + B(+)) for all x e U \ E.
The assertion now immediately follows from Theorem 2.4, (2.6), and the above

identity. Since A(U \ E) is less explicitly known than A(U), we finally take the
supremum over the larger set A(U).

Remark 2.6. The above estimate is closely related to Theorem 2.1 in [29], where
the author uses the normal cones j (j 1,..., k) to the set {u e 8. WTu <_ q} at
its vertices vj (j 1,..., k). From linear parametric programming it is known ([16],
Satz 6.7) that each of the cones Cj (j 1,..., k) is the union of certain cones

(i e {1,..., g}) arising in Corollary 2.5.
We prefer to use the cones B(_) since these are simplicial cones, which allows

a direct relation to distribution functions.
Remark 2.7. Consider the right-hand side of the estimate in Corollary 2.5 and

take the suprema with respect to t E 8 instead of t A(U). In this way we obtain
a Lipschitz estimate with respect to the uniform (or Kolmogorov-Smirnov) distance
of the distribution functions Fo(-B) and Fo(-B) (i 1,..., 6).

Remark 2.8. Theorem 2.4 remains valid under any hypothesis on g and C leading
to Lipschitz continuity of the multifunction _(y) := argmin{g(x) Ax y, x C}.

The next example shows that (already for contaminated distributions) Theo-
rem 2.4 is lost for a general closed convex set C c ’. Another counterexample
involving the function g can be constructed following the guidelines of Remark 2.9 in

Example 2.9. In (1.1)-(1.3)letrn=2, s- 1, g(x)-0, A= (1,0), C= {x
2 (x2)2 _< Xl}, q (1,1)T, W (1,-1), and # be the uniform distribution
on [-1/2, 1/2]. Let 51 denote the probability measure on having unit mass at 1
and construct perturbations #t of # by setting #t (1 t)# + t51, t [0, 1]. Then
(#) {0} and the strong convexity assumption for Q, holds for Y (-1/2, 1/2).
Furthermore, one computes that (xl,t, xx/2,t)T e (#t) for 0 < t < 2/3, where xl,t

and dH((#) (#t))

_
2V for all t e (0 2/3) Witht/2(1- t). Hence, Xl,t > t

U c 2 taken as the closed ball around zero with radius 1/2 (for instance), one
confirms that d(#, #t; U) const, t, i.e., the assertion of Theorem 2.4 does not hold.

Note that in Example 2.9 there is even no upper Lipschitz continuity of . This
indicates that, in general, one cannot hope to obtain the second-order growth condi-
tion (2.3) in Theorem 2.2 without adding assumptions on g and C.

Remark 2.10. Using similar techniques as in the proof of Theorem 2.7 in [22],
it can be shown that the assumptions from Theorem 2.4 imply that the second-order
growth condition (2.3) in Theorem 2.2 holds.

The following example concludes the comparison between Theorems 2.2 and 2.4.
This example demonstrates that the setting in Theorem 2.2 is the more general one.
Indeed, Theorem 2.2 does not guarantee the lower semicontinuity of the mapping
which, of course, is a special implication of the Hausdorff-Lipschitz result in Theo-
rem 2.4.
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540 WERNER RMISCH AND RDIGER SCHULTZ

Example 2.11. In (1.1)-(1.3)let m s 1, g(x) 0, A 1, C [-1,1],
q (1, 1)T, W := (1,-1) ("simple recourse"), and # be the uniform distribution
on [-1,-1/2] U [1/2, 1]. Let # be the uniform distribution on [-1/2, 1/2] and con-
struct perturbations itt of it by setting its it + t(#- it), t E [0, 1] ("contaminated
distributions"). Then one computes that (it) [- 1/2, 1/2] and that

Q(x) > Qt,(x) + [dist(x, b(it))] 2

for all x e (-1, 1) and all x e (it). Hence (2.3) is fulfilled and Theorem 2.2 applies.
On the other hand, (itt) {0} for all t e (0, 1] and d(it, itt; C) const, t. Thus,
b does not share the Lipschitz property from Theorem 2.4; moreover, is not lower
semicontinuous at it.

The next example is interesting because it shows that Theorem 2.4 does not
ensure the stability of the optimal value.

Example 2.12. In (1.1)-(1.3)let m s 1, g(x) 0, C [-1,1], A 1,
q (1, 1), W (1,-1), it 50, and construct pertrubations itn of # by setting

itn (1- -)5ol + 5n2 (n ). Then we have Q(x)= Ixl and, thus, (it) 0,
(n2- x). Therefore, (itn)= {0},(it) {0}. Furthermore, Q, (x) (1 )lxl +

(itn) n. The assumptions of Proposition 2.3 and Theorem 2.4 are fulfilled, but
(p) - s n --. .

