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Abstract :  Continuity properties of the mappings I.t-.eit F-1 and It--.-> [hdIt with 
respect to bounded Lipschitz distance on probability measures are investigated. The 
results are applied to the case where x=F(z) is the solution of the differential 
equation dx(s) = f(x(s))ds+g(x(s))dz(s) and h(z) is some functional of x. 

1. Introduction 

Consider the mapping S 1 which turns z e C 1 [0.I] into the solution x=S l(Z) of the (scalar) integral 

equation 

X(t) = x o + jtf(x(s))ds + Jtg(x(s))dz(s) (1. I.) 

Under certain conditions on f and g, S 1 extends to a mapping S defined on all bounded, measurable 

z:[0,1]--->R, which is continuous with respect to several metrics [1, 16, 11, 14]. Under the mapping S, 

the distribution g of a random input z is carried into an output distribution ItS -1, and the mapping 

~t--->gtS -1 inherits certain continuity propenies with respect to suitable metrics on the space of probability 

distributions, which serve to obtain convergence rates, e. g. if Wiener measure is approximated by a 

sequence of "simpler" measures. Another natural question is the continuous dependence of certain 

moments like J Ilxllo~(~S-t)(dx) on the input distribution It. 

In Section 2, problems of this type are treated in the general framework of a mapping F between two 

separable metric spaces (Z, d Z) and (X, d x ) ,  following the line of research in [17, 18, 19, 5, 13]. As a 

metric on the space of probability distributions we will consider the bounded Lipschitz distance ~Z(~,v) 

(cf. [2, 4]) defined by 

13Z0t,v) := sup{ I J~d(I.t-v) I: ~:Z---)R, II~IIBL ~ I } (1.2.) 

where 

II~IIBL := I1~11~, + sup { I~(Zl)--~(z2)l/dz(Zl,Z2) : z 1, z2~ Z, Zl~:Z 2 } (1.3.) 

In Section 3, these results are applied to the mapping S, thus obtaining, in particular, convergence rates 

of the output distributions resp, certain moments of these, {f the input distribution It is approximated by 

a sequence of distributions Itn" Similar results may be obtained in higher dimensions under additional 
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restrictions on the coefficient function g in (1.1.) (see [14]; for related results which do not hinge on 

these restrictions but consider more or less special approximations of semimartingale inputs,see, e. g., 

[7, 9, 12, 10]. 

2. General results 

Let (Z, d Z) be a separable metric space, and 0 be a fixed element of Z. For any locally Lipschitz 

continuous mapping G from (Z, d Z) into some other metric space (Y, dy)  we put 

LG(r) := IIGIKrIfL (2.1.) 
:= sup[ dy(G(Zl),G(z2))/dZ(Zl,Z2) : Zl,Z2e K r , Zl#Z 2 } 

where K r := [ zeZ  : dz(z, 0) < r}. 

For any real valued and locally Lipschitz continuous mapping h defined on Z we put 
Bh(r) := lihlKrll,,, 

BLh(r) := IIhlKrlIBL = Lh(r ) + Bh(r) 

Note that L G as well as BL h axe nondecreasing and left continuous. 

For any probability measure Ix on the a-algebra B(Z) of Borel subsets on Z we put 

eg(r) := I.t(Z-K r) (2.2.) 
noting that ep. is nonincreasing, fight continuous and tends to zero for r---)**. 

The following theorem improves Theorem 2 in [5]. There, one can find also a similar result for the 

Prokhorov metric instead of the bounded Lipschitz metric. 

Theorem I.  Let F be a locally Lipschitz continuous mapping from (Z, d Z) into some other separable 

metric space (X, dx).Then there holds for any two probability measures It, v on B(Z) : 

13x(~tF"I,vF-1 ) < inf {13Z(ix,v)[4+max { I,LF(r)}] + 4ekt(r-I ) : r > 1 } (2.3.) 

and 

13X(I.tF-I,vF -'1) < []~Z(I.t,v)[8+max { 1,LF(1 +ekt-t(~Z(ix,v))) } ] (2.4.) 

where eix-~(t) := inf{r>0 : elt(r) < t} (t > 0). 

