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Abstract:

‘

Stochastic programming problems are viewed as parametric programs with respect to
the underlying probability distribution. General results about continuity properties of
expectation functionals and. of certain set-valued mappings (defined by probabilistic
cunstraints) with respect to the weak lupology on the set of probability
distributions: are proved. They are applied to obtain quantitative - distribution
sensitivity results for the optimal values of recourse and chance-constrained
problems,” respectively, of stochastic (linear) programming. These results ‘lead to
convergence rates for approximations of such problems (e.g. via certain discrete
© probability measures or via empirical measures).

1. Introduction

In the (theoretical and numerical) treatment of stochastic programmlr;’g problems,
their stability with respect to a perturbation of the distribution of the underlying
random variables plays an essential role :

If, eg, this distribution (or some of its parameters) is not known, the stability wr.
to the distribution is important when estimates for the distributions resp its
parameters are used. Questions of this kind were the starting point in (101, (111, (18],
(201, [27], (28] and [30]. There, "stability” means continuity of optimal values, optimal
solutions and (or) Kuhn-Tucker points with respect to the distribution resp. its.
parameters. (For a survey on stability results in parametric optimization, see, eq,

20

Another motivation for the interest in such stability results comes from the
~application of numerical methods for the solution of stochastic programming
problems. One of the main lines in the development of numerical methods consists in
approximating the ({(known) probability distribution by “simpler” (eg discrete)
distributions. ([5], [14], [16], (17], [20], [22], (26], see also the survey [31])

~The present paper ‘gives a contribution to the quantitative distribution sensitivity
anaigsis of stochastic programming problems, which, though suitable for both of the
directions mentioned above, stresses, as an application, the investigation  of
convergence rates of approximative methods. We explain our aim by the following
rather general class of stochastic programming problems:
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min{ [ f(z,x)u(dz)|x € R™, p({z e z|x e X(2)}) 2 a} (1.1)
2 ,
where Z is a Borel subset of IRS, { a mapping from Zx IR™ into IR, X 15 a set-valued
mapping from Z into IR™, a €[0,1] and u 1s a probability distribution on Z.

Note that a number of stochastic programs with recourse or with chance (i.e.
probabilistic) constraints fit into this class (see [15], [31] and Sections 3,4).

We consider (1.1)-as a parametric optimization problem with parameter y varying in
P (2), the set of all Borel probability measures on Z, equipped with the topology of
weak convergence (I4], [3, Ch. 1], [9]). It is well known that (even if Z is a seperable
metric space) this topology is metrizable, e.g. by the Prokhorov metric p and the
. bounded Lipschitz (or Dudley) metric g defined by ([7], (91, [32]) ‘

p(p,v)

inf{e >0|u(B) < v(BE) + €, fur all Borel sets B g 2} :
(12)

Buv) = sup{|f g(2)u(dz) - [ g(2)v(d2)|/ge BLZ,A), lglg < 1}

where B% = {zez|inf{d2D)[Z€B} < €} (B <2, £>0),
BLZ.O) = {g:2—> R|lgl, =
= sup Ja(2)| + sug_v-lg—(—z—)—:g—(zll <

v 2e2 242 d(z,2)
d denotes the metric on Z.

In tms'pap'er, we will impose only mild regularity assumgtions on f-and u, but will
restrict ourselves to the stability of the optimal value g@(p) of (1.1) with respect to
i :

More precisely, we will prove results on the Hélder- and local Lipschitz continuity of
9: £ (2) = IR with respect to the metrics § and p. (Let us recall here that the

metrics § and p are equivalent in view of o (y, v) plu,y) < (% Blu N3 wyve P(2)
(7 '

From [1, Theorem 7,.p. 53] resp. [19] it is rather obvious that Holder- resp. local
: Llpscmtz properties of the mappmgs

() = | f(z,x0u(d2)
V4 .
B> Colw) = {xe RMu{zezlxex@)) = o)

~are essential for the desired continuity propertles of ¢: P (2) — IR This will be
~ discussed in more detail in Sections 2 and 4. In Section 2, we abtain a result about
the Holder continuity (with respect to the metric g) of the mapping

p = | g(2)u(dz)
z
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'on certain subsets of A (2) (defined by moment conditions which are related to a
quantitative local Lipschitz property ([25], [12]) imposed on g).

