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Abstract: Continuity properties of the mappings u-—-)p.F'l and p— Jhdp with
respect to bounded Lipschitz distance on probability measures are investigated. The
results are applied to the case where x=F(z) is the solution of the differential
equation dx(s) = f(x(s))ds+g(x(s))dz(s) and h(z) is some functional of x.

1. Introduction

Consider the mapping 8§ which tumns z € Cl[O.l] into the solution x=8(z) of the (scalar) integral
equation

X(t) = % + ofH(x(s))ds + o'g(x(s))dz(s) (1.1)
Under certain conditions on f and g, S; extends to a mapping S defined on all bounded, measurable
2:{0,11—R, which is continuous with respect to several metrics [1, 16, 11, 14]), Under the mapping S,
the distribution pt of a random input z is carried into an output distribution pS-!, and the mapping
p—uS-1 inherits certain continuity properties with respect to suitable metrics on the space of probability
distributions, which serve to obtain convergence rates, e. g. if Wiener measure is approximated by a
sequence of “"simpler" measures. Another natural question is the continuous dependence of certain
moments like | llxllw(uS")(dx) on the input distribution y.
In Section 2, problems of this type are treated in the general framework of a mapping F between two
separable metric spaces (Z, dz) and (X, dy) , following the line of research in [17, 18, 19, 5, 13]. Asa
metric on the space of probability distributions we will consider the bounded Lipschitz distance 37(i,v)
(cf. [2, 4]) defined by

Bz(1,v) := sup{ | Jyd(u-v) | : y:Z—R, Iyllg < 1} (1.2)
where

Igltgp i= Myll,, + sup { Nr(z -y (za)lfdz(zy,23) : 21, 236 Z, 2j#23 ) (1.3)

In Section 3, these results are applied to the mapping S, thus obtaining, in particular, convergence rates
of the output distributions resp. certain moments of these, if the input distribution 1 is approximated by
a sequence of distributions yt,. Similar results may be obtained in higher dimensions under additional
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restrictions on the coefficient function g in (1.1.) (see [14]; for related results which do not hinge on
these restrictions but consider more or less special approximations of semimartingale inputs,see, e. g.,
[7, 9, 12, 10].

2. General results

Let (Z, d7) be a separable metric space, and 0 be a fixed element of Z. For any locally Lipschitz
continuous mapping G from (Z, dz) into some other metric space (Y, dy) we put

LG(r) = IIG]KrHL
1= sup{ dY(G(zl)’G(Zz))/dZ(z]’12) 12,96 K, 21#25 }
where K, = (2eZ:dy(z, 0) <r).
For any real valued and locally Lipschitz continuous mapping h defined on Z we put
By(r) := lih|g N
T
BLh(r) = "thr"BL = Lh(r) + Bh(r)
Note that L¢; as well as BLy, are nondecreasing and left continuous.
For any probability measure it on the g-algebra B(Z) of Borel subsets on Z we put
ep_(r) =1(Z-K)) 2.2)
noting that £y is nonincreasing, right continuous and tends to zero for r—es,

(2.1.)

The following theorem improves Theorem 2 in [5). There, one can find also a similar result for the
Prokhorov metric instead of the bounded Lipschitz metric.

Theorem 1, Let F be a locally Lipschitz continuous mapping from (Z, dz) into some other separable
metric space (X, dx).Then there holds for any two probability measures p, v on B(Z) :

BxWF1vF1) < inf (Bz(,v)[4+max(1,Lp@m)}] + dg,(-1) 1r>1) (2.3.)
and

Bx(FLVF1) < B v)[8+max(1,L(1+e, - Bz v} 2.4)
where Eu" () :=inf{r>0: g, (1) <t} (t>0).

The proof of Theorem 1 (and also that of Theorem 2 below) is based on the following key
Lemma 1.a) Let h:Z—R be locally Lipschitz continuous. Then there holds for any two probability
measures [, v on B(Z) and and r>0 ;

|10 du-v)| < J ¢ (hBy@E)d+v) + BLy) BzGLV). (2.5.)
b) If, in addition, h is bounded, then there holds for any r>1:
1, b du-v) | < Bzuv)[4lInl .+ BLy(0)] + 4lhl o€, (1) (2.6.)

