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Decomposition of a Multi-Stage Stochastic Program for Power Dispatch

We develop a multi-stage stochastic program for the optimal dispatch of electric power under uncertain demand in a
generation system comprising thermal and pumped storage hydro plants. Based on an abstract duality argument we
propose an iterative decomposition scheme involving a non-smooth convex master problem and decoupled single-unit
multi-stage stochastic programs.

1. Introduction

This paper deals with a multi-stage stochastic program for finding a cost-optimal dispatch of electric power in a
power system comprising thermal power plants and pumped storage plants, which is typical for the eastern part
of Germany. Stochasticity enters via the electric power demand, which is random and unveiled only in the course
of the power generation process which covers a time horizon of up to 168 hours (one week). Hence, a scheme of
alternate decision and observation underlies the dispatch of electric power: Fix the schedule (dispatch) for the first
time interval, observe the demand for the second interval, fix the schedule for the second interval and so on. Under
the assumption that the power demand of the first interval is known the schedule for that interval is deterministic
and the remaining schedules are random. The multi-stage stochastic program elaborated below aims at finding an
optimal schedule for the first interval given the operational constraints for the power system and a proper modelling
of the stochastic power demand.

The present paper widens the scope adopted in a former article ([4]), where a two-stage stochastic planning
model with simplified dynamics between decision and observation was studied. Further related work is contained
in [16] where multi-stage stochastic programs for the unit commitment problem are analysed. The latter includes
start-up and shut-down decisions of units into the optimization. Whereas our model allows duality statements,
the (non-convex) unit commitment model leads to a duality gap, which, however, is getting smaller if the number
of units in the model is increasing. Here, we focus on the simpler power dispatch model, elaborate duality and
decomposition, but do keep in mind relations to the more general case.

2. Model

Let T denote the number of time intervals in the optimization horizon and {d; : ¢ = 1,...,T} be the stochastic
process (on some probability space (2,4, P)) reflecting the randomness of power demand. We assume that the
information on the power demand is complete for t = 1 and that it decreases with growing ¢. This is modelled by a
nested sequence (filtration) of o—fields

A ={0,0CAC...CAC...CArCA

where d; is Ay—measurable (t =1,...,T}. (In particular, d; is then deterministic.)

Let I; C {1,...,I} denote the index set of thermal units committed (i.e. on-line) at time ¢, with I denoting
the number of available thermal units, and let J denote the number of pumped storage plants which are assumed
to be on-line all the time, since both in the pumping and generation modes they can be driven upward from zero
continuously. According to the stochasticity of power demand the scheduling decisions for the units are discrete-time
stochastic processes as well:

{ptit:].,...,T}, {(St,wt)It:].,...,T}.

Here, pi (i € I;, t =1,...,T) denotes the output of the thermal unit i at time ¢ and s/, w! (j =1,....J,t =1,...,T)
are the generation and pumping levels, respectively, of the pumped storage plant j in time step ¢. The following box
constraints reflect output limitations of the units
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where i, Dhiaes Shazs Whaee are (non-stochastic) constants. Further operational constraints model availability



restrictions and water balances in the pumped storage plants (for details see [4], [5])

S — S < S (sl —mjw]) < S, j=1,....J, r=1,...,T,

A S 2)
Yoo (st —mjwl) = 57, j=1,...,.J.

By n; (j =1,...,J) we denote the pumping efficiency which computes as the quotient of the energy gained when
emptying the full upper dam and the energy needed when pumping upward the full content of the lower dam. We
assume that there are no additional in- and outflows to the dams. The constants S7 ,S7  denote the initial and
maximal fill (in energy), respectively, of the upper dam, and Siw is a given fill of the upper dam at the end of the
time horizon. The constraints (2) are crucial as they couple operation of units at different time steps. Thus, demand
values at later times influence also actual decisions and the mentioned scheme of alternate decision and observation
cannot be decoupled with respect to time. The following equations model the equilibrium between generation and
(random) demand at all time steps

J
S i+ St —wl)=di t=1,..T. 3)
j=1

i€l

These are the only constraints coupling operation of different units. A final constraint models the non-anticipativity
of the stochastic process of decisions {(p¢, s¢,wt) : t =1,...,T}. It says that, at time ¢, decisions (p¢, ¢, w¢) must not
depend on future realizations of the process {d; : ¢ = 1,...,T}. In other words, (pt, s, w;) has to be A;—measurable,
which can be formalized by

(ptastth) :E((pt78t7wt)|~'4t)7 t= 17"'7T7 (4)

where E(:|A;) denotes the conditional expectation with respect to A4;. The objective function is given by the
expected value of fuel costs of the thermal units

T
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where E denotes expectation, ¢'(.) is a convex (linear, piecewise linear or quadratic) function and a; = 1 for all
1 € I; and a;; = 0 otherwise.

Altogether, (1) - (5) amounts to a multi-stage stochastic program which, via (3), is loosely coupled with re-
spect to operation of different units. For lagger power systems like the one considered here the number of stochastic
variables in (1) - (5), which computes as >, , card (I;) +2JT, is considerable. Numerical approaches are based on
suitable discretizations of the demand distribution (scenario trees), which leads to large-scale optimization problems
with usually millions of variables. In general, such problems are too large from the viewpoint of even the latest solu-
tion methods in multi-stage stochastic programming ([1], [2], [6], [13], [14]). Therefore, we present a decomposition
scheme for (1) - (5) that employs solutions to smaller multi-stage stochastic programs for which existing solution
methodology can be applied and adapted, respectively.

