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Abstract Mixed-integer two-stage stochastic programs with fixed recourse matrix,
random recourse costs, technology matrix, and right-hand sides are considered. Quan-
titative continuity properties of its optimal value and solution set are derived when
the underlying probability distribution is perturbed with respect to an appropriate
probability metric.

Keywords Stochastic programming · Two-stage · Mixed-integer · Stability · Weak
convergence · Probability metric · Discrepancy

1 Introduction

Mixed-integer two-stage stochastic programs model a variety of practical decision
problems under stochastic uncertainty, e.g., in chemical engineering, power produc-
tion, and trading planning [8,13,14]. The probability distribution of the stochastic
programming model reflects the available knowledge on the randomness at the mod-
eling stage. When solving such stochastic programming models, the probability dis-
tribution is approximately replaced in most cases by a discrete probability measure
with finite support. Hence, perturbing or approximating the probability distribution
of such models is an important issue for modeling, theory, and numerical methods in
stochastic integer programming. While much is known on the structure and algorithms
of/for mixed-integer two-stage stochastic programs (cf. the surveys [11,12,21,22]),
the available (quantitative) stability or statistical estimation results do not cover situ-
ations with stochastic costs (or prices) (cf. [7,18,19]).
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378 W. Römisch, S. Vigerske

Mixed-integer two-stage stochastic programs are of the form

min

⎧
⎨

⎩

∫

Ξ

f0(x, ξ)d P(ξ) : x ∈ X

⎫
⎬

⎭
, (1)

where the (first-stage) feasible set X ⊆ R
m is closed, Ξ is a closed subset of R

s ,
the function f0 from R

m × Ξ to the extended reals R is a random lower semicon-
tinuous function, and P belongs to the set of all Borel probability measures P(Ξ)
on Ξ . Recall that f0 is a random lower semicontinuous function if its epigraphical
mapping ξ �→ epi f0(·, ξ) := {(x, r) ∈ R

m × R : f0(x, ξ) ≤ r} is closed-valued and
measurable. In mixed-integer two-stage stochastic programs, f0 is of the form

f0(x, ξ) = 〈c, x〉 +Φ(q(ξ), h(ξ)− T (ξ)x) ((x, ξ) ∈ R
m ×Ξ), (2)

whereΦ(u, t) denotes the optimal value of the (second-stage) mixed-integer program
(with cost u and right-hand side t), and q(ξ), T (ξ), and h(ξ) are the stochastic cost,
technology matrix, and right-hand side, respectively.

With v(P) and S(P) denoting the optimal value and solution set of (1), respectively,
the quantitative stability results for stochastic programs developed in [18] (see [18,
Theorems 5 and 9]) imply, in particular, the estimates

|v(P)− v(Q)| ≤ L sup
x∈X

∣
∣
∣
∣
∣
∣

∫

Ξ

f0(x, ξ)(P − Q)(dξ)

∣
∣
∣
∣
∣
∣

(3)

∅ 	= S(Q) ⊆ S(P)+ ΨP

⎛

⎝L sup
x∈X

∣
∣
∣
∣
∣
∣

∫

Ξ

f0(x, ξ)(P − Q)(dξ)

∣
∣
∣
∣
∣
∣

⎞

⎠ , (4)

where L > 0 is some constant, X is assumed to be compact, ΨP is the conditioning
function, and P and Q belong to a suitable subset of P(Ξ). The function ΨP depends
on the growth behavior of the objective function near the solution set and is specified
in (11) of Sect. 3.

