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Abstract. An analysis of convex stochastic programs is provided when the underlying probabil-
ity distribution is subjected to (small) perturbations. It is shown, in particular, that ε-approximate
solution sets of convex stochastic programs behave Lipschitz continuously with respect to certain
distances of probability distributions that are generated by the relevant integrands. It is shown
that these results apply to linear two-stage stochastic programs with random recourse. We discuss
the consequences on associating Fortet–Mourier metrics to two-stage models and on the asymptotic
behavior of empirical estimates of such models, respectively.
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1. Introduction. Stochastic programming deals with models for optimization
problems under (stochastic) uncertainty that require a decision on the basis of prob-
abilistic information about random data. Typically, deterministic equivalents of such
models are finite- or infinite-dimensional nonlinear programs depending on the prop-
erties of the distribution of the random components of the problems. Their solutions
depend on the probability distribution of the random data via certain expectation
functionals. Many deterministic equivalents of stochastic programming models take
the form

(1.1) min

{
E
P f0(x) :=

∫
Ξ

f0(ξ, x)P (dξ) : x ∈ X

}
,

where X is a closed convex subset of R
m, Ξ is a closed subset of R

s, P is a Borel
probability measure on Ξ, and E

P denotes expectation with respect to P . The function
f0 from R

m × Ξ to R = [−∞,∞] is a convex random lower semicontinuous (lsc)
function,1 and, in particular, this means

• (ξ, x) �→ f0(ξ, x) is Borel measurable, and
• for all ξ ∈ Ξ, f0(ξ, ·) is lsc and convex.

It is part of the stochastic programming folklore, repeatedly observed in practice,
that the solutions, or at least the approximating solutions, are quite robust with
respect to reasonable perturbations of the probability distribution of the random
components of the problem. In this paper, we substantiate this belief by focusing
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962 W. RÖMISCH AND R. J.-B. WETS

our analysis on the approximating solutions for which we are able to derive Lipschitz
continuity without even requiring fixed (deterministic) recourse.

In the following, we denote by P(Ξ) the set of all Borel probability measures on
Ξ and by v(P ), S(P ), and Sε(P ) (ε ≥ 0) the infimum, the solution set, and the set of
ε-approximate solutions to (1.1), i.e.,

v(P ) := inf E
P f0 := inf

{
E
P f0(x) : x ∈ X

}
,

Sε(P ) := ε-argmin E
P f0 :=

{
x ∈ X : E

P f0(x) ≤ v(P ) + ε
}
,

S(P ) := argmin E
P f0 := S0(P ).

Since, in practice, the underlying probability distribution P is often not known pre-
cisely, the stability behavior of the stochastic program (1.1) when changing (perturb-
ing, estimating, approximating) P is important. Here, stability refers to continuity
properties of the optimal value function v(.) and of the set-valued mapping Sε(.) at
P , where both v(.) and Sε(.) are regarded as mappings given on certain subsets of
P(Ξ) equipped with some probability (semi)metric.

Early work on stability of stochastic programs is reported in [11, 19, 27] and later
in [1]. Quantitative stability of two-stage models was studied, e.g., in [25, 26, 29, 18].
A recent survey of stability results in stochastic programming is given in [24]. Most
of the recent contributions to (quantitative) stability use the general framework and
the results of [3, 14] and [23, Chapter 7J], respectively.

In the present paper, we take up an issue brought to the fore in [38, section
4]. Since solutions derived, when actually solving (1.1), are usually ε-approximate
solutions of an approximating problem where P has been replaced by an approximat-
ing measure Q, it is crucial to investigate the (quantitative) continuity properties of
the (set-valued) mapping ε-argmin as a function of P , i.e., P �→ Sε(P ), from P of
probability measures to the space of closed convex subsets of R

m.
Quantitative perturbation results for ε-approximate solutions in optimization are

given in [4] and [23, Chapter 7J]. The corresponding estimates make use of the epi-
distance between the objective functions of (1.1) and its perturbations. In our analysis,
the corresponding subset P of probability measures is determined by satisfying certain
moment conditions that are related to growth properties of the integrand f0 with
respect to ξ. The epi-distances of the objective functions can be bounded by some
probability semimetric of the form

(1.2) dF (P,Q) = sup

{∣∣∣∣
∫

Ξ

f(ξ)P (dξ) −
∫

Ξ

f(ξ)Q(dξ)

∣∣∣∣ : f ∈ F
}
,

where F is an appropriate class of measurable functions from Ξ to R and P , Q
are probability measures in P. First, we show in section 2 that classes of the form
Fρ = {f0(·, x) : x ∈ X ∩ ρB} for some ρ > 0 and B denoting the unit ball in R

m and
the corresponding distance dFρ are suitable to derive the desired stability results.