Proof: According to [2, Lecture 7] there exists, for any r>0, a bounded, Lipschitz continuous extension
hy of h{Kr to the whole of Z, having the properties

Ih ipp = BLy(@) , thJi,= By Q@7
For any fixed r>1 we thus obtain the following chain of inequalities:
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1,1 agu-v)|
< 1 -hpapl + 1 dw-w ]+ [f, G-hpavl
< IZ_KY (hl+lh Hd(u+v) + thligy Bz1,v)
< IZ—K,(“IH' Br(D)d(p+v) + BLy () Bz(,v),
showing the validity of (2.5.). Under the assumption of b), we may proceed in our estimate by
< 2 Il @(Z-K,) + v (Z-K,)) + BLy(t) Bz (1,V).
The mapping ¢:Z— R defined by ¢(z) := min(1,dz(z, K.._1)] obeys

lighgy, £2 and ]Z-Kr <é= IZ’_KI'—I .
This leads to
v(Z-K)) < [,0dv < [¢dp + igligy Bz (L) € WZ-Kp_y) +2 Bz (V).
Thus we get
[hda-v)| < duhl, mZ-K,_1) + BG4I+ BL, @],
which is (2.6.). ¢

Proof of Theorem 1: For all y:X—R with the property liyllgy <1 there holds according to
Lemma 1b)

[fx v durlvF1y| = | [, woF du-v|

Sinf {Bz(1,V)[4+ BLyR(0] +4g,(-1) : 1> 1)
But

BL\yoF(r) < hyll, + Iyl L) € max{1,Lp(n),
which yields (2.3.). (2.4.) follows immediately by putting r:= l+t—:u'1([32(u.,v)) in (2.3.), noting
that eu(sp-‘(ﬂz(u,v))) < Bz(L,v) by the right continuity of €, 3

Now we are going to deal with quantitative continuity of generalized moments with respect to
bounded Lipschitz distance. The following theorem is asli ght improvement of [13, Thm.2.1]:
Theorem 2, Let h:Z—R be an unbounded locally Lipschitz continuous mapping. Then there holds
for any two probability measures w,v on B(Z) and all p<1 :

[zhd@-v ] < By {in(o) +3( HBLp (2l 1y + UBLy (2D, )] (2.8)
where we use the abbreviations

l2l = dz(z0) and IBLp(zily = (J;BLp(zh)P o(d2)VP  (o=p,v)
and BLy, denotes the right continuous modification of the function BLy, (note that BLy, < BLy).
Proof: Using Lemma 1a) we obtain, for any r>0, the following chain of inequalities:

| hd@-wl
S Iy g (hHBy(D)(+v)(d2) + BLy(h) Bz(,v)
S 2z g BLp(Z))(+v)(d2) + BLy(h) Bz(V)

The first summand may be estimated as follows:

7 x BLp0ZD)(+v)(d2)
S BLy(0)'P [,(BLy,(2))P(u+v) (dz),



207

hence results

|, h du—w)|

<2 BLy()'PI(IBLy (2D, )P + NCBLy (2D, )P} + BLY(®) Bz(1,v) 2.9
Now we put

ri=sup (s20: BLy(s) < [NBLy(zD, , + WBLp(2Dily y + hO)] Bz(hv) ™ )
In view of the left continuity of BL;, and the right continuity of BL}, we get

BLNS [ IIB_[,h(IzI)le,u + lIB_Lh(lzI)le’v +1h(O)] Bz(u,v)“/l’ (2.10.)
and

Bl 2] IBLy (12l gy + UBLp (12Dl |, + (O] Bz(uv)-1P,
the latter inequality implying

BLy (P < min(( Il&h(lzl)llp,p)l"l’, (II_B_I_‘h(Izl)le’V)"P} Bz (n,v)1=1/p) (2.11)
Combining (2.10.) and (2.11.) with (2.9.), we arrive at (2.8.). +
Remark 1.a) In virtue of the estimate