The aim of this paper is to extend the quantitative continuity properties of v(·) and
S(·) in [16,20] to cover situations with stochastic costs. To this end, we need quanti-
tative continuity and growth properties of optimal value functions and solution sets of
parametric mixed-integer linear programs. Such properties are known for parametric
right-hand sides [4,5,20] and parametric costs separately [1,2,6]. Since to our knowl-
edge simultaneous perturbation results with respect to right-hand sides and costs are
less familiar, we discuss such properties of optimal value functions in Proposition 1.
These results are then used in Sect. 3 to obtain the desired quantitative stability result
(Theorem 1) for fully random mixed-integer two-stage stochastic programs with fixed
recourse. The relevant probability metric (9) on subsets of P(Ξ) and its relations to
Fortet–Mourier metrics and polyhedral discrepancies are also discussed (Remark 1).
The latter metrics may be used for designing moderately sized discrete approximations
to P by optimal scenario reduction of discrete probability measures [9,10].

123



Quantitative stability of mixed-integer two-stage stochastic programs 379

2 Infima of mixed-integer linear programs

Consider the parametric mixed-integer linear program

min{〈cx , x〉 + 〈cy, y〉 : Ax x + Ay y ≤ b, x ∈ Z
n, y ∈ R

m−n} (5)

with c = (cx , cy) ∈ R
m and b ∈ R

r playing the role of the parameters and A =
(Ax , Ay) ∈ Q

r×m . Let M(b), v(b, c), and S(b, c) denote the feasible set, optimal
value, and solution set of (5), respectively, i.e.,

M(b) := {(x, y) ∈ Z
n × R

m−n : A(x, y) ≤ b}
v(b, c) := inf{〈c, (x, y)〉 : (x, y) ∈ M(b)}
S(b, c) := {(x, y) ∈ M(b) : 〈c, (x, y)〉 = v(b, c)}.

Let K denote the polyhedral cone {(x, y) ∈ R
m : Ax x + Ay y ≤ 0} and K∗ its polar

cone. Observe that v(b, c) is finite for b ∈ B := dom M and c ∈ −K∗. Further, denote
by Prx M(b) the projection of M(b) onto the x-space, and

B∗(b0) := {b ∈ B : Prx M(b) = Prx M(b0)} (b0 ∈ B)

be the set of right-hand sides on which the projection of M(b) onto the x-space is con-
stant. It is well known (see [1, Chap. 5.6]) that the sets B∗(b0) are continuity regions
of the function b �→ v(b, c). These regions are further characterized by the following
result (Lemma 5.6.1 and 5.6.2 in [1]).

Lemma 1 B is a connected set equal to the union of a countable family of convex
polyhedral cones each of which is obtained by a translation of the r-dimensional cone
T := {t ∈ R

r : ∃y ∈ R
m−n such that t ≥ Ay y}.

For each b0 ∈ B, there exists t0 ∈ B and a finite set N ⊆ Z
n \ Prx M(b0) such that

B∗(b0) = (t0 + T ) \
⋂

z∈N

(Ax z + T ).

If Prx M(b0) = Z
n, then N = ∅ and B∗(b0) = t0 + T for some t0 ∈ B.

In the following we extend Lemma 2.3 in [20] and show local Lipschitz-continuity
of the optimal value of (5) with respect to simultaneous perturbations of the right-hand
side and the objective function coefficients where the right-hand side perturbation
does not leave the continuity region B∗(b). Otherwise, for arbitrary right-hand sides,
a quasi-Lipschitz property of the value function of (5) can be shown. For the proof we
refer to the appendix.

Proposition 1 (i) Let b ∈ B, b′ ∈B∗(b), and c, c′ ∈−K∗. Then the estimate

|v(b, c)− v(b′, c′)|≤ L1 max{‖c‖, ‖c′‖}‖b − b′‖
+ L2 max{‖b‖, ‖b′‖, 1} ‖c−c′‖

holds, where the constants L1 and L2 depend on A only.
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380 W. Römisch, S. Vigerske

(ii) Let b, b′ ∈ B and c, c′ ∈ −K∗. Then we have

|v(b, c)− v(b′, c′)| ≤ max{‖c‖, ‖c′‖}(L̃‖b − b′‖ + 2�)

+L̃ max{‖b‖, ‖b′‖}‖c − c′‖,

where the constants L̃ and � depend on A only.