The following result (established in [24]) provides a handy tool for checking the
strong convexity of Q needed in Theorem 2.4.

PROPOSITION 2.13 ([24], Theorem 2.2). Let V C Kts be open and convex. Assume
(a) (A1),
(b) there exists a t 1Rs such that wT < q componentwise,
(c) (A3),
(d) it has a density Ou on :t,
(e) there exist constants r > O, > 0 such that Ou(t) > r for all t Kgs such

that dist (t, V) < .
Then Qu is strongly convex on V.

In [22], [23] the quantitative continuity of the mapping is studied with respect
to the L-Wasserstein distance W,(it,) for measures it, in A/I(*) [17]. In fact,
Theorem 2.7 in [22] states the Hhlder continuity (with exponent 1/2) of dg((it), ())
with respect to Wl(it, ) under precisely the same assumptions as in Theorem 2.4 in
the present paper. Furthermore, [22] contains an example (Remark 2.9) showing the
optimality of the convergence rate 1/2. We now analyze this example with respect
to the pseudometric d(it, ; U). The setting is as in Examples 2.11 and 2.12, but it is
taken as the uniform distribution on [-1/2, 1/2] and the perturbations it are given
by the distribution functions

1 teF (t) F(t) otherwise,

where (s) is arbitrary and tending to zero from above (n - c). It holds that
(it) {0} and (it) [-,n]. The assumptions of Theorem 2.4 are fulfilled.

2 which showed the optimality of the HhlderIn [22] we computed Wl(it, it) n,
exponent 1/2. Here we obtain that, with g [- 1/4, 1/4], d(it, its; U) const. Hence, in the worst case, Theorem 2.4 does not outperform Theorem 2.7 in

[22]. However, for certain specific modes of perturbation, Theorem 2.4 yields stronger
estimates than Theorem 2.7 in [22] (contaminated distributions, asymptotic properties
of nonparametric estimators; see the analysis that follows).
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LIPSCHITZ STABILITY FOR STOCHASTIC PROGRAMS 541

To further explain the essence of Theorem 2.4, let us mention that Theorem 2.7 in
[22] also yields the convergence rate 1/2 when one replaces the Wasserstein distance
Wlby

d*(#, ; U) sup{[(Q Q)(Ax)I: x U},

where U c m is a suitable nonempty, convex, compact set. Therefore, the approach
taken here differs from older ones because it measures the distance of the objectives
in the original and the perturbed programs in terms of their subgradients rather
than in terms of their function values. Of course d(#, ; U) may tend to zero while
d* (#, ; U) does not, which explains the collapse of optimal-value convergence observed
in Example 2.12. Hence, when aiming at the stability of the optimal value one should
resort to a distance like d*. In [15], Proposition 8, it is shown that convergence
to zero of d* does imply the same for d, provided that the original function Q is
differentiable.

PROPOSITION 2.14 (contaminated distributions). Suppose (A1)-(A3) and that
(#) is nonempty and bounded. Let g be convex quadratic and C be polyhedral. As-
sume that there exists a convex open subset V of Kts such that A((#)) c V and the
function Q is strongly convex on V. Let # A/[ (s) be arbitrarily fixed and define
#t (1 t)# + t#, t [0, 1]. Then there exist constants L > 0 and to > 0 such that

dg((#), (#t)) <_ Lt

for all t [0, to].
Proof. Note that Q, -Q t(Q;- Q). Calculus rules for the Clarke subdif-

ferential thus imply that d(#; #t; U) t. d(#, #; U), where, of course, d(#, #; U) is a
constant. The result now immediately follows from Theorem 2.4. [:]

The following result refers to the special case of simple recourse, i.e., Q in (1.3)
is given by

(2.7) Q(t) min{q+y+ + q-y- y+ y- t, y+ >_ O, y- >_ 0},

where rh 2s and q+, q- /R. Shapiro has derived a similar result (Theorem 3.1 in

[29]) by a direct estimate from Theorem 2.2.
PROPOSITION 2.15. Let P(#) be a simple recourse model, (#) be nonempty

and bounded, g be convex quadratic, and C be a nonempty polyhedron. Assume that
q+ + q- > 0 (componentwise) and that all the one-dimensional marginal distributions
#j of # (j 1,...,s) have finite first moments and densities that are positively
bounded below on some open neighbourhoods of the orthogonal projections of (#) to
the coordinate axes. Then there exists a constant L > 0 such that

dH((#), ()) _< L- sup IF, (tj) F (tj)
j--1 tproj(A(V))

whenever .h4 l(JS) is chosen such that the right-hand side is sufficiently small.
Proof. First note that the function Q in (2.7) is separable with respect to the

components of t. Therefore, the functions Q, and Q here depend only on the one-
dimensional marginal distributions of and # (cf. also [6], [31]), and we can assume
without loss of generality that , # are probability measures with independent one-
dimensional marginals. Then our assumptions and Proposition 2.13 yield that Q is
strongly convex on some convex open set V D A(p(#)).
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542 WERNER RMISCH AND RDIGER SCHULTZ