BLL(®) SLp(rX(r+1) + h(O)l  (r20), (2.12)

Theorem 2 is better than Thm. 2.1. in [13] in the sense that the finite moment condition
,fz(Lh(lzl)IzI)Pp(dz) < oo required there guarantees finiteness of IIl_ﬂ‘_h(IzI)Ilp,u , but not vice versa.
Indeed, consider the example Z:=R, h:=sin(z2), p(dz):=(z4+1)"1dz, p:=2. Then BLy(1)<2r+1, hence
Ilﬂh(lzl)llz’“ < o=, whereas Ly, (1)22(r—n) and thus Jz(Lh(lzJ)lzl)zp(dz) =00

b) Obviously, the inequalities in Theorems 1 and 2 remain valid if Ew L and BLy,, respectively, are
replaced by upper estimates. If, e. g., {1 is “of Gaussian type", i.e. obeys an estimate

€,() Screxp(-cor?) (r>0) (2.13.)
and F is "of exponential type", i.e. obeys

Lp( < kiexp(kopr) (2.14.)
then (2.4.) yields

BxF-LvF~1) < yjexpyaliog Bz (vI2) Pz (u,v) (2.15)

(Note that, for all >0, the r.h.s. of (2.15.) is o(BZ(p,,v)"‘S) for small Bz (1,v).)
If F has property (2.14.), then h(z) := (dX(F(z).xo))k (where x is some fixed element of X and ke N)
admits an estimate

BL},(r) < aqk exp(apkr) (2.16.)
If, in addition to (2.16.), it and v are of "Gaussian type” (2.13.), then Theorem 2 yields, for all 3>0:
[, d(u—v) | = o(Bz(11,v)13) for small B(1,v) (2.17.)

We conclude this section by giving examples that at least the order of the estimates in Theorems 1 and 2
is optimal for small B7(u1,v)):
Example 1. X =Z=R,, k> 1, F(2) := 2K, For 0<a<2~1 we put
B = 27 BB 1a0), Vg = 271 G-k 4oy
Then Bz(aVe) S & 87 Bz = al/17K), e = kT,
hence the r.hs, of (2.4.) is bounded from above by a constant. On the other hand one has
Bx(oF LvoF 221
Example 2. X =Z =R, kp>1, h(z) := ZX. For O<a<1 we put
Be =80, Vg = (1-0) B + 03 y-1/xp .
Then Bz(taVe) < © and BLy() < (k+1)rK, leading to
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NBL(z)llpy, =0 and IBLy(IzDllp y S (et DA ARR) /P = k1,

Hence the r.h.s. of (2.8.) is bounded from above by const-a!~1/P. But on the other hand there holds
Lzh dpgvg) | =al-1P,

3. An application to approximate solutions of stochastic differential equations

Let us return to the integral equation (1.1.). Under the conditions
f is locally Lipschitz continuous and satisfies a linear growth condition
g has a bounded and locally Lipschitz continuous derivative (3.1)
the solution x = §y(z) of (1.1.) has the following representation [1, 16]
x(1) = $(€, (1), z(1)-z(0))
E,() = xg+ /' ni(E(5), 2(5)-2(0))ds (3.2)
T(eB) = (390 (e,B) ! ((et,B))
(3¢/aP)(e.B) = g(d(eP)) 5 $(e0) =

Defining x as in (3.2.) even for any bounded , measurable z:[0,1]—=R, one gets a mapping S:z—x
which can be shown {14, Thm.1] to be continuous with respect to the norm

lizlly :=12(0)] + of Iz(s)lds
on (z: llzli, <R} for each R > 0, hence is a continuous extension of Sy in this sense.
Obviously S maps the space C[0,1] (of continuous functions) and the space D[0,1] (of right continuous
functions with left limits), respectively, into itself, and it can be shown [16, 14] that S is locally
Lipschitz continuous w.r. to the sup-norm on C[0,1} and w.r. to the modified Skorokhod metric d, on