The proof of Theorem 1 (and also that of Theorem 2 below) is based on the following key 

Lemma 1.a) Let h:Z--->R be locally Lipschitz continuous. Then there holds for any two probability 

measures g, v on B(Z) and and I">0 : 
Jz h d(g-v)  [ ~ SZ._Kr(Ihl+Bh(r))d(ix+v ) + BLh(r ) [~Z(p.,v). (2.5.) 

b) If, in addition, h is bounded, then there holds for any r>l : 

[]z h d(g-v)  [ _< ~Z0t,v)[411hll,~+ BLh(r)] + 4JIhJlooep(r-1) (2.6.) 

Proof: According to [2, Lecture 7] them exists, for any r>0, a bounded, Lipschitz continuous extension 
h r of hlKr to the whole of Z, having the properties 

IlhrllBL = BLh(r),  [Ihrl[,~ = Bh(r ) (2.7) 
For any fixed r>l  wc thus obtain the following chain of inequalities: 
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I Jz h d(~-v) I 
< IJz(h-hr)dl.tl + I.[zhrd(~-v)l + Ilz(h-h~)dvl 

< [z_r r (lhl+Jhrl)d(I.t+v) + llhrllBL 13Z(B,v) 
< ~Z_Kr(Ihl+ Bh(r))d(t-t+v) + BLh(r) 13Z(p,,v), 

showing the validity of (2.5.). Under the assumption of b), we may proceed in our estimate by 

< 2 Ilhll**(I.t(Z.-K r) + v (Z-Kr)) + BLh(r ) [3Z(l,t,v ). 
The mapping <~:Z..--~R+ defined by ~b(z) := rain{ l,dz(z, Kr_l)} obeys 

II~IIBL ~ 2 and IZ_Kr < ¢~ < IZ__Kr_I. 

This leads to 

v (7_,-K r) < lz~V < Iz#d~ + '~ 'BL 13z~,V) < ~t(Z'-Kr-l) + 2 13Z(~t,v). 
Thus we get 

[~z h d(l.t-v) [ < 4 tlhll** I.t(Z--Kr_l) + [~zQ.t,v)[allhll**+ BLh(r)], 
which is (2.6.). 

Proof of Theorem l: For all ~:X--oR with the property IIVIIBL < I there holds according to 
Lemma lb) 

[Ix v d(~w-l_,, .r:-l) I =- I Iz VoF deft-v) I 
< inf {[3z(gt,v)[4+ Bl.qgoF(r)] + 4e~(r-1) : r > 1 } 

But 

Bl.agoF(r) -< I1~11o,, + II~IIL'LF(r) < max{ 1,LF(r)}, 
which yields (2.3.). (2.4.) follows immediately by putting r := l+ep-l(~z(IX,V)) in (2.3.), noting 

that ep(ela-t([]Z(I.t,v))) < 13Z(I.t,v ) by the right continuity o fe  W * 

Now we are going to deal with quantitative continuity of generalized moments with respect to 
bounded Lipsehitz distance. The following theorem is a slight improvement of [ 13, Thin.2.1]: 

Theorem 2. Let h:Z.--oR be an unbounded locally Lipschitz continuous mapping. Then there holds 

for any two probability measures lt,v on B(Z) and all p~l : 

I fz h dC~t-v) I ~ 13Z(rt,v)~O/P~-E~h(0)l +3( ~BLh0Z~)WV,~t + 'nLh0~)'V,v)] (2.8.) 
where we use the abbreviations 

Izl :-- dz(z,0) and IIBLh(Izl)llp,o := (~Z BLh(Izl)P °(dz)l/P (~=l.t,v) 
and BL h denotes the right continuous modification of the function BL h (note that BL h < BLh). 
Proof." Using l..emma la) we obtain, for any r>0, the following chain of inequalities: 