In section 3 we then provide characterizations of the function classes Fρ for two-
stage models with random recourse. Two-stage stochastic programs arise as deter-
ministic equivalents of improperly posed random linear programs of the form

min{cx : x ∈ X,T (ξ)x = h(ξ)},

where X is polyhedral and the (technology) matrix T (ξ) and the vector h(ξ) depend
on a random vector ξ. Given a realization of ξ, a possible deviation h(ξ) − T (ξ)x
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is compensated for by the additional cost q(ξ)y(ξ), where y = y(ξ) belongs to a
polyhedral set Y and satisfies W (ξ)y = h(ξ) − T (ξ)x. Here, the cost coefficient q(ξ)
and the compensation or recourse matrix W (ξ) (may) depend on the realization. The
modeling idea consists in adding the expected compensation cost E[q(ξ)y(ξ)] to cx.
By minimizing the objective function cx + E[q(ξ)y(ξ)] first with respect to y(ξ), we
arrive at the function

f0(ξ, x) := cx + inf{q(ξ)y : y ∈ Y,W (ξ)y = h(ξ) − T (ξ)x},

whose expectation has to be minimized with respect to x ∈ X. Since the decisions
x and y(ξ) are made before or after the realization of ξ, they are called first- and
second-stage decisions, respectively.

While Lipschitz continuity properties of the integrands f0 with respect to ξ are
well understood for fixed recourse [36], much less is known for random recourse. In
section 3 we deal with the following two cases: (i) full random recourse by imposing
local Lipschitz continuity of the (second-stage) dual feasibility mapping and (ii) a
specific lower diagonal randomness of the recourse matrix. The latter situation occurs,
for example, in the following two important cases.

Let us first consider a dynamical decision process, as in a variety of applica-
tions, where the compensation idea is repeated l times after the realization of a new
random vector ξj , j = 1, . . . , l. Then we have second-stage decisions yj = yj(ξj)
with corresponding cost qj(ξj)yj which satisfy the constraints yj ∈ Yj and Wjjyj =
hj(ξj)−Wjj−1(ξj)yj−1 for j = 1, . . . , l, where l ∈ N, y0 is the first-stage decision and
Wjj−1(ξj) are (random) technology matrices. This leads to the function

f0(ξ, y0) = cy0+inf

⎧⎨
⎩

l∑
j=1

qj(ξ)yj : Wjjyj = hj(ξ) −Wjj−1(ξ)yj−1, yj ∈ Yj , j = 1, . . . , l

⎫⎬
⎭ ,

where ξ = (ξ1, . . . , ξl) and qj(ξ) := qj(ξj), etc. The expectation of this function
is to be minimized in multiperiod two-stage stochastic programming models. If we
introduce the second-stage decision vector y = (y1, . . . , yl), the corresponding recourse
matrix W (ξ) is a block lower triangular matrix containing Wjj , j = 1, . . . , l, in the
main diagonal and Wjj−1(ξ), j = 1, . . . , l, in the lower diagonal (see section 4). Hence,
the recourse matrix W (ξ) may be random even if the jth recourse matrix Wjj for the
decision yj is fixed, but (at least) one of the technology matrices Wjj−1(ξ) is random.

Another interesting case appears, second, in risk averse two-stage stochastic pro-
gramming models, if risk functionals (e.g., the conditional value-at-risk [22]) are incor-
porated into two-stage stochastic programs. The conditional or average value-at-risk
(at level α ∈ (0, 1]) may be defined by

AV aRα(z) =
1

α

∫ α

0

V aRγ(z)dγ = inf

{
r +

1

α
E[max{0,−r − z}] : r ∈ R

}

= inf

{
r1 +

1

α
E[r

(2)
2 ] : r1 ∈ R, r2 ∈ R+ × R+, r

(1)
2 − r

(2)
2 = z + r1

}
,(1.3)

where z is a real random variable on some probability space. If the average value-at-
risk replaces the expectation in a two-stage model with fixed recourse, the latter is of
the form

(1.4) min {cx + AV aRα(q(ξ)y) : x ∈ X, y ∈ Y,Wy = h(ξ) − T (ξ)x} .
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Using the two-stage representation (1.3) of AV aRα, the preceding optimization prob-
lem is equivalent to (1.1) with

f0(ξ, (x, r1)) := cx + r1 + inf

{
1

α
r

(2)
2 : y ∈ Y, r2 ≥ 0, r

(1)
2 − r

(2)
2 = q(ξ)y + r1,

Wy= h(ξ) − T (ξ)x

}
,

where (x, r1) is the first-stage decision varying in X × R. When introducing the
second-stage decision (y, r2), the recourse cost qavar(ξ), recourse matrix Wavar(ξ), and
cone Yavar take on the form
(1.5)

qavar(ξ) =

⎛
⎝ 0

0
α−1

⎞
⎠ , Wavar(ξ) =

(
W 0 0

q(ξ)� −1 1

)
, and Yavar = Y × R

2
+ .

Hence, the recourse matrix gets random if the recourse cost of the original model is
random. The same lower diagonal randomness effect appears if general polyhedral
convex risk measures are used instead of AV aR (see [7, section 4.1.1]).

In sections 3 and 4 we characterize the local Lipschitz continuity behavior of the
functions Fρ. We also show that the distances dFρ

are bounded by Fortet–Mourier
(type) metrics and that the metric entropy of Fρ in terms of bracketing numbers is
reasonably “small.” In this way, we obtain new results on stability (Corollaries 3.6
and 4.3 for the cases (i) and (ii), respectively) and on the asymptotic behavior of
nonparametric statistical estimates (Theorem 5.2) of random recourse models.

2. Quantitative stability. Given the original probability measure P and a per-
turbation Q of P we will give quantitative estimates of the distance between (v(Q),
Sε(Q)) and (v(P ), Sε(P )) in terms of a probability metric of the type (1.2). Our
analysis will be based on the general perturbation results for optimization models in
[23, section 7J].