In Section 3, we apply this resuit to stochastic linear programming problems with
complete fixed recourse, obtaining a convergence rate

lo(w) - p(ua)| = 0aCu,u) ! ~1/P)
(where p is linked with moment conditions on p and p,) if (p,) converges weakly
towards y. Especially, we investigate in Section 3 discrete approximations of p by
means of conditional expectohons and the approxzmatmn of u by empmcal measures.

In Section 4, we prove a result on the local Llpschttz cuntmuttg of the mapping

u'->C ()

with respect to‘the Hausdorff—(diétance and the Prokhorov-metric p and apply it to a
stochastic linear programming problem with chance constraints (Corollary 4.7)

2. Continuity properties of expectation functionals of. pronamhtg
measures with respect to the weak topology

Let (2,d) be a separable metric space and 2 (2) be the set of all Borel probability
measures on Z equipped with the topology of weak convergence (which will be

denoted by =) Let g be a mapping from Z into IR such that

g(2)- 93] = L(max{d(z,0),d(3 o)})a(zz) (23e2) : (2.1)

where L:IR, = IR, is continuous and monotonically 1ncreasmg, and 0eZ is some

distinguished element . . : ‘
For the following we put ' |

L{t) == Lt t | (teR,),
My = (J Laz,00P w@a)/P (pe PD), 15p <o)
z .
Note that [ |a(z)|u(d2) is finite if M) < oo, ‘

we 'are aiming at "quantitative continuity results” of the type

|| gt@ud2) - | g@vd)| < wlpy) (uve P@) ; (2.2)
Z Z '

I g:Z2— R is a bounded Lipschitz function, then (2 2) holds with

yuy) = llglg, Btww).

The main result of this section is an estimate of the type (2.2), where \y depends on
g, on the generahzed moments M (u) and Mp(v) and an p(p,v):
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2.1 Theorem: For all peli,oof, there holds (with notations and general assumptions as
, above) ;

| g@ua) - { g@ivda)| = CO1 + M) + M) pun)!~1/P 23)
for all p,v e A(2) such that Mp(l) + M) < oo (where C := max{4,2L(1)+ 10 |g(O) ).

Proof: Let p,ve A2(2) be such that Mplu) + Mp(v)? oo, For arbitrary r>0, g is Lipschité
continuous on K, := {ze 2|d(z,0) < r} with Lipschitz constant L(r), and there holds

sup |g(2)] = |g(o)] + Ly(n).
2eK,

Any bounded Lipschitz function from a subset of Z into IR has a bounded Lipschitz
extension to the whale of Z with the same BL-norm (9, Corollary 7.4]).

- Let g, be such an extension of gl . i.e

ligellgy = gl gL < 1g(ON + Ly(r) + L(P)
Hence we obtain ' ‘ ' '

| [ g dtu-v) <
2
< | [ (g-gpaul + | | gpatu-v)l + | [ (g-goav <
7. z z

< [ dgl+lghatuy) + llgllg 8w < ‘ (2.4)
2\K,
< (L0dz,00+Li(P2jg0Didz) + v(d2)+ (O L(r) +LINBLLY) =
2\K, | ' -
= [ L{d2,0)(u(d2)+v(d2)) + (Li{r)+2]g(0) Dusv)Z\K,) +
2\K, ’
+ (|g(o)] + Ly(r)+ L{r)PCp,v)

From Chebyshev's inequality we get

M@K = L™ [ L(d(2,00)Pu(d2) = 29
) ,,
Mo(p)
(‘ L,(r) )

this estimate together with Holder's inequality yields

[ Lidz. o) s ( Ldz,00Pu(ezn/Puz\k )17 <
Nk I\K, o : :

£ Mp(WPLN 1P | 28
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Using (2.5), (2.6) and the same estimates for v instead of y, we continue (2.4) by
| [ gdtu-v)| ¢
Z

< (Mp(P « AP TP+
+ (M(P + MyPYLLr) + 2]g(@)PL(r) P +

+ (L) + L) + g hauy) <
@n
s (M) + M) 28501 P + [g(0)|L(n)P) +

+ 200y + L(D g lg(0) ptu,v) )
where we put Aj = max{Mp(u)D",'Mp‘(v)p"}.
Now we choose r > O such that -
Ly(r) = max{np(u), Mp(v)}.ﬁ(u;v)ﬁ/ﬂ = AD‘/(D'?) ﬁ(u,V)"/p