The following result is [4, Theorem 2.1] and can be found in similar form also in
[2]. Together with Proposition 1 it is needed to prove Lemma 3.

Lemma 2 Let c ∈ −K∗. The mapping b �→ S(b, c) is quasi-Lipschitz continuous on
B with constants L̄1 and L̄2 not depending on b and c, i.e.,

dH (S(b, c), S(b′, c)) ≤ L̄1‖b − b′‖ + L̄2,

where dH denotes the Hausdorff distance on subsets of R
m.

3 Quantitative stability of mixed-integer two-stage stochastic programs

Let us consider the stochastic program

min

⎧
⎨

⎩
〈c, x〉 +

∫

Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P(dξ) : x ∈ X

⎫
⎬

⎭
, (6)

where Φ is the infimum function of a mixed-integer linear program given by

Φ(u, t) := inf
{
〈u1, y〉 + 〈u2, ȳ〉 : W y + W̄ ȳ ≤ t, y ∈ Z

m̂, ȳ ∈ R
m̄
}

(7)

for all pairs (u, t) ∈ R
m̂+m̄ × R

r , and c ∈ R
m , X is a closed subset of R

m , Ξ a poly-
hedron in R

s , W and W̄ are (r, m̂)- and (r, m̄)-matrices, respectively, q(ξ) ∈ R
m̂+m̄ ,

h(ξ) ∈ R
r , and the (r,m)-matrix T (ξ) are affine functions of ξ ∈ R

s , and P ∈ P(Ξ).
We need the following conditions to have the model (6) well defined:

(B1) The matrices W and W̄ have only rational elements.
(B2) For each pair (x, ξ) ∈ X ×Ξ it holds that h(ξ)− T (ξ)x ∈ T , where

T :=
{

t ∈ R
r : ∃(y, ȳ) ∈ Z

m̂ × R
m̄ such that W y + W̄ ȳ ≤ t

}
.

(B3) For each ξ ∈ Ξ the recourse cost q(ξ) belongs to the dual feasible set

U :=
{

u = (u1, u2) ∈ R
m̂+m̄ : ∃z ∈ R

r− such that W �z = u1, W̄ �z = u2

}
.

(B4) P ∈ P2(Ξ), i.e., P ∈ P(Ξ) and
∫

Ξ
‖ξ‖2 P(dξ) < +∞.
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Quantitative stability of mixed-integer two-stage stochastic programs 381

The conditions (B2) and (B3) mean relatively complete recourse and dual feasibility,
respectively. We note that (B2) and (B3) implyΦ(u, t) to be finite for all (u, t) ∈ U×T .
The following additional properties of the value function Φ on U × T are important
in the context of this paper.

Lemma 3 Assume (B1)–(B3). Then there exists a countable partition of T into Borel
subsets Bi , i.e., T = ⋃

i∈N
Bi such that

(i) Bi = (bi + T ) \ ⋃N0
j=1(bi, j + T ), where bi , bi, j ∈ R

r , i ∈ N, j = 1, . . . , N0,
N0 ∈ N does not depend on i , and T := {t ∈ R

r : ∃y ≥ 0 such that t ≥ W y}.
Moreover there exists an N1 ∈ N such that for all t ∈ T the ball B(t, 1) in R

r is
intersected by at most N1 different subsets Bi .

(ii) the restriction Φ
∣
∣
∣U×B′

i
, where B′

i := Bi ∩ {h(ξ)− T (ξ)x |(x, ξ) ∈ X ×Ξ}, has

the property that there exists a constant L > 0 independent of i , s.t.

|Φ(u, t)−Φ(ũ, t̃)|≤ L(max{1, ‖t‖, ‖t̃‖}‖u − ũ‖+max{1, ‖u‖, ‖ũ‖}‖t− t̃‖).