I Jz h d ~ - v )  I 
< ]Z_Kr(Ihl+Bh(r))(gt+v)(dz) + BLr(h) 13z(gt,v) 
< 2 ITfKt(BLh(lzl))(I.t+v)(dz ) + BLr(h ) 0Z(B,v) 

The f'trst summand may be estimated as follows: 

~Z_Ki(B Lh (Izl))(I.t+v) (dz) 

< BLh(r)I-P ~z B(_~.Lh(Izl)P(p.+v) (dz), 
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hence results 
l J" z h d(p.-v) [ 

< 2 BLh(r)I-P[( IIBLh0zl)llp,l.t)P + II(BLh(Izl)llp,v)P] + BLh(0 ~Z(P.,v) (2.9.) 

Now we put 

r := sup {s > 0 : BLh(S) < [ IIBLh(Izl)llp,~. + IIBLh(Izl)llp, v + Ih(0)l] [~Z(I.t,v) - t 'p  } 

In view of the left continuity of BL h and the right continuity of BL h we get 

BLh(r) ~ [ IIBLh(Izl)llp, ~ + IIBLh(Izl)llp, v + Ih(0)l] ~Z(p.,v) -lIp (2.10.) 

and 

BLh(r) > [ IIBLh(lzl)llp,i. t + llBLh(Izl)llp, v + Ih(O)l] [~Z(~,v)-Itp, 
the latter inequality implying 

BLh(r)I-P < min{( IIBLh(Izl)llp,~t)l-P, (IIBLh(Izl)llp,v)l-P} ~zO.t,v)I"(I/P) (2.11.) 

Combining (2.10.) and (2.11.) with (2.9.), we arrive at (2.8.). ¢ 

Remark  l.a) In virtue of the estimate 

BLh(r ) < Lh(r)(r+l ) + Ih(0)[ (r>0), (2.12) 
Theorem 2 is better than Thm. 2.1. in [13] in the sense that the finite moment condition 

Sz(Lh(lZi)lzl)PB(dz) < oo required there guarantees finiteness of IIBLh(IZl)llp, ~ , but not vice versa. 

Indeed, consider the example Z:=R, h:=sin(z2), p.(dz):=(z4+l)-Idz, p:=2. Then BLh(0<Tr+l, hence 

IIBLh(Izl)ll2,~. < ~ ,  whereas Lh(r)_>2(r-g) and thus Sz(Lh(IZJ)lzl)21z(dz) = 

b) Obviously, the inequalities in Theorems 1 and 2 remain valid i f e  W L F and BL h, respectively, are 

replaced by upper estimates. If, e. g., ~ is "of Gaussian type", i.e. obeys an estimate 

eli(r) < clexp(-c2r2) (r>O) (2.13.) 
and F is "of exponential type", i.e. obeys 

LF(r ) < k 1 exp(k2r) (2.14.) 
then (2.4.) yields 

~x(PF -1 ,vF-  1 ) ~ Y1 exp(Y2ll°g lBZ(I-t,v) 11/2) [3Z(~,v) (2.15.) 

(Note that, for all 8>0, the r.h.s, of (2.15.) is o([~Z~,V)i-8 ) for small ~z(~t,v).) 

If F has property (2.140, then h(z) := (dx(F(z),Xo)) k (where x o is some fixed clement of X and ke N) 

admits an estimate 

BLh(r) < Ctlk cxp(a2kr) (2.16,) 
If, in addition to (2.16,), It and v arc of "Gaussian type" (2.13.), then Theorem 2 yields, for all 8>0 : 

[I z h d(l.t-v) [ = o(prZ(~,v)l-8) for small ~Z~,V) (2.17.) 