(note that Ly(0) = 0, JL"lw

Li(t) = +o0 and L, 1 continuous, hence Ls is surjective)

We then have ApL(n)!™P = Bu) 1= 1/P ang

A0 = A/ CPY ()« maxfiy (0D peuv)
and continue (2.7) by

| [ gatu-v)| <
Z

S A MR LS| Dpy) <
< max{4,2L(1)+10]g(0) [J(1 M (w)ert (v)pCu) 11/

~ '(note that fi(u,v)“/p <2/p ¢ 2) i » ‘ D

22 Remark: In view of f(uy) < 2p(u,y) (uve A (2)), Theorem 2.1 improves . the
estimate in {24, Theorem 1] considerably. ‘

Theorem 2.1 states that the mapping u —> [ gdu is, for each p> 1,
, 2 , |
Holder continuous on the subset {ue P (2)|Mp(1) < oo} of £ (2) with exponent 1-1/p.

The next propoéitmn (which, in some sense, 1s a converse to Theorem 2.1), states
that this exponent is “optimal”

23 Propesition: Let 7= R, g(2) = 2 (ke IN fixed), L(t) :=kt“" Let further pe 2 (2)
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and p>| be such that Mp(u) <o Then there exists a sequence {ba) in P(Z) converging
weakly towards p such that (M) is bounded and

|| a@ud2) - | g@ued)] 2 ¢ plupn!"1/P 28
Z z
for all n€ IN and some constant C>0.

Proof: Put y, = (1= 3)ps -r}b“u(kp) (n e IN).

Then we observe that Mp(ua) = (1~ D[P [z[KP u(az) + 1 &P m!/p
o 4 ‘
is bounded, and that

| gatu-pa)] = |4 | 2*ut@z) - 3 0Pz cn/07! (29)
2 z '

for a suitable Cy > 0.

On the other hand there holds B(u,ua) € 2p(H,Ha) < % which implies that .
Bu,pa) 1 71/P < Cn! /! ‘ ‘ (2.10)

for a suitable C, > 0. . ; ;.
Combining (2.9) and (2.10) we arrive at (2.8). O

2.4 Remark: In a similar way as in Proposition 2.3 it can be shown that for general
Z, unbounded g:2—> IR and pe P (Z) such that []a(2)|Pu(dz) <co, there exists a
sequence (p,) in AP(Z) converging weakly towards y such that (2.8) holds.

3. Convergence rates for approximations in stochastic linear programming
with complete fixed recourse -

We consider the fonowmg class of problems, which has been studied in detaﬂ in [29]
and [15]): -

min{cTx + [ Qz,x)u(d2)|x € Ko} ] . o (3.1)
. / |
where Xo ¢ IR™ is a convex, compact polyhedron, and ce R™,

Q(z,x) = R(a,b-Ax), ' (32)
Vz = (a,h,A)€Z, VXeXo,

{(a.b,A)|b € IR, Ael(lRm R, o (3.3)
aele ue R wlusa) #IZJ}
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N(a,v) = inflalylye RY, wy = v, yz0}, (3.4
Vve IR

we £ (IRYIR™) 1s the “fixed recourse” matrix, and pe ~(2).

We generally assume that for all veIR™ the set {yeRd|Wy=v, y20} is non-void
(“complete fixed recourse”). This implies that N(a,v) < +eo for all aelRY and ve IR"
Besides, due to the duality theorem of linear optimization, for all aeRY such that
{ue IR"|wTu<a)} § @ the dual probiem

max{v ujue R, Wy <a}

has a solution u, with n(a,v) = vTu* Hence na,v) is finite for alt (a,v) €D where
D= {(aneRI«R fue RMwTusa} 4 B} (3.5)

In the sequel we will use the following result from linear parametn‘c optimization:

3.1 Lemma: [21, Theorem 8.8, p. 219}
N (as defined in (3.4)) is continuous on D (defined in (3.5)). Moreover, there exists a

finite number of convex cones K; (j=1,.,N) such that lT)K. = D, and there exist

“matrices C;€ £ (RSRM (j=1,.N) such that » _
Nav) = (C,a)Tv for all (a,v) ek, (36

In addition to Lemma 3A1,\ we need a quantitative continuity result on 1y:

32 Lemma:‘ N obeys @he following Lipschitz condition on D:
 Inere0-1anv] < MRar-aall + for-vill,

it max{lll + loll, loall » llvall < &,

" where M = jg)axN lic;ll and c; is as in Lemma 3.1, .