Let us now introduce functions, spaces, and probability measures that are useful
for characterizing classes of probability distributions such that the stochastic program
(1.1) is well defined and one can proceed with the perturbation analysis. We consider

F = {f0(·, x) : x ∈ X},

PF =

{
Q ∈ P(Ξ) :

∫
Ξ

inf
x∈X∩ρB

f0(ξ, x)Q(dξ) > −∞ ,

sup
x∈X∩ρB

∫
Ξ

f0(ξ, x)Q(dξ) < ∞ ∀ ρ > 0

}
,

where B is the closed unit ball in R
m. We note that the infimum function ξ �→

infx∈X∩ρB f0(ξ, x) is measurable for each ρ > 0 as f0 is a random lsc function; cf. [23,
Theorem 14.37].

For any ρ > 0 and probability measures P, Q ∈ PF we consider their dF,ρ-distance
defined by

dF,ρ(P,Q) = sup
x∈X∩ρB

∣∣EP f0(x) − E
Qf0(x)

∣∣ .
Hence, dF,ρ is a distance of type (1.2), where the relevant class of functions is Fρ =
{f0(·, x) : x ∈ X ∩ ρB}. It is nonnegative, finite, and symmetric and satisfies the
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triangle inequality; i.e., it is a semimetric on PF . In general, however, the class Fρ

will not be rich enough to guarantee that dF,ρ(P,Q) = 0 implies P = Q. A valuable
consequence of the definition of the class PF is that the function x �→ E

Qf0(x) =∫
Ξ
f0(ξ, x)Q(dξ) is lsc at any Q belonging to PF by appealing to Fatou’s lemma.

Moreover, it is convex on R
m and finite on X for any such Q.

Since our statements and proofs rely extensively on estimates for the epi-distance
between (lsc) functions, we include a brief review of the relevant definitions and im-
plications. Let dC(x) = d(x,C) denote the distance of a point to a nonempty closed
set. The ρ-distance between two nonempty closed sets is by definition

dlρ(C,D) = sup
||x||≤ρ

|dC(x) − dD(x)|.

In fact, it is just a pseudodistance from which one can build a metric on the hyperspace
of closed sets, for example, by setting dl(C,D) =

∫∞
0

dlρ(C,D)e−ρ dρ. Estimates for
the ρ-distance can be obtained by relying on a “truncated” Pompeiu–Hausdorff-type
distance:

d̂lρ(C,D) = inf{η ≥ 0 : C ∩ ρB ⊂ D + ηB, D ∩ ρB ⊂ C + ηB} .

Indeed one always has [23, Proposition 4.37(a)]

d̂lρ(C1, C2) ≤ dlρ(C1, C2) ≤ d̂lρ′(C1, C2)

for ρ′ ≥ 2ρ + max {dC1(0), dC2(0) }. Our main result is stated in terms of this latter
distance notion. If we let ρ → ∞, we end up with the Pompeiu–Hausdorff distance

dl∞(C,D) = lim
ρ→∞

dlρ(C,D) = lim
ρ→∞

d̂lρ(C,D)

between the closed nonempty sets C and D; see [23, Corollary 4.38].
The distance between (lsc) functions is measured in terms of the distance between

their epi-graphs, so for ρ > 0,

dlρ(f, g) = dlρ(epi f, epi g), d̂lρ(f, g) = d̂lρ(epi f, epi g),

and dl(f, g) = dl(epi f, epi g). However, since our sets are epi-graphs (in R
m+1), it is

convenient to rely on the “unit ball” to be B× [−1, 1]; this brings us to an “auxiliary”

distance d̂l
+

ρ (f1, f2) defined as the infimum of all η ≥ 0 such that for all x ∈ ρB,

min
y∈B(x,η)

f2(y) ≤ max{f1(x),−ρ} + η, min
y∈B(x,η)

f1(y) ≤ max{f2(x),−ρ} + η.

For lsc f1, f2 : R
n → R, not identically ∞, one has [23, Theorem 7.61]

d̂l
+

ρ/
√

2
(f1, f2) ≤ d̂lρ(f1, f2) ≤

√
2 d̂l

+

ρ (f1, f2).

Our first stability result, already announced in [5], is concerned with the solution set
S(P ), rather than Sε(P ), which will be dealt with later.

Theorem 2.1. Let P ∈ PF , and suppose S(P ) is nonempty and bounded. Then
there exist constants ρ > 0 and δ > 0 such that

|v(P ) − v(Q)| ≤ dF,ρ(P,Q),

∅ 
= S(Q) ⊂ S(P ) + ΨP (dF,ρ(P,Q))B
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hold for all Q ∈ PF with dF,ρ(P,Q) < δ, where ΨP is a conditioning function asso-
ciated with our given problem (1.1); more precisely,

ΨP (η) := η + ψ−1
P (2η), η ≥ 0,

with

ψP (τ) := min
{
E
P f0(x) − v(P ) : d(x, S(P )) ≥ τ, x ∈ X

}
, τ ≥ 0.