Furthermore, the function Φ is lower semicontinuous and piecewise polyhedral on
U ×T and there exist constants D, d > 0 such that it holds for all pairs (u, t), (ũ, t̃) ∈
U × T :

|Φ(u, t)−Φ(ũ, t̃)|≤ D(max{1, ‖t‖, ‖t̃‖}(‖u−ũ‖+d)+max{1, ‖u‖, ‖ũ‖}‖t − t̃‖).

The first part of (i) is Lemma 1. The second part is an extension of [20, Lemma 2.5]
to the function Φ(u, t) since the relevant constants in its proof do not depend on the
objective function as recalled in Lemma 2. Part (ii) and the quasi-Lipschitz property
of Φ is Proposition 1.

The representation of Φ is given on countably many (possibly unbounded) Borel
sets. This requires to incorporate the tail behavior of P and leads to the following
representation of the function f0.

Proposition 2 Assume (B1)–(B3) and X be bounded. For each R ≥ 1 and x ∈ X there
exist disjoint Borel subsets Ξ R

j,x of Ξ , j = 1, . . . , ν, whose closures are polyhedra
with a uniformly bounded number of faces such that

f0(x, ξ) =
ν∑

j=0

(〈c, x〉 +Φ(q(ξ), h(ξ)− T (ξ)x))1Ξ R
j,x
(ξ) ((x, ξ) ∈ X ×Ξ)

is Lipschitz continuous with respect to ξ on eachΞ R
j,x , j = 1, . . . , ν, with some uniform

Lipschitz constant. Here,Ξ R
0,x := Ξ\∪νj=1Ξ

R
j,x is contained in {ξ ∈ R

s : ‖ξ‖∞ > R},
ν is bounded by a multiple of Rr and 1A denotes the characteristic function of a set A.

Proof Since q(·), h(·) and T (·) are affine linear functions and X is bounded, there
exists a constant C > 0 such that the estimate

max{‖q(ξ)‖∞, ‖h(ξ)− T (ξ)x‖∞} ≤ C max{1, ‖ξ‖∞} (8)
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382 W. Römisch, S. Vigerske

holds for each pair in X × Ξ . Let R ≥ 1 and TR := T ∩ C RB∞, where B∞ is the
unit ball w.r.t. the maximum norm ‖ · ‖∞. As in [18, Proposition 34] there exist a
number ν ∈ N and disjoint Borel subsets {B j }νj=1 of C RB∞ such that their closures
are polyhedra and their union contains TR . Furthermore, when arguing as in the proof
of [20, Proposition 3.1], ν is bounded above by κRr , where the constant κ > 0 is
independent of R. Now, let x ∈ X and consider the following disjoint Borel subsets
of Ξ :

Ξ R
j,x := {ξ ∈ Ξ : h(ξ)− T (ξ)x ∈ B j , ‖ξ‖∞ ≤ R} ( j = 1, . . . , ν),

Ξ R
0,x := Ξ \

ν⋃

j=1

Ξ R
j,x ⊆ {ξ ∈ Ξ : ‖ξ‖∞ > R}.

Let x ∈ X and ξ, ξ ′ ∈ Ξ R
j,x for some j ∈ {1, . . . , ν}. By Lemma 3 we obtain

| f0(x, ξ)− f0(x, ξ
′)| = |Φ(q(ξ), h(ξ)− T (ξ)x)−Φ(q(ξ ′), h(ξ ′)− T (ξ ′)x)|

≤ L(max{1, ‖q(ξ)‖∞, ‖q(ξ ′)‖∞}(‖h(ξ)− h(ξ ′)‖∞
+‖(T (ξ)− T (ξ ′))x‖∞)+ max{1, ‖h(ξ)− T (ξ)x‖∞,
‖h(ξ ′)− T (ξ ′)x‖∞}‖q(ξ)− q(ξ ′)‖∞)

≤ LC R(‖h(ξ)− h(ξ ′)‖∞ + ‖(T (ξ)− T (ξ ′))x‖∞
+‖q(ξ)− q(ξ ′)‖∞)