Proof: Obviously there holds in view of (3.6) for all (8),vy), (82,v2) €K; (j=1,. N):
InCav,va) - neaz,va)l < fle;llcllosll lvimvall + llvall llev-aall) <
< M.max{[lay] + [lvill llazll + Ilv. ”} Ulimazll + {lvi-valD.

Now put, for R>0Q,
Dg = D n {(av) e RAxIRF| [lafl + [[v]| < R}
Then 7 is continuous on Dp (Lemma 3.1), and, for all a,v € Dp there holds

N
na,v) e )l,;.{{(c,»a)rv},

ie. nlayv) takes one of the values of N mappings, all of which are Lipschilz
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con{inuous with constant MR. Using [13, Theorem 2.1}, one shows now, analagously to
{6, Theorem 2.2], that 1 itself is Lipschitz continuous on Dp with constant MR |

we now consider the mapping f:2x Xy —> IR,
f(z,%) = cTx + Q(z,%) '

‘ = cTx + Nab-Ax) for all z = (a,b,A)eZ, x &Ko, S
where Z is the subset of IROxIRMx / (IR™IRM) defined in (3.3) (equipped with the
norm [fz{| = flafl + flo]f + [ja]p. ' ’

f is real valued, as (a,b-Ax)e D for all % € Xg.

For ﬁe P(2), we denote by
o) = inf{ [ f(2,1)u(d2)|x € Xo}
.2 g
the optimal value of problem (3.1).

The following result deals with the quantitative continuity broperties of ¢ with
respect to the bounded Lipschitz metric on A2 (2):

3.3 Theorem: Let (u,) be a sequence which converges weakly towards pe P(2), an
assume that [ |[2]|2Pu(dz) < o and [ 12/12Pua(d2) < oo ‘
z - Z )

(neIN). Then there holds
lo(w-9un| = 01 + ([ [l2[|2Puntaz)) /P g p,)!= /Py
Z ;
Proof: We are going to apply Theorem 2.1; hence we need an estimate of the type
(2.1)
For arbitrary xeX, and 2 = (ab,A), 2 = (3,5,A)€Z there holds. according to Lemma

3.2

[1(zx)-1Z %)) = Ina,b-a%) - 1(3,5-Ax)] <

A

1 maxdflall+ llo-axll, 31}« I6-Ax|lilla-a ||+ lIb-B+(a-A)x]]) <

1A

M.k max{llzl, 21} llz-2)

where K := max{1, max{|[x|[ k € X,}}.

Hence, for each xeX,, g: f(.,x):Z—j» IR fulfills the Lipschitz condition (2.1) with
L) = Let, te IR,, and Lg = MK’, which yields, for each x e X, the estimate.

"

1120 < Lollzl + [10.0] < Lollz? + Klc]

From this we get, due to our assumption, that
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[ 11@x)|u(d2) < o, [ [f(z,%)|ua(d2) < o (nEIN, x € Xo)
Z 2z
and @(u) > ~oo, @(y,) > -

Now take an arbitrary x € Xo. Putting g:= f(.,x), we conclude from Theorem 2.1 that
there exists a constant C > 0 (independent of x) such that

If flzx)utdz2) - J f(z,x)a(d2)] <
Z
c(1 +Mp(u,.))r3(u ) TP (e Ny,

From this estimate our assertion results in view of

Mp(Un) = Lol | ”2”20 u..('dz))]/D “(neIN) and
2 ‘

lo(u) - plua)]| < 24P I f(z,x)u(dz) - [ 1z, x)ua(d2)] 0
2 z '

Theorem 3.3 improves the result of {24, Theorem 5] and can be used to investigate
speed ‘of convergence of approximations of different type for the problem (31). we
demonstrate this first for the case of discrete approximations of y by conditional
expectations. This type of approximation has gained particular attention in the
literature ([S], [16], [17], (31D).