Proof. For any Q ∈ PF , the function E
Qf0 is lsc, proper, and convex. Define

FQ(x) :=

{
E
Qf0(x), x ∈ X,
+∞ else

for each Q ∈ PF and rely on [23, Theorem 7.64] to derive the result. Let ρ̄ > 0 be
chosen such that S(P ) ⊂ ρ̄B and v(P ) ≥ −ρ̄. For ρ > ρ̄ and δ such that 0 < δ <
min{ 1

2 (ρ − ρ̄), 1
2ψP ( 1

2 (ρ − ρ̄))}, since FQ and FP are convex, Theorem 7.64 of [23]
yields the estimates

|v(P ) − v(Q)| ≤ d̂l
+

ρ (EP f0,E
Qf0),

∅ 
= S(Q) ⊆ S(P ) + ΨP (d̂l
+

ρ (EP f0,E
Qf0))B

for any Q ∈ PF with d̂l
+

ρ (EP f0,E
Qf0) < δ.

Now, let η be chosen such that η ≥ maxx∈X∩ρB |EP f0(x)−E
Qf0(x)|. Clearly, the

inequalities

min
y∈x+ηB

FQ(y) ≤ max{FP (x),−ρ} + η,

min
y∈x+ηB

FP (y) ≤ max{FQ(x),−ρ} + η

are trivially satisfied when x 
∈ X. When x ∈ X ∩ ρB, we have

min
y∈x+ηB

FQ(y) ≤ FQ(x) ≤ FP (x) + η = max{FP (x),−ρ} + η,

min
y∈x+ηB

FP (y) ≤ FP (x) ≤ FQ(x) + η ≤ max{FQ(x),−ρ} + η,

and, thus, d̂l
+

ρ (FP , FQ) ≤ η. Letting η pass to its lower limit leads to

(2.1) d̂l
+

ρ (FP , FQ) ≤ max
x∈X∩ρB

|EP f0(x) − E
Qf0(x)| = dF,ρ(P,Q).

Since the function ΨP is increasing, the proof is complete.
Simple examples of two-stage stochastic programs show that, in general, the set-

valued mapping S(.) is not inner semicontinuous at P (cf. [24, Example 26]). Further-
more, explicit descriptions of conditioning functions ψP of stochastic programs (like
linear or quadratic growth at solution sets) are known only in some specific cases—for
example, for linear two-stage stochastic programs with finite discrete distribution or
with strictly positive densities of random right-hand sides [28].

As we shall see, we are in much better shape when we consider the stability
properties of the sets Sε(·) of ε-approximate solutions. Indeed, Sε(·) even satisfies a
Lipschitz property under rather mild assumptions.
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Theorem 2.2. Let P,Q ∈ PF and such that the corresponding solution sets S(P )
and S(Q) are nonempty. Then there exist constants ρ > 0 and ε̄ > 0 such that

d̂lρ(Sε(P ), Sε(Q)) ≤ 4ρ

ε
dF,ρ+ε(P,Q)

holds for any ε ∈ (0, ε̄), where dF,ρ+ε(P,Q) < ε.
Proof. The assumptions imply that both E

P f0 and E
Qf0 are proper, lsc, and

convex on R
m. Let ρ0 be chosen such that both S(P ) ∩ ρ0B and S(Q) ∩ ρ0B are

nonempty and min{v(P ), v(Q)} ≥ −ρ0. For ρ > ρ0 and 0 < ε < ε̄ = ρ − ρ0, one
obtains, from the proof of [23, Theorem 7.69], the inclusion

Sε(P ) ∩ ρB ⊆ Sε(Q) +
2η

ε + 2η
2ρB ⊆ Sε(Q) +

4ρ

ε
ηB

for all η > d̂l
+

ρ+ε(E
P f0,E

Qf0). This implies

Sε(P ) ∩ ρB ⊆ Sε(Q) +
4ρ

ε
d̂l

+

ρ+ε(E
P f0,E

Qf0)B.

The same argument works with P and Q interchanged. Finally, we appeal to the
estimate (2.1) to complete the proof.

The above estimate for ε-approximate solution sets allows for the solution sets to
be unbounded and, thus, extends [24, Theorem 13]. The result becomes somewhat
more tangible if the original solution set S(P ) is assumed to be bounded.

Corollary 2.3. Let P ∈ PF and S(P ) be nonempty and bounded. Then there
exist constants ρ̂ > 0 and ε̂ > 0 such that

dl∞(Sε(P ), Sε(Q)) ≤ 4ρ̂

ε
dF,ρ̂+ε(P,Q)

holds for any ε ∈ (0, ε̂) and Q ∈ PF such that dF,ρ̂+ε(P,Q) < ε.
Proof. Let δ and ρ be the constants from Theorem 2.1, and put ε̂ = δ. Let

ε ∈ (0, ε̂) and Q ∈ PF such that dF,ρ+ε(P,Q) < ε . Then S(Q) is also nonempty and
bounded. Since the functions E

P f0 and E
Qf0 are lsc and convex, the level sets Sε̂(P )

and Sε̂(Q) are bounded since the sets S0(P ) and S0(Q) are bounded (cf. [20, Corollary
8.7.1]). Next we choose ρ0 as in Theorem 2.2 and ρ̂ such that ρ̂ > max{ρ, ρ0 + ε̂} and
both level sets Sε̂(P ) and Sε̂(Q) are contained in ρ̂B. Then the result follows from
Theorem 2.2 by taking into account that

d̂lρ̂(Sε(P ), Sε(Q)) = dl∞(Sε(P ), Sε(Q))

holds because of the choice of ρ̂.
The results illuminate the role of the probability distances dF,ρ given that the

parameter ρ > 0 is properly chosen. These probability metrics process the minimal
information about problem (1.1) and allow us to derive remarkable stability properties
for the optimal values and (approximate) solutions. Clearly, the preceding stability
results remain valid if the set Fρ is enlarged to a set F̂ and the set PF is reduced to
a subset on which the new distance dF̂ is finite and well defined.