≤ L1 R‖ξ − ξ ′‖∞,

where we used (8) for ξ, ξ ′ ∈ Ξ R
j,x , affine linearity of q(·), h(·), and T (·), and bound-

edness of X . We note that the constant L1 is independ of R. ��
In order to state quantitative stability results for model (6) and inspired by the

estimates (3) and (4), we need a distance of probability measures that captures the
behavior of f0(x, ·) (x ∈ X ) in its continuity regions and the shape of these regions,
respectively. This leads us to the following probability metric on P2(Ξ) for some
k ∈ N:

ζ2,phk
(P, Q) :=sup

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

∫

B

f (ξ)(P − Q)(dξ)

∣
∣
∣
∣
∣
∣
: f ∈ F2(Ξ), B ∈ Bphk

(Ξ)

⎫
⎬

⎭
. (9)

Here, Bphk
(Ξ) denotes the set of all polyhedra being subsets ofΞ and having at most

k faces. The set F2(Ξ) contains all functions f : Ξ → R such that

| f (ξ)| ≤ max{1, ‖ξ‖2} and | f (ξ)− f (ξ̃ )| ≤ max{1, ‖ξ‖, ‖ξ̃‖}‖ξ − ξ̃‖

holds for all ξ, ξ̃ ∈ Ξ . We note that, unfortunately, the growth condition on f is
missing in the description of the set of functions in [16,18].
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Quantitative stability of mixed-integer two-stage stochastic programs 383

Before stating the main result, we define the function φP on R+ characterizing the
tail behavior of P by φP (0) = 0 and

φP (t) := inf
R≥1

⎧
⎪⎨

⎪⎩
Rr+1t +

∫

{ξ∈Ξ :‖ξ‖∞>R}
‖ξ‖2∞ P(dξ)

⎫
⎪⎬

⎪⎭
(t > 0), (10)

and the conditioning function ΨP by

ΨP (η) := η + ψ−1
P (2η) (η ∈ R+), (11)

where the growth function ψP on R+ is

ψP (τ ) := min

⎧
⎨

⎩

∫

Ξ

f0(x, ξ)P(dξ)− v(P) : d(x, S(P)) ≥ τ, x ∈ X

⎫
⎬

⎭
(12)

with inverse ψ−1
P (t) := sup{τ ∈ R+ : ψP (τ ) ≤ t}. The functions φP and ψP are

nondecreasing, ΨP is increasing and all functions vanish at 0. Furthermore, one has
ψP (τ ) > 0 if τ > 0 and ΨP (η) ↘ 0 if η ↘ 0.

Theorem 1 Let the conditions (B1)–(B4) be satisfied and X be compact.
Then there exist constants L > 0 and k ∈ N such that

|v(P)− v(Q)| ≤ LφP(ζ2,phk
(P, Q)) (13)

∅ 	= S(Q) ⊆ S(P)+ ΨP (LφP (ζ2,phk
(P, Q)))B,

for each Q ∈ P2(Ξ). If
∫

Ξ
‖ξ‖p P(dξ) < +∞ for some p > 2, the estimate φP (t) ≤

Ct
p−2

p+r−1 holds for every t ≥ 0 and some constant C > 0.

Proof Since the functionΦ is lower semicontinuous on U ×T (Lemma 3), f0 is lower
semicontinuous on X ×Ξ and, hence, a random lower semicontinuous function [17,
Example 14.31]. Using Lemma 3 we obtain the estimate

| f0(x, ξ)| ≤ ‖c‖‖x‖ + D[max{1, ‖h(ξ)‖ + ‖T (ξ)‖‖x‖}(‖q(ξ)‖ + d)

+ max{1, ‖q(ξ)‖}(‖h(ξ)‖ + ‖T (ξ)‖‖x‖)]
≤ C1 max{1, ‖ξ‖2}

for each pair (x, ξ) ∈ X × Ξ and some constant C1. Hence, the objective function
〈c, x〉 + ∫

Ξ
Φ(q(ξ), h(ξ) − T (ξ)x)Q(dξ) is finite (if Q ∈ P2(Ξ)) and lower semi-

continuous (due to Fatou’s lemma). Since X is compact, the solution set S(Q) is
nonempty.