3.4 Corollary Let e A(2) be such that [||z|PP u(dz) 15 finite for some p>1 Let, for
; ,

every ne IN,' Sp = {Zak lk-! ,,,,, m{n)} be a partition of Z mtyo Borel sets such that Sp+1
1s a refinement of S, (neIN) and that nLng S, generates the g-algebra of Borel

subsets of Z.
m(n)

Let y, = kZ ‘p(Z,,k)benk, where

=1

Teak = WZo)" [ zu(d2)  for k=1, ,m(n) and ne IN. )
znk

Then lo(w) - o(un)| = 0@ /P,

Proof: By maftingale convergence we have y, >y, and from Jensen's inequality we

get
[ 1I211%Puatd2) < | flz)|?Putaz) (ne IN)
z z ‘

Now Theorem 3.3 yields the assertion. v - - a
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As a furt'her application we mention the approximation of pe 2 (Z) by empirical

measures. Let (2;);¢iy be a8 sequence of independent Z- valued random variables with
dlstnbunon 4, and consider the empirical measures

-1 <
u..(w) = - %“1 Zi(w),nelN,weQ.

35 Corollary.
a) If ye P(2) is such that [ Hz"zpu(dz) 15 {imte for some p>1, we have

£l () - 9lun(eN)|] = 0(E[ﬁ(u u(eN]'= 17y

b) It [ |[z]|%du is finite for all a>1, and if the support of y is a subset of a k-
-2

dimensional space, then we have
El () - plua(w))]) = O(n"/ﬁ) for every A > max(2,k)

Proof: From the strong law of large numbers there follows (cf. [7,9]) that
Ha(w) >y almost surely.
Besides, there holds

[ N2ll?Puswdz) = 2 i -|2;(w)]|2D <o (wER, nEN).
n =1
Z

Hence Theorem 3.3 is applicable, and there exnsts a constant C>0 such that for ail
w € §2 there holds

e - gl £ €0+ (] 2 ]2 pnlw)d2)) Y P)ap a1 <
\ , ) |

n
= e+ (2 ) PP pn Ve ¢
Applying Hdlder's inequality, we get the estimate

= 2w PPN/ PIetpu, o/

EC () - glu(wh I < CO 2 EIC 1 =5
- o+ Iz 2P u(az) !/ Pyeptu, pytwonl 1 1/P
2

This proves assertion a)
b) From part a) there follows for any p>1.
EL () - @(ualeoD)]] = OCELRCw, (o)~ 17/PY
From [B, Prop. 3.4] we abtain that
E[R(Y, Halw)] = O(n"/“) for all A>max{2,k}. )
Hence the assertmn results. . . . O
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The just stated results on the mean-convergence of the optimal values may, on one
hand, be interpreted as a theoretical basis for methods of Monte-Cario-type for the
numerical treatment of recourse problems in stochastic linear programming. On the
other hand they provide asymptotic properties of the optimal values, if estimates for
the (unknown) distribution p, ‘based on empirical distributions, are used. For such a
. situation, similar asymptotic properties of the optimal values (and also of optimal
solutions under stronger regularity assumptions on (3.1) - (3.4) and p) are derived in
[10], {11], [27], [30] and in [18], where a rate-of-convergence-estimate for the .
‘optimal values is obtained w.r. to convergence in probability {[18, Theorem 2], but for
the case that the support of p is bounded (since the integrand f(z, x) is not bounded
on Zx X as required in (18, p. 350])

4. On distribution sensitivity of the ophmol value of chance-constrained
 programming probiems '

We are going to investigate (quantitative) continuity results of tne following
set-valued mapping (induced by a probabilitstic constraint) from P(Z) into IR™

= Col) = {xe R™|ux'dx)) 2 o} (41)

with respect to the weak topology in 2 (2) and the Hausdorff distance (on the class
of aH_nonemptg subsets of IR™M), respectively.

Thereby, 2:= RS (equipped with the norm || ), X is a set-valued mapping from Z

into IRM (where we denote, as usual XUB) = {ze2|Xz)nB t @) for Bc IR™ and
cu-:]o i

We are aiming at a result on the (local) Lipschitz-property of the mapping (4.1),

. where (based on the following lemma) the Prokhorov- metric (12) offers itself as a

metrlc for the weak topology in A(2).

41 Lemma: Let 5 be a blass‘of Borel subsets of Z and e P(Z) Assume. that
there exists a constant M>0 such that ~ '

o o ' (42)

sup w((dB)) <Me for all £>0

Be &

_ (where 9B is the topological boundary of B).