Hence, it is important to identify classes F̂ of functions that contain {f0(·, x) :
x ∈ X ∩ ρB} for any ρ > 0. For many convex stochastic programming problems the
functions f0(·, x), x ∈ X, are locally Lipschitz continuous on Ξ with certain Lipschitz
constants L(r) on the sets {ξ ∈ Ξ : ‖ξ − ξ0‖ ≤ r} for some ξ0 ∈ Ξ and any r > 0. In
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many cases, the growth modulus L(r) does not depend on x, particularly when x is
varying only in a bounded subset of R

m. Hence, function classes of the form

FH := {f : Ξ → R : f(ξ)−f(ξ̃) ≤ max{1, H(‖ξ− ξ0‖), H(‖ξ̃− ξ0‖)}‖ξ− ξ̃‖ ∀ξ, ξ̃ ∈ Ξ}

are of particular interest, where H : R+ → R+ is nondecreasing, H(0) = 0, and
ξ0 ∈ Ξ. The distances introduced in (1.2), but with F = FH , i.e.,

dFH
(P,Q) = sup

{∣∣∣∣
∫

Ξ

f(ξ)P (dξ) −
∫

Ξ

f(ξ)Q(dξ)

∣∣∣∣ : f ∈ FH

}
,

are so-called Fortet–Mourier metrics, denoted by ζH and defined on

(2.2) PH(Ξ) :=

{
Q ∈ P(Ξ) :

∫
Ξ

max{1, H(‖ξ − ξ0‖)}‖ξ − ξ0‖Q(dξ) < ∞
}

(cf. [8, 17]). Important special cases come to light when the function H has the
polynomial form H(t) := tr−1 for r ≥ 1. The corresponding function classes and
distances are denoted by Fr and ζr, respectively. The distances ζr are well defined
on the set

(2.3) Pr(Ξ) :=

{
Q ∈ P(Ξ) :

∫
Ξ

‖ξ‖rQ(dξ) < ∞
}

of probability measures having finite rth order moments.

3. Stability of two-stage recourse models. We consider the linear two-stage
stochastic program with recourse,

(3.1) min

{
cx +

∫
Ξ

q(ξ)y(ξ)P (dξ) : W (ξ)y(ξ) = h(ξ) − T (ξ)x, y(ξ) ∈ Y, x ∈ X

}
,

where c ∈ R
m, X ⊆ R

m, and Ξ ⊆ R
s are polyhedral, Y ⊆ R

m is a polyhedral
cone, and P ∈ P(Ξ). We assume that q(ξ) ∈ R

m, h(ξ) ∈ R
d, the recourse matrix

W (ξ) ∈ R
d×m, and the technology matrix T (ξ) ∈ R

d×n may depend affinely on ξ ∈ Ξ.
Denoting by Φ(ξ, q(ξ), h(ξ)−T (ξ)x) the value of the optimal second-stage decision,

problem (3.1) may be rewritten equivalently as a minimization problem with respect
to the first stage decision x. We define the function f0 : Ξ × R

m → R by

f0(ξ, x) =

{
cx + Φ(ξ, q(ξ), h(ξ) − T (ξ)x) if h(ξ) − T (ξ)x ∈ W (ξ)Y, D(ξ) 
= ∅,
+∞ otherwise,

where the optimal value function Φ and the dual feasible set D(ξ) are given by

Φ(ξ, u, t) := inf {uy : W (ξ)y = t, y ∈ Y } , (ξ, u, t) ∈ Ξ × R
m × R

d,

D(ξ) :=
{
z ∈ R

d : W (ξ)�z − q(ξ) ∈ Y ∗} , ξ ∈ Ξ,

with W (ξ)� denoting the transpose of W (ξ) and Y ∗ the polar cone of Y .
The (equivalent) minimization problem can thus be expressed as

(3.2) min

{∫
Ξ

f0(ξ, x)P (dξ) : x ∈ X

}
.

In order to utilize the general stability results of section 2, we first recall some well-
known properties of the function Φ (cf. [34]).
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Lemma 3.1. For any ξ ∈ Ξ, the function Φ(ξ, ·, ·) is finite and continuous on the
polyhedral set D(ξ)×W (ξ)Y , where D(ξ) := {u ∈ R

m : {z ∈ R
d : W (ξ)�z−u ∈ Y ∗} 
=

∅}. Furthermore, the function Φ(ξ, u, ·) is piecewise linear convex on the polyhedral
set W (ξ)Y for fixed u ∈ D(ξ), and Φ(ξ, ·, t) is piecewise linear concave on D(ξ) for
fixed t ∈ W (ξ)Y .

We impose the following conditions on problem (3.2).