From Proposition 2 we know that, for each R ≥ 1 and x ∈ X , there exist Borel
subsets Ξ R

j,x , j = 1, . . . , ν, of Ξ such that the function f R
j,x (·) := f0(x, ·)1Ξ R

j,x
is
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384 W. Römisch, S. Vigerske

Lipschitz continuous on Ξ R
j,x with constant L1 R. We extend each function f R

j,x (·)
to the whole of Ξ by preserving the Lipschitz constant. Then we have 1

L1 R f R
j,x (·) ∈

F2(Ξ). Furthermore, Proposition 2 implies that the closures of Ξ R
j,x are contained in

Bphk
(Ξ) for some k ∈ N, that the number ν is bounded above by κRr , where the

constant κ > 0 is independent on R, and that Ξ R
0,x := Ξ \ ⋃ν

j=1Ξ
R
j,x is a subset of

{ξ ∈ Ξ : ‖ξ‖∞ > R}. For each Q ∈ P2(Ξ) and x ∈ X we obtain

∣
∣
∣
∣
∣
∣

∫

Ξ

f0(x, ξ)(P − Q)(dξ)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

ν∑

j=0

∫

Ξ R
j,x

f0(x, ξ)(P − Q)(dξ)

∣
∣
∣
∣
∣
∣
∣
∣

≤
ν∑

j=1

∣
∣
∣
∣
∣
∣
∣
∣

∫

Ξ R
j,x

f R
j,x (ξ)(P − Q)(dξ)

∣
∣
∣
∣
∣
∣
∣
∣

+ I R
x (P, Q)

≤ νL1 R sup
f ∈F2(Ξ)
j=1,...,ν

∣
∣
∣
∣
∣
∣

∫

Ξ

f (ξ)χΞ R
j,x
(ξ)(P − Q)(dξ)

∣
∣
∣
∣
∣
∣

+I R
x (P, Q),

where the last summand on the right-hand side is given by

I R
x (P, Q) :=

∣
∣
∣
∣
∣
∣
∣
∣

∫

Ξ R
0,x

f0(x, ξ)(P − Q)(dξ)

∣
∣
∣
∣
∣
∣
∣
∣

.

Using ν ≤ κRr and arguing as in [18, Theorem 35] we continue

∣
∣
∣
∣
∣
∣

∫

Ξ

f0(x, ξ)(P − Q)(dξ)

∣
∣
∣
∣
∣
∣
≤ κL1 Rr+1ζ2,phk

(P, Q)+ I R
x (P, Q).

For the term I R
x (P, Q) we use the estimate | f0(x, ξ)| ≤ C1‖ξ‖2 for any pair (x, ξ) ∈

X × {ξ ∈ Ξ : ‖ξ‖∞ > R} and the norming constant C2 such that ‖ξ‖ ≤ C2‖ξ‖∞
holds for all ξ ∈ R

s . We get

I R
x (P, Q) ≤ C1C2

2

∫

{ξ∈Ξ :‖ξ‖∞>R}
‖ξ‖2∞(P + Q)(dξ).
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Quantitative stability of mixed-integer two-stage stochastic programs 385

Since the set {ξ ∈ Ξ : ‖ξ‖∞ > R} can be covered by 2s intersections ofΞ with open
halfspaces (whose closures belong to Bphk

(Ξ)), we can estimate

∫

{ξ∈Ξ :‖ξ‖∞>R}
‖ξ‖2∞Q(dξ) ≤ 2sζ2,phk

(P, Q)+
∫

{ξ∈Ξ :‖ξ‖∞>R}
‖ξ‖2∞ P(dξ).