Then we have for all ve P(2):

a2 guy) = sup |u(B) - v(B)| < M+ Dpluy) ‘ (4.3)

Proof. For €>0 and B¢ 2, put B™€ = B\(Z\B)‘: and note that (3B)E = BE\B™ € (131 p. 14)
Now take an arbitrary €>p(p,v) and B e 5, and observe thet

WEE) s B EHE) s e < wB) v ¢ and
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v(B) < u(B%) + ¢
Hence follows

B(B) - ¥(B) < u(B)- p(B™%) + £ < BE\B™E) + € < (M+1)e
and .
¥(B) - u(B) < u(BE) - u(B) + £ < pBE\B™H) + £ < (M+1)e

~ which implies (43) ' ' _ O

42 Remark: Condition (4.2) implies that & is a y-unifarmity class ([3], p.14).
we mention two important exampies of classes Z that fulfill (4.2) under certain
assumptions on : ’
. S . ’
(i) '8 g {]-,2] = i>__<1}-oo;zi]|z=(2‘,.4.,zs):-: IRS}.
If the distribution function Fu belonging to ¢ is Lipschitz continuous (ie. if all

marginal distributions .of u have bounded densities), then (4.2) is fulfilled for 7
and y. Indeed, for B = ]-e0,2] (z € IRS) there holds:

QB < Fz+ ) - Flz-) < (a9
st ler D)@ Dl = 2yl = 2

is a Lipschitz constant of Fuh

(where € = (g,.,€) € IRS, and Ly

(i1) & < {B ¢ IR®| B is convex and Borel}
For thms case, (3, Theorem 3.1} contains conditions on the densxtg of ue Al IRS)
that imply (4. 2)

Now we state a first contmuitg result on the mappmg' (4.1):

© 43 Lemma; Let pe P(2), and B = {X{{xD]x € IRM} - be a class of Borel subsets of Z
Assume that ’ -

there are constants L >0 and bo >0 such that .
' A v (4.5)
Ca'lw) € Cd"b(u)u’ for all a'ela-bo,al, b €10,bol.
Then there holds
D(Cy (W), Cqlv)) < La glp,v)
’ ‘ (46)

for all ve P(2) with a g(uv) £ b

Praof: If a g(p,v) = 0, we have C () = C (v).
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Hence we assume 0 < ag(py) = b<bg

For all x € C (k). there holds

VOCRD) 2 DAY - b 2 asb-b =
thus we get the inclusion Cg Ly (W) € C (V)

and anatogously Calv) € Cpglu).
Using (45), we abtain  C,(v) ¢ Ca-al) € Cd(u)Lb
and Calw) & Couptt ¢ OB
which immediately yields (4.6) : O

Combining Lemmata 4.1 and 4.3, we arrive directly at
' 44 Progosition' Let pe P(2), and £ = {x' )1xe IRm} be a class of Borel sets of 2.

Assume the validity of (4.2) and (4.5). Then there holds
: D(Cq (1), Co(v)) = LM+ 1)p(u,v)

for all ve P(2) with p(y,v) sufficiently small.
45 Remark: Condition (4.2) in Proposition 4.4 was discussed in Remark 42 The

essential new condition we impose is the Iocal Lipschitzian pmpertg (45) of the
mappmg

@' = Co(w) = {xe RM[u(x"(x}) 2 o}

at a €]0,1[ [23] contains general resuits which seem to be useful in this particular
case, too (eg. (23, Corollary 3.5] states conditions an t(x) = p(X"'({x })) x € IRM (even
for nonsmooth t) that imply (4.5). ~

But, for the particular case we shall discuss now, we prefer to gwe a self-contained
proof.

For the rest of this section, we consider the case
X(2) = {xeIRM]Ax 2 2} (ze7=1RS)

where Ae z(!Rm IRS), and check the apphcam 1ty of Proposition 44 on the set-valued
mapping

o Colu) = {xe R™u(x"a)) 2 o) -

= {xeRM™|u({z e RS|A% 2 2}) » a} : (47)

= {xe lleFu(;Ax) > a}

where O<a <1, and F, 1s the distribution function of pe ~(2)
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46 Theorem: Let a€l0,1[ and Ae Z (R™MIRS) have rank ssm. Assume that the
distribution function Fu of ye P(IRS) is Lipschitzian and satisfies the following

"(1ocal) inverse Lipéchitz condition at a”

Fulz+€) 2 F(2) + ye
for all zs{o,b,]/, €= (£,..6), zeFu"([a~b,,a+b,l)

There exist positive constants vy, b, and b, such that } B
(4.8)

Then there is a constant Lo > O such that

D(Cg (M), Cqlv)) = Loplp,y)
~ for all ve P(IRS) with sufficiently small p(y,v).