3. Duality and Decomposition

Let z := {zy : t = 1,..,T}, with xy := (pt, s, wt)(t = 1,..,T), denote the decision process and
X = x_ Loo(Q, Ay, P;IR™), with ny := card (I;) + 2J(t = 1,...,T), the decision space equipped with the
norm ||z|| := maxy=1,. .7 ||7t]|lo. The fixed constraints (1), (2), (4) for the decision process are formalized by

C:={reX:z(w) €B,P— as. } where B denotes the bounded polyhedron in R™ (m := Zle n¢) given by the
operational constraints (1), (2).

Further, let Y := x/_, L. (2, A;, P; IR) denote the data space, Y* its dual and define the mapping 4 : X — Y
by [Az]y = Y ,c;, D) + E‘j]:l(s{ —w]) for all z € X and t € {1,...,T}. Assuming that the stochastic demand d
belongs to Y, (1)-(5) is equivalent to the abstract minimization problem

(P) min {f(z): 2 € C, Az = d},

where f(x) denotes the objective function given by (5). Of course, f : X — IR is convex and continuous. Together



with (P) we consider the perturbed problem
(Pe) min {f(z):2€C, Az =d+¢&} (E€Y)

and denote its marginal value by ¢(&). It is well known that convex duality results hinge upon the behaviour of ¢(+)
at £ =0 ([11], [17]). We will make use of the following duality statement.

Proposition.
Let d € Y and assume the regularity condition: There exists € > 0 such that {v € B: Av=d+y}#0 P— a.s.
for all y € RT with ||y|| < e. Then we have

o(0) = sup inf {f(x) + XAz — d)}. (6)
Acy* T€EC

Proof. Let & € Y be such that ||€]| := ess sup,cqll{(w)|| < e. The regularity condition implies {v € B :
Av=d+¢&#0 P — as. By utilizing a measurable selection argument [12] one shows analogously to the proof
of Theorem 3.1 in [3] that there exists an element x € C' such that Az = d 4+ £. Hence d belongs to the interior of
the set A(C) C Y. In the terminology of [10] this means that the system {z € C : Az = d} is regular. Theorem 1
of [10] then implies that the constraint set M (§) := {z € C' : Ax = d + &} of (P¢) has the Hausdorff Lipschitz
property dg (M (), M(0)) < La|€]| for all £ € Y with ||€]| sufficiently small (with some constant Ly > 0 and dp
denoting the Hausdorff distance). This property together with the Lipschitz continuity of f on bounded sets leads
to a Lipschitz property of ¢ at 0. Appealing to the convex duality theorem in Section 2.2.3 of [17] completes the
proof.q

In terms of the power dispatch model the regularity condition says that, in each step ¢t € {1,...,T}, the
commitment schedule for the (on-line) thermal units has to fulfill a capacity (or reserve) constraint for P - almost
all realizations of the random demand d; .

According to the above duality statement, we consider the dual (concave) maximization problem
max{D(\): A e Y"}, (7)

where D(\) := inf{f(z) + M(Az —d) : 2 € C} (A € Y*) and Y* := x[_, L% (2, A;, P; R). For a general charac-
terization of the duals to Ly the reader may consult e.g. Sect. 3 of [12]. Here we only use the observation that
Y* := xI Li(Q, As, P; R) holds as an isometry if P is a discrete probability measure with finite support. We
confine ourselves to discrete P with finite support and focus on the decomposition structure of the dual function:

D(\) = inf{E ZZ (pl) +ZE \e([Az]; —dy)] :x € C}
t=1iecl;
) J T T
= 1nf{ZZaztE c(pl) + /\tpt + ZZE [/\t — wt)] — ZE[Atdt] :(p, s, w) € C}
i=1 t=1 j=1t=1 t=1

- me{ZaltE ci(pl) -I-)\tpt} Z inf_ {ZE[/\t —wt]} ZE)\tdt] (8)

Here the infima are taken subject to the single-unit contraints (1), (2) for p and (s7, w?).

Given A € Y*, the evaluation of D(A) (and of a subgradient) requires the solution of I 4+ .J multi-stage stochas-
tic programs for all single (thermal, pumped storage hydro) units. Since the stochastic programs for the thermal
units only contain box constraints (1), they can be solved explicitly for each ¢ € {1,...,T}. The linear multi-stage
model for each pumped storage plant contains only 27" stochastic variables and can be solved by existing solution
methods (e.g. [1], [6], [14]).

The (iterative) decomposition approach for (1)-(5) now consists in solving (7) (with a discrete demand dis-
tribution) by convex nonsmooth minimization methods ([7], [8], [9], [15]) such as the bundle-trust method whose
application is outlined next. Let D denote the convex function —D. An iteration step of the bundle method then
looks as follows

Ak1 = A — QpTg
where
. = — 1
Ty € argmln{nelgx{giﬂ' — D)+ D) — gi(De — pi) } + m|lﬂ'|l2 : € RN}
i€EAS

Here, )\ denote the iteration points and p; are trial points that are accepted as iteration points if they fulfill



certain descent, conditions. Moreover, g;(i € Ay C {1,...,k}) belongs to the subdifferential D(y;) of D at j;, and
ay > 0,7, > 0 are steplength and trust region parameters, respectively. For the model (7), the dimension N of the
underlying Euclidean space computes as N = Zthl card supp d; where card supp d; denotes the cardinality of the
support of the t—th component of the discrete random variable d.

Since D(A) = sup{—f(z) + \(d— Ax) : = € C}, the subgradient formula for the maximum of convex functions
in particular implies that g; can be computed as ¢g; = d— Az (u;) with z(u;) € argmax{—f(x)+u;(d—Az) : = € C}.
Therefore, function values of D and subgradients of —D that are needed for the solution of (7) can be computed by
solving

min{f(z) + M(Az —d) : z € C}

for fixed values of A. As mentioned above, the latter is accomplished by solving the single-unit multi-stage stochastic
programs arising in (8).
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