Here the cones B(+) (i 1 ,2s) re orthants. To estimate (y #)(Ax +
B(_)), let us fix some B(/I_) for which we assume without loss of generality that

8i

}( 0]
j--1

Our independence assumption then yields

( #)(Ax + B(/I)) 1-I y((-oc, (Ax)y])
j--1

8i

H #((-’ (Ax)j]).
j"-I

Using the inequality

j= j=

[0,
j:s+l

ltI ,y([(Ax)i, +))
j--s+l

#j([(dx)j,
j--s+l

-<,)_laj-jl for O_<cj,j_<l,j=l,...,s
j=l

(which can be shown by induction), we obtain

[( p)(Ax + B(

IF,((Ax)y)-F,((Ax)j)I+ [F((Ax)y)-F((Ax)j)I,
j=l j=s+l

where the superscripts in the last term indicate limits from the left.
For x U E (with E as in the proof of Corollary 2.5) the superscripts can be

dropped and we obtain

I(" ,)(Ax + B(;))I IF((Ax)y) F,((Ax))I,
j=l

and the proof is completed as with Corollary 2.5.

3. Applications to asymptotic analysis. In this section, we show how to
employ the Lipschitz stability result of 2 to derive asymptotic properties of opti-
mal solutions when estimating p in P(p) by empirical measures. We obtain a law of
iterated logarithm, a large deviation estimate, and an estimate for the asymptotic dis-
tribution of the optimal solution sets without imposing that (p) must be a singleton.
The basic tools are known limit theorems for the Kolmogorov-Smirnov distance of
the empirical distribution function. Let 1, ,..., ,,... be independent *-valued
random variables on a probability space (,, P) having joint distribution p. Let
5z denote the probability measure assigning unit mass to z e . We consider the
empirical meures

1=-i=1
and we are interested in the asymptotic behaviour of the solution set (Pn(’)) of
P(Pn(’)) as n tends to infinity. Our results are put in terms of the Hausdorff distance
rig(0(,), (,n(’))), which is a -measurable mapping due to Theorem 2K in [21].
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LIPSCHITZ STABILITY FOR STOCHASTIC PROGRAMS 543

PROPOSITION 3.1. Under the assumptions of Theorem 2.4 it holds that

( 2n )1/2.dH((#) (#n(co))) < Ltlimnocsup log log n
P-almost surely,

where L and denote the Lipschitz modulus and the number of basis matrices, respec-
tively, arising in Corollary 2.5.

Proof. Let Bj, j 1,..., t, denote the relevant basis submatrices of W. Then
#(w) o (-Bj) coincides with the empirical measure of # o (-Bj) and the following
law of iterated logarithm holds ([18], p. 302, [25]):

( )1 1
sup <limn__,ocsup 2 log log n te8

P-almost surely for all j 1,..., t.
Hence, the estimate from Corollary 2.5 is valid for P-almost all w E ft with

u := #(w), provided that n n(w) is sufficiently large.
Thus we have for P-almost all w f

lim sup
n

dH(2(#), )(tn (co))) <
-oo 2 log log n 2

In [4], [12] the authors obtain consistency results under weak hypotheses on the
optimization problems involved (based on the theory of epi-convergence). Proposition
3.1 supplements these results by giving, under stronger assumptions, the (optimal)
rate of convergence for the solution sets. Compared to considerations in [29], we
can dispense with the linear-independence assumptions imposed there. This became
possible because we used simplical cones instead of more general ones (cf. Remark 2.6).
Compared to [4], [33] we do not need the unique solvability of P(#).

PROPOSITION 3.2. Under the assumptions of Theorem 2.4 there exists a constant
o > 0 such that it holds for all (0, eo] that

limsup
1
logP({w "dH((#),(#n(w))) > }) <_ --2 -n--.c n

Proof. For brevity, we introduce the following notation:

(I)(w) max r,j (w),
j=l,...,

rl,j(w) := sup IF,o(_B)(t) F.()o(-B)(t)l
tEzt

Now select So > 0 in such a way that LgO,(w) < So and Corollary 2.5 imply

dH(/)(), (tn(co)))_ LeO().