Proof. As £ = {(X'{xD|xc R ¢ {l-w0,21|z€ RS}, and as Fu is assumed to be
Lipschitzian, condition (4.2) is fulfilled in view of Remark, 4.2 (i). We now show that
also condition (45) is satisfied: , o
Due to the assumption that A has rank s < m, there exists an Xo € IR™ such that
Axg = (1,10 € RS :
We now put b = min{by,b,y} and L = 18all + 1 and show that

y .

Cq'(W) € Colip (WS for all @' ela-do,al. 8 €10,50)

Choose such an a' and &, take an arbitrary x€C (p) and put y = x + 1 K.
. ' d . Y

Then there holds d(x,y) < all § < L and
, : Y
F(Ag) = Fy(Ax+ & Axg) = By (Ax+ & (1,1
u g p y 0 u \f P
2 Fy (Ax) *%y 2a'+b

This means that yeCp (1), andvc’onsequenUg, that xecagg(u)u’ Hence Proposition
44 is applicable, yielding the assertion, | , g ‘

4.7 Corollary. Assume ‘that_ the conditions of Theorem 46 are satisfied for aelo,if,
Ac L (RMIRS) and pe A (RS). Let ce R™ and g(p) = inf{cTx|x e R™, F (Ax)za} (and

Tlikewise g(v) for v € A(IR%)). Assume that @(u) and g(v) are finite, and that p(p,v) is
sufficiently small. Then there is a constant L, >0 (not depending on v) such that
lo(w) - @] < Liptu,v) '

~ Proof: For all € >0,'there exists an x € C,(u) such thét eTx < @(p) + €. Due to Theorem
46 there exists a y&C,(v) such that d(x,y) s Lop(u,v) + €. This implies

340




9 - o scly-clx+es IcT(x -y +
sll ||d(xg v :
< flelltoptuy + E(Ilcll e

Interchanging the roles of u und v, we arrive at our assertion. a

48 Remark: The proof of Theorem 4.6' (together with Lemma - 4.3) shows that-the
mapping p > C(p) s (locally) Lipschitz continuous even w.r. to the Levy-metric

Muy) = inf{e >0]u@B) < v(BF) + &, v(B) £ (B + ¢,
~ for every B = ]-»0,2], 2¢€ IRS} ‘
(which also metrizes the weak topology on A (IRS)).

Thereby, the'es*sential condition is-the (local) inverse Lipschitz property (4.8) for F‘J

in a. For this property we.finally 'gw’e a sufficent condition, which shows that, eg.
the multivariate normal distribution u obeys all conditions of Theorem 4.6 (see also
Remark 4.2 ().

‘ ) . 49 Lemma Assume that the msmbutlon function Fu of ye AURS) has a contmuous
strictly positive density f Then condition (48) of Theorem 456 is satisfied for all

‘a €01

. Proof. We choose 5,>0 such that Q< :1'~ dy<a+by<1 and put
M= Fu"([a-m,ua*rb,]) c IRS.

[ S & As lim F,(2) = 0, there exist a constant C>0 such t.hat' :

2> (-00,.,~o0)

[min 2| <C (2= (2,29 €M
=18 :

Wwe now put’ m = min fu(2) and y = by = mcS™!
2€l-2C, 2P

Then there holds for artntrarg zen and ze[O 62] (we are assummg without loss of

generahtg that 2y = min 2;):
l-l, .8

. 2% }Zz ZS L ’
Fuzve) -Fy@= [ [ ] fultntgddty o dtg 2

W

24 -00 -oo
2+ -C -C ~ ~
| R I MY (R )at, LdtgzmeCS! < ye
. 2, -2C -2C ! ‘ ;
where E:/= (££) Consequenug, Fu satisfies condition (4.8). " ' ad

o
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