(A1) Relatively complete recourse: For any (ξ, x) ∈ Ξ ×X, h(ξ) − T (ξ)x ∈ W (ξ)Y .
(A2) Dual feasibility: D(ξ) 
= ∅ holds for all ξ ∈ Ξ.

Conditions (A1) and (A2) are standard and render problem (3.2) well defined. Due to
Lemma 3.1 they imply that f0 is a convex random lsc function with Ξ×X ⊆ dom f0.
As earlier, with the notation

(3.3) Fρ := {f0(·, x) : x ∈ X ∩ ρB},

we obtain our first stability result for model (3.1) as immediate consequences of The-
orem 2.1 and Corollary 2.3.

Theorem 3.2. Suppose the stochastic program satisfies the relatively complete
recourse (A1) and the dual feasibility (A2) conditions, P ∈ PF , and S(P ) is nonempty
and bounded. Then there exist constants ρ > 0 and ε̂ > 0 such that

|v(P ) − v(Q)| ≤ dF,ρ(P,Q),

dl∞(Sε(P ), Sε(Q)) ≤ 4ρ

ε
dF,ρ+ε(P,Q)

hold for any ε ∈ (0, ε̂) and each Q ∈ PF such that dF,ρ+ε(P,Q) < ε.

The theorem establishes Lipschitz stability of v(.) and Sε in the two-stage case
for fairly general situations. It extends the results in [24, section 3.1] to two-stage
models with random recourse. However, the set of (perturbed) probability measures
PF and, in particular, the metrics dF,ρ are rather sophisticated and could be difficult
to use in applications.

To overcome this difficulty, we need to explore quantitative continuity properties
of the integrand f0. Such properties are well known in case of fixed recourse, i.e., in
case W (ξ) ≡ W [36], and have been used to analyze quantitative stability in [18].
Our first result for random recourse matrices follows the ideas in [37]. There, it
is shown that (semi)continuity properties of parametric optimal value functions are
consequences of the (semi)continuity of the primal and dual feasibility mapping with
respect to the relevant parameters. Next, we verify that a local Lipschitz property
of the dual feasible set-valued mapping ξ �→ D(ξ) in addition to (A1) implies local
Lipschitz continuity of f0(·, x) with the modulus not depending on having x vary only
in a bounded set.

Proposition 3.3. Suppose the stochastic program satisfies the relatively complete
recourse (A1) and the dual feasibility (A2) conditions. Assume also that the mapping
ξ �→ D(ξ) is bounded-valued and locally Lipschitz continuous on Ξ with respect to
the Pompeiu–Hausdorff distance (on the subsets of R

d); i.e., there exists a constant
L > 0, an element ξ0 ∈ Ξ, and a nondecreasing function h : R+ → R+ with h(0) = 0
such that

(3.4) dl∞(D(ξ), D(ξ̃)) ≤ L max{1, h(‖ξ − ξ0‖), h(‖ξ̃ − ξ0‖)}‖ξ − ξ̃‖

holds for all ξ, ξ̃ ∈ Ξ.
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Then, for any ρ > 0, there exist constants L̂ > 0 and L̂(ρ) > 0 such that

f0(ξ, x) − f0(ξ̃, x) ≤ L̂(ρ) max{1, H(‖ξ − ξ0‖), H(‖ξ̃ − ξ0‖)}‖ξ − ξ̃‖,(3.5)

f0(ξ, x) − f0(ξ, x̃) ≤ L̂max{1, H(‖ξ − ξ0‖)‖ξ − ξ0‖}‖x− x̃‖(3.6)

for all ξ, ξ̃ ∈ Ξ, x, x̃ ∈ X ∩ ρB, where H is defined by

(3.7) H(t) := h(t)t ∀t ∈ R+.

Proof. Let ρ > 0. Due to (A1) and (A2), the function f0(·, x) is real-valued for
every x ∈ X. For any x, x̃ ∈ X ∩ ρB, and ξ, ξ̃ ∈ Ξ, one has the estimate

(3.8) f0(ξ, x) − f0(ξ̃, x̃) ≤ cx + (h(ξ) − T (ξ)x)z∗(ξ) − (h(ξ̃) − cx̃− T (ξ̃)x̃)z(ξ̃),

where z∗(ξ) ∈ D(ξ) is a dual solution of the second-stage problem and z(ξ̃) is some
element in D(ξ̃). We denote by z̄(ξ̃; ξ) the projection of z∗(ξ) onto D(ξ̃), i.e.,

d(z∗(ξ), D(ξ̃)) = ‖z∗(ξ) − z̄(ξ̃; ξ)‖,

yielding

(3.9) ‖z∗(ξ)−z̄(ξ̃; ξ)‖ ≤ dl∞(D(ξ), D(ξ̃)) ≤ Lmax{1, h(‖ξ−ξ0‖), h(‖ξ̃−ξ0‖)}‖ξ− ξ̃‖.

As D(ξ0) is bounded, there exists r > 0 such that ‖z‖ ≤ r for each z ∈ D(ξ0). As the
estimate

d(z̄(ξ̃; ξ), D(ξ0)) ≤ Lmax{1, h(‖ξ̃ − ξ0‖)}‖ξ̃ − ξ0‖

holds for all ξ, ξ̃ ∈ Ξ, according to (3.4), we have

(3.10) ‖z̄(ξ̃; ξ)‖ ≤ max{r, L}max{1, h(‖ξ̃ − ξ0‖)}‖ξ̃ − ξ0‖.