We conclude this section by giving examples that at least the order of the estimates in Theorems 1 and 2 

is optimal for small [3Z(p.,v)): 

Example 1. X = Z = R+, k > 1, F(z) := z k. For 0<a<2 -1 we put 

P a  "ffi 2-1( 8 +8 it(i-k)), V a "=2-1(80+8 ~lt(1-k) +Ct ) 
• 0 a • ( • 

Then [~Z(I.ta,vct) <_ (x, ~l~-t([~Z(~a,vct))) = o~ I / ( l -k) ,  LF(r) = k r k - ~  

hence the r.h.s, of (2.4.) is bounded from above by a constant. On the other hand one has 
[3X(~ta F-l,vaF-l) > 2-1. 

Example 2. X = Z = R+, k,p > I, h(z) := z k. For O<a<l we put 

Pa := 80, Va := (l-a) 80 + aSa-t~. 
Then [$ZOta,Va) ~ a and BLh(r) ~ (k+l)r k, leading to 
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IIB._.~Lh(Izl)llp,l.t --0 and IlBLh(Izl)llp,v,x- < (~(k+l)P(a-l/kp)kp)I/P = k+l. 

Hence the r.h.s, of (2.8.) is bounded from above by const 'a l-lIp. But on the other hand there holds 

[ lz  h d(~a-va) l = czt-t/p. 

3. An application to approximate solutions of stochastic differential equations 

Let us return to the integral equation (1. I.). Under the conditions 

f is locally Lipschitz continuous and satisfies a linear growth condition 

g has a bounded and locally Lipschitz continuous derivative (3.1.) 

the solution x = S l(Z) of (1.L.) has the following representation [1, 16] 

x(t) -- ¢(~z(t), z(t)-z(0)) 

~z(t )  = Xo+ o It ~(~z(S), z(s)-z(0))ds (3.2.) 

~(a , l l )  = (~0"0a)Ca,ll) -1  fC~(a,ll)) 

Defining x as in (3.2.) even for any bounded, measurable z:[0,1]---~R, one gets a mapping S:z--~x 
which can be shown [14, Thin.l] to be continuous with respect to the norna 

Ilzll I := Iz(0)l + Jtlz(s)lds 

on [z : Ilzll,,o_<R} for each R > 0, hence is a continuous extension of S 1 in this sense. 

Obviously S maps the space C[0,1] (of continuous functions) and the space D[0,1] (of right continuous 

functions with left limits), respectively, into itself, and it can be shown [16, 14] that S is locally 

Lipschitz continuous w.r. to the sup-norm on C[0,1] and w.r. to the modified Skorokhod mettle d o on 

D[0,1] defined by 
do(Zl,Z2) := inf max{ Ilzl-z2o~.ll**, sup Ilogl~.(t)--~.(s)l ( t -s)- l l  } (3.3.) 

~.~A 0<s<t< l  

where A is the set of all mappings ~. from [0,1] onto [0,1 ] which are strictly monotonically increasing. 

A mapping za D[0,1 ] is said to have finite quadratic variation along some fixed sequence of partitions x n 

of [0,1 ] with mesh size tending to zero, if the weak limit ~ of the measures 

~n := 5". (z(ti+ 1 )-z(ti))2 St. 
lie ~n 1 

exists (cf. [6] ); the distribution function of ~ is denoted by t--o(z)(t). For ze D[0,1 ] of finite quadratic 

variation, x=S (z) obeys the integral equation [ 14, Prop. 1 ] 

x(t) = x o + Jtf(x(s))ds + Jtg(x(s-))dz(s) + 1/2" Jt(gg')(x(s-))d(z)e(s) 
(3.4.) 

+ Z [,~(x(s-),Az(s))-x(s-) - ~(x(s-)t ,z(s)] 

where 
Jtg(x(s-))dz(s) : :  no-lim tie ¢~i<t g(ti)(z(ti+l ) -z( t i ) )  

and 
(z)(t) = (z)e(t) + F. Az(s) 2 

s<t 

is the decomposition of (z) into its continuous and jump part. 
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For ze C[0,1] and (z)(t) -= t (which is a property shared by almost every Wiener path), (3.4.) specializes 

to 

x(t) = x o + Jt(f+(1/2)gg')(x(s))ds + Jtg(x(s-))dz(s) (3.5.) 