Hence, combining the last three estimates we get

sup
x∈X

∣
∣
∣
∣
∣
∣

∫

Ξ

f0(x, ξ)(P − Q)(dξ)

∣
∣
∣
∣
∣
∣
≤ (κL1 Rr+1 + C1C2

2 2s)ζ2,phk
(P, Q)

+2C1C2
2

∫

{ξ∈Ξ :‖ξ‖>R}
‖ξ‖2∞ P(dξ)

for any R ≥ 1. Taking the infimum with respect to R ≥ 1 we obtain

sup
x∈X

∣
∣
∣
∣
∣
∣

∫

Ξ

f0(x, ξ)(P − Q)(dξ)

∣
∣
∣
∣
∣
∣
≤ ĈφP (ζ2,phk

(P, Q))

with some constant Ĉ > 0. Now, the result is a consequence of the estimates (3) and (4).
If

∫

Ξ
‖ξ‖pd P(ξ) < +∞ for some p > 2, it holds that

∫

{ξ∈Ξ :‖ξ‖∞>R} ‖ξ‖2∞d P(ξ) ≤
R2−p

∫

Ξ
‖ξ‖p∞ P(dξ) by Markov’s inequality. The desired estimate follows by insert-

ing R = t−
1

p+r−1 for small t > 0 into the function whose infinum w.r.t. R ≥ 1 is
φP (t):

φP (t) ≤ t−
r+1

p+r−1 +1 + t
p−2

p+r−1

∫

Ξ

‖ξ‖p∞ P(dξ) ≤ Ct
p−2

p+r−1 .

��
The boundedness condition on X may be relaxed if localized optimal values and

solution sets are considered (see [18]). In case that the underlying distribution P and
its perturbations Q have supports in some bounded subsetΞ of R

s , the stability result
improves slightly.

Corollary 1 Let the conditions (B1)–(B3) be satisfied, P ∈ P(Ξ), X and Ξ be
bounded. Then there exist constants L > 0 and k ∈ N such that

|v(P)− v(Q)| ≤ Lζ2,phk
(P, Q)

∅ 	= S(Q) ⊆ S(P)+ ΨP (Lζ2,phk
(P, Q))B,

holds for each Q ∈ P(Ξ).
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Proof Since Ξ is bounded, we have P2(Ξ) = P(Ξ). Moreover, the function φP (t)
(see (10)) can be estimated by Rr+1t for some sufficiently large R > 0. Hence,
Theorem 1 implies the assertion. ��

Remark 1 Since Ξ ∈ Bphk
(Ξ) for some k ∈ N, we obtain from (9) by choosing

B := Ξ and f ≡ 1, respectively,

max{ζ2(P, Q), αphk
(P, Q)} ≤ ζ2,phk

(P, Q) (14)

for all P, Q ∈ P2(Ξ). Here, ζ2 and αphk
denote the second order Fortet–Mourier

metric [15, Sect. 5.1] and the polyhedral discrepancy

ζ2(P, Q) := sup
f ∈F2(Ξ)

∣
∣
∣
∣
∣
∣

∫

Ξ

f (ξ)P(dξ)−
∫

Ξ

f (ξ)Q(dξ)

∣
∣
∣
∣
∣
∣

αphk
(P, Q) := sup

B∈Bphk (Ξ)

|P(B)− Q(B)|,

respectively. Hence, convergence with respect to ζ2,phk
implies weak convergence (see

[3]), convergence of second order absolute moments, and convergence with respect
to the polyhedral discrepancy αphk

. For bounded Ξ ⊂ R
s the technique in the proof

of [20, Proposition 3.1] can be employed to obtain

ζ2,phk
(P, Q) ≤ Csαphk

(P, Q)
1

s+1 (P, Q ∈ P(Ξ)) (15)

for some constant Cs > 0. In view of (14), (15) the metric ζ2,phk
is stronger than αphk

in general, but in case of bounded Ξ both distances metrize the same topology on
P(Ξ).