D[0,1] defined by )
do(z1yz) = i?st;\ max{ llz;—2zy o All,, ,ossl:gléllogll(t)—l(s)l (t—s)~1} (3.3)

where A is the set of all mappings A from [0,1] onto [0,1] which are strictly monotonically increasing.
A mapping ze D[0,1] is said to have finite quadratic variation along some fixed sequence of partitions T,
of [0,1] with mesh size tending to zero, if the weak limit { of the measures

¢, :=l.~);' iy )-2(1))? 5,
n
exists (cf. [6] ); the distribution function of € is denoted by t—(z)(t). For ze D[0,1] of finite quadratic

variation, x=S(z) obeys the integral equation [14, Prop.1]
X(t) = xo + gl'f(x())ds + oltg(x(s))dz(s) + 1/2 of(gg Wx(s-))d(z)(s)

(3.4.)
+ T [0(x(s),A2()~x(s-) - g(x(s-)Az(s)]
where .
of'sx(s-dz(s) = lim He%ﬂgopcz«i” )—z())
and

@O = @0 + T An(sy?

is the decomposition of {z) into its continuous and jump part.
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For ze C[0,1] and (z)(t) = t (which is a property shared by almost every Wiener path), (3.4.) specializes
to

x(1) =x5+ oﬁ(f+(1/2)gg’)(x(s))ds + o!‘g(x(s-))dz(s) (3.5.)
(which, for a Wiener input z, is an Itd stochastic differential equation with Stratonovich correction).
For a piecewise constant function z, (3.4.) specializes to

x(t) =xq4 + of‘f(x(s))ds +SZSZI[(IJ(x(s—),Az(s))—x(s—)] (3.6)

For certain coefficient functions f and g obeying (3.1.), the growth of S (and hence also that of Lg) may
be larger than exponential, as the following example shows:
Example 3. Put f(c0) := a, g(a) :=sin(an) (aeR). Then the function ¢ occuring in (3.2.) is given
by

d(e,B) = (2/marctan(tan(on/2) exp(rf)] (3.7)
Put x4:=1, and define, for any ne N, a sequence (t,,) by

exp(t;) = 1+1/n

(m—1/mexp(t) =m+1/n  (m>2)
It is easily checked that

t; <l ; 1/(nm) <t <2/[n(m-1)] for m=2 (3.8.)
Choose C R such that

&(1/n,C) =1-1/mn
The following chain of implications

arctan[tan(n/2n) exp(rC,)] = (n/2)(1-1/n)

= tan(x/2n) exp(nC,) = tan[ (n/2)(1-1/n)}

= exp(nC,) = cot2(n/2n) < n?

shows that

C,<logn (3.9)
Put

Ty =ty (m21), Tpi=0,
define

zy () = O for Ty 1ySt<Ton
Cn for sz_l St< sz
and let z, be the restriction of z, 1o [0,1]. By (3.9.) there holds
iz fl, <logn (3.10.)
The solution x,:=S(z,) of equation (3.6.) with input z,, increases exponentially on any interval

[Ty_1-Ty) from m-1/n to m+1/n, and jumps at any time point T, from m+1/n to m+1-1/n. In
paricular, x,, is increasing and obeys

x(Tp)2m, (3.11)
In virtue of (3.8.) we get the estimate

Ty, € (3/n)log m (3.12)

Combining (3.11.) and (3.12.), one arrives at
xp(1) 2 exp(n/3) (3.13)
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which together with (3.10.) yields
IS(z ). = exp{(1/3)exp(liz,li..}) 3

Under the following conditions, however, Lg has only exponential growth:
Theorem 3.[14, Thm.3] Assume, in addition to (3.1.), that f is globally Lipschitz continuous and that
0O<mzglgisM <eo for some real constants m,M. Then there holds for suitable ki, ky
Lg(r) £ kjexp(kyr) >0) (3.14)
in any of the following cases:
a)(Z, dz) = (X, dx) = (C[0,1], sup-distance)
b) (Z, dz) = (X, dx) = (D[0,1], d)
c) (Z,dz) = (M[0,1], dg) ; (X, dx) = (D[0.1], dg)
where M{0,1] := {ze D[0,1] : z is nondecreasing}, and dg is the Skorokhod distance defined by
dg(z1.2p) = ;21,'\ max{ lizy~z o M, A-idi.,} (3.15)