Now, we proceed with our estimate (3.8) when x = x̃, exploiting the affine linearity
of h(·) and T (·), (3.9) and (3.10). Setting z(ξ̃) := z̄(ξ̃; ξ) we obtain

f0(ξ, x)−f0(ξ̃, x) ≤ (h(ξ) − T (ξ)x)(z∗(ξ) − z̄(ξ̃; ξ))

− ((h(ξ̃) − h(ξ)) − (T (ξ̃) − T (ξ))x)z̄(ξ̃; ξ)

≤ ‖h(ξ) − T (ξ)x‖‖z∗(ξ) − z̄(ξ̃; ξ)‖
+ (‖h(ξ̃) − h(ξ)‖ + ‖T (ξ̃) − T (ξ)‖‖x‖)‖z̄(ξ̃; ξ)‖

≤
(
KL(1 + ρ) max{1, ‖ξ − ξ0‖}max{1, h(‖ξ − ξ0‖), h(‖ξ̃ − ξ0‖)}

+ K̃ max{r, L}(1 + ρ) max{1, h(‖ξ̃ − ξ0‖)}‖ξ̃ − ξ0‖
)
‖ξ − ξ̃‖

≤ L̄(1 + ρ) max{1, H(‖ξ − ξ0‖), H(‖ξ̃ − ξ0‖)}‖ξ − ξ̃‖

for each ξ, ξ̃ ∈ Ξ, and some positive constants K, K̃, and L̄. Thus, (3.5) is proved
with L̂(ρ) = L̄(1+ρ). Finally, we return to (3.8) in case ξ = ξ̃; choosing z̄(ξ) = z∗(ξ),
we arrive at the estimate

f0(ξ, x) − f0(ξ, x̃) ≤ c(x− x̃) + T (ξ)(x̃− x)z∗(ξ) ≤ (‖c‖ + ‖T (ξ)‖‖z∗(ξ)‖)‖x− x̃‖
≤ L̂max{1, H(‖ξ − ξ0‖)‖ξ − ξ0‖}‖x− x̃‖
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for some constant L̂ > 0 and all ξ ∈ Ξ, x, x̃ ∈ X ∩ρB. Here, we used that ‖z∗(ξ)‖ can
be bounded in the same way as z̄(ξ̃; ξ) in (3.10).

The next examples illustrate the local Lipschitz continuity property (3.4) of the
dual feasibility mapping D.

Example 3.4. Let m = 4, d = 2, Y = R
4
+, and Ξ = R, and consider the random

recourse costs and matrix

W (ξ) =

(
1 −1 0 0
−ξ 0 1 −1

)
, q(ξ) =

⎛
⎜⎜⎝

0
0
ξ
−ξ

⎞
⎟⎟⎠ .

Then W (ξ)Y = R
2 (complete recourse) and D(ξ) = [0, ξ2]×{ξ}. Hence, the conditions

(A1) and (A2) and (3.4) are satisfied with h(t) ≡ t.
Example 3.5. We consider the second-stage program arising in the equivalent

optimization problem to AVaR minimization (1.4) in section 1. Its dual feasible set
is of the form

Davar(ξ) =
{
z = (z1, z2) ∈ R

d × R : Wavar(ξ)
�z − qavar(ξ) ∈ Y ∗

avar

}
=

{
(z1, z2) ∈ R

d × [0, α−1] : W�z1 + q(ξ)z2 ∈ Y ∗}
=

{
(z1, u) ∈ R

d × R
m : W�z1 + u ∈ Y ∗, u ∈ [0, α−1]q(ξ)

}
due to (1.5), where u ∈ [0, α−1]q(ξ) means that, for every j = 1, . . . ,m, 0 ≤ uj ≤
α−1qj(ξ) holds if qj(ξ) ≥ 0 and α−1qj(ξ) ≤ uj ≤ 0 otherwise. Hence, if (A2) is
satisfied, the set-valued mapping ξ → Davar(ξ) is Lipschitz continuous on Ξ with
respect to the Pompeiu–Hausdorff distance dl∞ since its graph is convex polyhedral
[35]. This means that Proposition 3.3 applies with h(t) ≡ 1.

We can reformulate the conclusions of the preceding proposition in terms of the
Fortet–Mourier metrics defined on PH(Ξ), the space (2.2) of probability measures.

Corollary 3.6. Let the assumptions of Proposition 3.3 be satisfied, P ∈ PH(Ξ),
and S(P ) be nonempty and bounded. Then there exist constants L̂ > 0, ρ > 0, and
ε̂ > 0 such that

|v(P ) − v(Q)| ≤ L̂ζH(P,Q),

dl∞(Sε(P ), Sε(Q)) ≤ 4ρL̂

ε
ζH(P,Q)

hold for any ε ∈ (0, ε̂) and each Q ∈ PH(Ξ) such that ζH(P,Q) < ε, where H is
defined by (3.7), and ζH(P,Q) is the Fortet–Mourier metric on PH(Ξ).

Proof. The estimate (3.5) implies dF,ρ(P,Q) ≤ L̂ζH(P,Q) with L̂ = L̂(ρ), and,
hence, the result follows from Theorem 3.2.