(which, for a Wiener input z, is an It6 stochastic differential equation with Stratonovieh correction). 

For a piecewise constant function z, (3.4.) specializes to 

x(t) = x o + Jtf(x(s))ds + Y. [¢(x(s-),Az(s))-x(s-)] (3.6.) 
s<t 

For certain coefficient functions f and g obeying (3.1.), the growth of S (and hence also that of L S) may 

be larger than exponential, as the following example shows: 

Example 3. Put f(o0 := or, g(o0 := sin(ore) (txe R). Then the function ~? oceuring in (3.2.) is given 

by 

¢(~x,~) = (2/~)arctanttan(ax/2) exp0q3)] (3.7.) 

Put Xo:=l, and define, for any n~N, a sequence (tat) by 

exp(tl) = l+ l /n  

(m-1/n)exp(tm) = m+l/n (n~>2) 

It is easily checked that 

t I < l/n ; 1/(nm) < t m < 2/[n(m-1)] for rn~>2 (3.8.) 

Choose CaE R such that 

¢(I/n, Cn) = 1-  1/n 

The following chain of implications 

arctan[tan(n/2n) exp0rCn)] = (n/2)(l- l /n)  

tan(x/2n) exp(nC n) = tan[ (•/2)(1-1/n)] 

=:, exp(nC n) = cot20t/2n) < n 2 

shows that 

Put 

define 

C a -< log n (3.9.) 

T m := tl+...+t m (m~>l), T0:--O, 

Zn(t ) := 0 for T2(m_l)_<t<T2m_! 

Cnfor T2m_l < t < T2m 

and let z n be the restriction of_z n to [0,1]. By (3.9.) there holds 

Ilznllo o < log n (3.10.) 

The solution Xn:=S(zn) of  equation (3.6.1 with input z n increases exponentially on any interval 

[Tm_l,Tm) from m-1/n to m+l/n,  and jumps at any time point T m from m+l/n to m+l-1/n. In 

parieular, x n is increasing and obeys 

xn(T m) > m. (3.11.) 

In virtue of (3.8.) we get the estimate 

T m < (3/n)1og m (3.12.1 

Combining (3.11.) and (3.12.), one arrives at 

xn(1) >_ exp(n/3) (3.13 .) 



which together with (3.10.) yields 

IlS(zn)ll,~ > exp((1/3)exp(llZnll,~)) 
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Under the following conditions, however, L S has only exponential growth: 

Theorem 3.[14, Thm.3] Assume, in addition to (3.1.), that f is  globally Lipschitz continuous and that 

0 < m < Igl < M < ~ for some real constants m,M. Then there holds for suitable k 1, k 2 

Ls(r) _< klexp(k2 r) (r>0) (3.14.) 

in any of the following cases: 

a) (Z, d Z) = (X, d X) =- (C[0,1], sup-distance) 

b) (Z, d Z) = (X, d X) = (D[0,1], do) 

c) (Z, dz) = (M[0,1], ds) ; (X, dx)  = (D[0,1], d s) 
where M[0,1] := {ze D[0,1] : z is nondecreasing], and d s is the Skorokhod distance defined by 

ds(z l,Z2) := inf max { Itzl-z 2 o ~.11~,, IlZ.-idll,o} (3.15 .) 
~eA 

If law is Wiener measure on C[O,I], then Claw obeys (2.13.) ; hence follows by (2.15.) that, under the 

assumptions of Theorem 3a) there exist constants YI, 72 such that for all probability measures v on 

C{0,1] there holds 

13C[0,1 ](ttwS-l,vS-l) 

< qClexp(7211°g 13C[0, l](law, v)lt/2) I~C[0,1] (law ,v) (3.16) 

If lap is (unit mean) Poisson measure on M[0,1], then a simple estimate shows that 

Clap (r) a 1/l-'(r) (3.17./ 

Hence follows by (2.4.) that, under the assumptions of Theorem 3c) there exists, for any 8>0, a 

constant c such that for all probability measures v on M[0,1] there holds 

~D[0, I ](I-tr ' S-I,vS-1) <- c. ~M[0,1] (!J.w,V) 1~5 (3.18.) 