If ity is Wiener measure on C[0,1], then suw obeys (2.13.) ; hence follows by (2.15.) that, under the
assumptions of Theorem 3a) there exist constants Yy, Y2 such that for all probability measures v on
C(0,1] there holds

Bcro, 11w S vs™h

<v1exp(yoliog Bc[o,u(}lw,\’)lm) Bepo,110ws") (3.16)

If ppis (unit mean) Poisson measure on M[0,1], then a simple estimate shows that
eup (r) < 1/T(@) (3.17)

Hence follows by (2.4.) that, under the assumptions of Theorem 3c) there exists, for any >0, a
constant ¢ such that for all probability measures v on M[0,1] there holds

B0, 11 SLS™ S Pppo, 1w 3 (3.18)

Finally we mention convergence rates with respect to bounded Lipschitz distance of some
approximations to Wiener resp. Poisson distribution:
Example 4. Let, for neN, (Y, ,j)j=1,...,n be a sequence of independent random variables, with
P[Yn,j=1] =l/hns= 1—P[Yn_j=0] (G=1,...,n)
Put =3 Y, for /mge<(G+/m; 0<j<n,
Igigj

Let p, be the distribution of z,, and p, be standard Poisson measure on M[0,1].Then there holds
according to [4, Thm.6.1.]

BM(0,1](Hp» 1) = OCah) (3.19.)
Combining (3.18.) and (3.19.) one gets
BD[0,1)Hp STHHaS™) = O 1*8)  for all 5>0. (3.20)

Example 5.a) Let, for neN, (Yy, )=, be & sequence of independent random variables, with
P(Yp =02 = P{Yp =" = 112 G=1,....0)

Put z,(0) :=1<Z<.Yn i+ ()Y, i+1 for j/n St<(j+1)/n, 0Sj<n.
_’_., £ 9,



21

Let u, be the distribution of z,,, and Ly, be standard Wiener measure on C[0,1].Then one derives from
[8, Thm.1]:

BCr0,17Mw M) = O™ log n) (3:21)
Combining (3.16.) and (3.21.) one gets, for suitable y>0,
Bcro,1)MwS i, S™h = O(n~exp(ytiog n)1/2) (3.22)

b) If w(t) is a standard Wiener process and w(1) is a "polygonal approximation” of w(t) (coinciding
with win t =0, 1/n, 2/n,...,1 and piecewise linear between these points) , then it can be shown (cf.{15,
Remark 2b)]) that

Elliw-wpll P1YP = O(n=12(log n)1/2) (3.23)
holds for all p21.
c) The convergence rate (3.23.) even holds true if wy, is the conditional expectation of w with respect to
a certain discrete o-algebra. More precisely, let In,lv"-’ In,m(n) be disjoint subintervals of R, each
having standard normal probability m(n)~1. Put

A, =o({w; eln i): j=1,....m; i=1,...,m(n)))

where W= n'/z(w(]/n)—w((j—l)/n). In [15. Thm.1] it is proved that w, := E[w | A] (which is a
"polygonal approximation of w with finitely many relizations") has the convergence rate (3.23.),
provided that sup{n/m(n) : ne N] is finite.
d) If - in either of the cases b) and c} - p,, denotes the distribution of wy, then (3.23.) (with p=1)
implies immediately that

Bcro,1)(HwsHn) = 0@ ™(log n)!2) (3.24))
which is a slightly better convergence rate than (3.21.).
If yis a real valued mapping on C[0,1] and J is a convex majorant of BL\l, oS such that
J3gnzn )Py (dZ) is finite for all p>1 (a function J with these properties exists, e. g., for y(x) = lixIl, k
(k € N) under the assumptions of Theorem 3, cf. (2.16.)), then Jensen’s inequality guarantees that

IJ(IIzII“)P p,(dz) < IJ(IIzIIN)P My (dz) <oo (neN);
together with Theorem 2 then follows for all >0

[ w(x) upS~1dx) = Jw(x) nyS-1(dx) | = O@(121+8),
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