Then we have for each e (0, Co] and all n V
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544 WERNER RMISCH AND R/IDIGER SCHULTZ

and, hence,

j-’l

The multivariate version of the Dvoretzky-Kiefer-Wolfowitz inequality (cf. [9], [25])
then implies that, for each 5 > 0 and j E {1,... ,g}, there exist constants Cj > 0 such
that

E E 2P({w "rln,y(w) _> -}) _< Cjexp (-(2- 5)n(--) ) for all n /hr.

Hence, we obtain for any n /TV and any 5 > 0,

In log P({w" riB(C(#); (#n(W)) _> e}) _< In log ( Cj
j=l

)
and the proof is complete. [:!

Compared to Theorem 4.6 in [8], which represents a large deviation result for
more general stochastic programs, Proposition 3.2 requires only the weak moment
condition (A3) and yields an explicit estimate instead of an implicit one involving a
conditioning function that is often hard to quantify. We also refer to the exponential
bound in Theorem 2 in [30] which, in the context of two-stage stochastic programming,
works for nonunique solutions but applies only to measures # with bounded support.

Another substantial step in the asymptotic analysis of optimal solutions involves
obtaining asymptotic distributions of the sequence of closed random sets

(nl/2((#n(.)) x))ne (for each x

on the hyperspace of closed subsets of im. In [11], [27] this problem was tackled for
stochastic programs involving expectation functions with smooth integrands. More-
over, it was assumed that the unperturbed problem has a unique optimal solution.
For stochastic programs with complete recourse the relevant integrands are typically
nonsmooth (cf. (1.2), (1.3)) and uniqueness of optimal solutions is rather exceptional
(cf. Example 1.1) such that the results from [11], [27] do not apply.

From Theorem 2.4, however, a lower estimate for the asymptotic distribution of

(nl/2dH((#),
can be derived. This is done next. The result is inspired by the concept of normalized
convergence and the corresponding techniques in [5]. For simple recourse models the
lower estimate becomes more detailed (Remark 3.4).

PROPOSITION 3.3. Under the assumptions of Theorem 2.4 there exist probability
distribution functions Gj, j 1,..., g, on such that it holds that

((*))liminfP({w" n1/2dH((#), D(#n((a2)) < t}) 1 + Z Gj - 1
j--1

for all t >_ O, where L and g denote the Lipschitz modulus and the number of basis
matrices, respectively, arising in Corollary 2.5.

Proof. Let n,j(w) be given as in the proof of Proposition 3.2.
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LIPSCHITZ STABILITY FOR STOCHASTIC PROGRAMS 545

From the asymptotic distribution theory for the Kolmogorov-Smirnov distance it
is known that for each j 1,..., g the sequence

(1/2,(.))
converges in distribution to some real random variable j (Theorem 2 in [10], Chap. 2.1.5
in [25]).

Let t > 0, n E fV and consider the following events in 9.1:

j--1

A o" 1/2w,()< (j 1,...,e),

j=l

where > 0 is selected according to Corollary 2.15 such that, for all co E Be,
d/-/((#), e(,())) can be estimated by the expression defining

Corollary 2.g then yields the following chain of inequalities:

P({w" ndH((.),(.n(W))) < t})
P({w" ndH((p),(pn(w))) < t} BS)

Z P(A N Be) z P( N Aj N B8)
j=l

j=l

j=l

j=l

>_ 1 E P(’J) P(/6) 1 + E(P(Aj) 1) V(/6).
j--1 j=l

Hence we obtain the following estimate for all t _> 0 and n

P({co" n1/2dH((#),(#n(co))) < t})

>_1+ E (P({w" n1/2n.j(w)< -}) -1) P w’LE T]n.J(co) >
j=l j=l

The latter probability tends to zero as n --, cx because of the Glivenko-Cantelli
theorem, and we finally obtain the following via the Portmanteau theorem for each
t>0:

liminfP({w" n1/2dH((#), (#n(W))) < t})
n--+oo
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546 WERNER RMISCH AND RODIGER SCHULTZ

>_1+ E (linm_inf P ({w" n1/2ln,j(w) < -}- 1))
j-1

t t
_>1/ 1) -1/

j--1 j--1

where Gd(u := P({w: d(w) < u}) for all u
Remark 3.4. Unfortunately, the limit distributions Gj (j 1,...,g) cannot

be characterized in general for multidimensional distributions Fo(-B) (see [10]).
However, in the case of simple recourse, we obtain the following estimate by using
Proposition 2.15 instead of Corollary 2.5 and under the assumption that all one-
dimensional marginal distributions of # are continuous:

lim_.ifP({w" n1/2dH(b(#),b(#n(w))) < t}) _> 1 + s H ss 1

for all t _> 0, where H(u) 1 2 Yk__l(--1)k-le-2k2. (u _> 0) is the asymptotic
distribution in the Kolmogorov limit theorem.
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