Finally we mention convergence rates with respect to bounded Lipschitz distance of some 

approximations to Wiener resp. Poisson distribution: 

Example 4. Let, for ne N, (Yn,j)j=l ..... n be a sequence of independent random variables, with 

PIYn,j=I] --- l/n = 1-P[Yn,j---0] (j=l ..... n) 

Put Zn(t):= Y" Yni  for j / n < t < ( j + l ) / n ;  0_<j<--n. 
l<_i<j , 

Let lan be the distribution of z n, and lap be standard Poisson measure on M[0,1].Then there holds 

according to [4, Thm.6.1.] 

~M[0,1](lap, lan) = O(n -1) (3.19.) 

Combining (3.18.) and (3.19.) one gets 

[3D[0,1](lap S-l,lan S-l) = O(n -1+8) for all 8>0. (3.20.) 

Example $.a) Let, for ne N, (Ynj)j=l  ..... n be a sequence of independent random variables, with 

P[Yn,j=n-I/2] = P[Ynd=--n-l/2] = 1/2 (j=l ..... n) 

Put Zn(t ) :-- T. Yn ~ + (t-j/n)Yn,j+l for j/n < t -< (j+l)/n, 0_<j_<n. 
l<~j ,- 



211 

Let P'n be the distribution ofz n, and gw be standard Wiener measure on C[0,1].Then one derives from 

[8, Thin.l]:  

~C[0,1] (l'tw, gn) = O(n-l/21°g n) (3.21.) 
Combining (3.16.) and (3.21.) one gets, for suitable 7>0, 

I3C[0,1](IIwS-I,I.tnS-I) = O( n-l/2exp(~(log n)I/2)) (3.22.) 

b) If w(t) is a standard Wiener process and Wn(t) is a "polygonal approximation" of w(t) (coinciding 

with w in t -- 0, l/n, 2/n ..... 1 and piecewise linear between these points), then it can be shown (cf.[15, 

Remark 2b)]) that 

E[llW_Wnll**p I tip _- O(n-l/2(log n)1/2) (3.23.) 

holds for all p>-l. 

c) The convergence rote (3.23.) even holds true if w n is the conditional expectation of w with respect to 

a certain discrete o-algebra. More precisely, let In, 1 ..... In,m(n) be disjoint subintervals of R, each 

having standard normal probability m(n) -1. Put 

A n := ff({wjeIn,i]: j=l  ..... n; i=1 ..... m(n)]) 
where wj := nl/2(w(j/n)-w((j-l)/n). In [15, Thm.1] it is proved that w n := E[w I An] (which is a 

"polygonal approximation of w with finitely many relizations") has the convergence rate (3.23.), 

provided that sup{n/re(n) : ne N} is finite. 

d) If - in either of the cases b) and e) - Pn denotes the distribution of w n, then (3.23.) (with p=l) 

implies immediately that 

[3C[0,1](gw,gn) = O(n-l/2(l°g n) 1/2) (3.24.) 

which is a slightly better convergence rate than (3.21.). 

If ~ is a real valued mapping on C[0,I] and J is a convex majorant of BL V o S such that 

fJ(llzll,o)Pl.tw(dz) is finite for all p>l (a function J with these properties exists, e. g., for V(x) = Ilxll,,, k 

(k ~ N) under the assumptions of Theorem 3, of. (2.16.)), then Jensen's inequality guarantees that 

JJ(UzlIoo)P I.tn(dZ) < JJ(llzlloo)P law(dz) < 00 (n~ N) ; 

together with Theorem 2 then follows for all 5>0 

1] xl/(x) lanS-i(dx) - ! V(x) gwS-l(dx) [ = 0(n-(1/2)+8). 
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