For more specific models (6), improvements of the above results may be obtained
by exploiting specific recourse structures, i.e., by using additional information on the
shape of the sets Bi in Lemma 3 and on the behavior of the (value) function Φ on
these sets. This may lead to stability results with respect to probability metrics that are
(much) weaker than ζ2,phk

. For example, if q and T are fixed and h(·) is of the form
h(ξ) := ξ (i.e., r = s), the closures of the Bi belong to a class of polyhedra which is
completely characterized in [20, Sect. 3]. If, in addition, the model has pure integer
recourse, the stability result is valid with respect to the Kolmogorov metric

dK(P, Q) := sup
z∈Rs

|P((−∞, z])− Q((−∞, z])|

on P(Ξ) instead of ζ2,phk
if Ξ is bounded (see also [20, Proposition 3.4]).
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A Proof of Proposition 1

Let b ∈ B, b′ ∈ B∗(b), and c, c′ ∈ −K∗ be given. To show local Lipschitz continuity
of v(b, c), we estimate

|v(b, c)− v(b′, c′)| ≤ |v(b, c)− v(b′, c)| + |v(b′, c)− v(b′, c′)|.

For the first difference we can proceed as for the proof of Lemma 2.3 in [20]. It is
repeated here to keep the paper self-contained. We write (5) as

min{〈cx , x〉 + Ψ (cy, b − Ax x) : x ∈ Prx M(b)}

where Ψ (cy, b̃) := min{〈cy, y〉 : Ay y ≤ b̃}. Since Ψ (cy, b̃) is the optimal value
function of a linear program and finite for b ∈ B, c′ ∈ −K∗, there exist finitely
many matrices C j , which depend on Ay only, such that Ψ (cy, b̃) = max j 〈b̃,C j cy〉
(cf. [23]). Let L1 := max j ‖C j‖. Then, for cy fixed,

|Ψ (cy, b̃)− Ψ (cy, b̃′)| ≤ L1‖cy‖ ‖b̃ − b̃′‖.

Let (x, y) ∈ S(b, c), (x ′, y′) ∈ S(b′, c). Since Prx M(b) = Prx M(b′), we have

v(b, c)− v(b′, c) ≤ 〈cx , x ′〉 + Ψ (cy, b − Ax x ′)− 〈cx , x ′〉 − Ψ (cy, b′ − Ax x ′)
≤ L1‖c‖ ‖b − b′‖.

Due to symmetry the same estimate holds for v(b′, c)− v(b, c).
Before deriving an estimate for |v(b′, c)−v(b′, c′)|, we recall the following Lemma,

which is [5, Theorem 1.2] and [6, Theorem 1].

Lemma 4 Let b ∈ B, c ∈ −K∗. Let (x̃, ỹ) be a solution of

min{〈cx , x〉 + 〈cy, y〉 : Ax x + Ay y ≤ b, (x, y) ∈ R
m}. (16)

Then there exists a solution (x, y) ∈ S(b, c) such that

‖(x, y)− (x̃, ỹ)‖ ≤ �

for some constant � depending on A only.

Since (16) is a linear program, there exist finitely many matrices D j , which depend
on A only, and such that each basis solution of (16) is given by D j b for some j . We set
L̂ := max j ‖D j‖. Now let (x̃ ′, ỹ′) be an optimal basis solutions of problem (16) with
right-hand side b′ and cost vector c′. By Lemma 4 there exists (x ′, y′) ∈ S(b′, c′)with
‖(x ′, y′)− (x̃ ′, ỹ′)‖ ≤ �. Since v(b′, c) ≤ 〈cx , x ′〉 + 〈cy, y′〉 and ‖(x̃ ′, ỹ′)‖ ≤ L̂‖b′‖,
we obtain

v(b′, c)− v(b′, c′) ≤ ‖(x ′, y′)‖ ‖c − c′‖ ≤ (�+ L̂‖b′‖) ‖c − c′‖.
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388 W. Römisch, S. Vigerske

Due to symmetry, a similar estimate holds for v(b′, c′)− v(b′, c). The second part of
Proposition 1 follows from Lemma 4 and stability results for linear programs.
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