When W (ξ) ≡ W , the mapping ξ �→ D(ξ) is even Lipschitz continuous with
respect to the Pompeiu–Hausdorff distance dl∞ due to [35]. Hence, H(t) ≡ t and
FH = F2, and then the previous result boils down to [18, Proposition 3.2].

4. Two-stage multiperiod models. If the second stage of a stochastic pro-
gram with recourse models a (stochastic) dynamical decision process (see section 1),
our two-stage problem takes on the form
(4.1)

min

⎧⎨
⎩cy0 +

l∑
j=1

qj(ξ)yj :y0 ∈ X, yj ∈ Yj ,Wjjyj = hj(ξ) −Wjj−1(ξ)yj−1, j = 1, . . . , l

⎫⎬
⎭ ,
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where for j = 1, . . . , l, Yj ∈ R
mj are polyhedral sets for some finite l and first-stage

decision x := y0; the matrices Wj,j−1(ξ) are (potentially) stochastic. Then the second-
stage program has separable block structure; i.e., the recourse variable y has the form
y = (y1, . . . , yl), the polyhedral set Y is the Cartesian product of polyhedral sets
Yj ∈ R

mj , j = 1, . . . , l, the element T (ξ)x has the components T1(ξ)x := W10(ξ)x
and Tj(ξ)x = 0, j = 2, . . . , l, and the random recourse matrix W (ξ) is of the form

(4.2) W (ξ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

W11 0 0 0 · · · 0 0 0
W21(ξ) W22 0 0 · · · 0 0 0

0 W32(ξ) W33 0 · · · 0 0 0
...

...
...

...
...

...
...
...

0 0 0 0 · · · Wl−1l−2(ξ) Wl−1l−1 0
0 0 0 0 · · · 0 Wll−1(ξ) Wll

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e., all matrices Wjj , j = 1, . . . , l, in the diagonal of W (ξ) are nonstochastic. Denoting
by qj(ξ) and hj(ξ) the components of q(ξ) and h(ξ), respectively, the integrand f0 is
of the form

f0(ξ, x) = cx + inf

⎧⎨
⎩

l∑
j=1

qj(ξ)yj : Wjjyj = hj(ξ) −Wjj−1(ξ)yj−1, yj ∈ Yj , j = 1, . . . , l

⎫⎬
⎭

=: cx + Ψ1(ξ, x),

where the function Ψ1 is given by the recursion

Φj(ξ, uj−1) := inf {qj(ξ)yj + Ψj+1(ξ, yj) : Wjjyj = uj−1, yj ∈ Yj} ,(4.3)

Ψj(ξ, yj−1) := Φj(ξ, hj(ξ) −Wjj−1(ξ)yj−1)(4.4)

for j = l, . . . , 1, where y0 = x and Ψl+1(ξ, yl) ≡ 0.
While the continuity and growth properties of the function f0(·, x) in case l = 1

may be derived from Lemma 3.1, we need an extended result for establishing Lipschitz
continuity properties of the inf-projection Φj for j = 1, . . . , l. The results in [39] were
developed precisely to deal with the present situation. To state the result, we denote
by D∞ the recession cone of a convex set D ⊆ R

m. It consists of all elements xd ∈ R
m

such that x + λxd ∈ D for all x ∈ D and λ ∈ R+. Clearly, we have D∞ = {0} if D
is bounded. Furthermore, D∞ is polyhedral if D is polyhedral. Next we record [39,
Proposition 4.4] and provide a self-contained proof for the convenience of the reader.

Lemma 4.1. Let h ∈ R
d, W ∈ R

d×n, and Y ⊆ R
n be polyhedral. Let u =

(u1, u2) ∈ R
n × R

d and

Φ(u) := inf{f(u1, y) : Wy = h− u2, y ∈ Y }.

Assume that ker (W ) ∩ Y ∞ = {0} and that f is Lipschitz continuous on {(u1, y) ∈
R

n × Y : ‖u1‖ ≤ r, ‖y‖ ≤ r} with constant L(r) for every r > 0. Then, Φ(·)
is Lipschitz continuous on {(u1, u2) ∈ dom Φ : ‖u1‖ ≤ r, ‖u2‖ ≤ r} with constant
LML(KM max{1, r}) for every r > 0, where LM ≥ 1 and KM ≥ 1 are constants
depending only on the set-valued mapping M(u2) := {y ∈ Y : Wy = h− u2} from R

d

to R
n.
Proof. The condition ker (W )∩Y ∞ = {0} is equivalent to the local boundedness of

the mapping M . M is Lipschitz continuous with respect to the Pompeiu–Hausdorff
distance dl∞ (with constant LM ≥ 1) since its graph is polyhedral [23, Example
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9.35]. Since the set M(u2) is compact, Φ is finite for all pairs (u1, u2) such that
u2 ∈ domM . Now, let r > 0 and u = (u1, u2), ũ = (ũ1, ũ2) ∈ dom Φ ∩ {(u1, u2) ∈
R

n × R
d : ‖u1‖ ≤ r, ‖u2‖ ≤ r}. Then there exist y(u2) ∈ M(u2) and y(ũ2) ∈ M(ũ2)

such that Φ(u) = f(u1, y(u2)) and ‖y(u2) − y(ũ2)‖ ≤ LM‖u2 − ũ2‖. In particular,
there exists a constant KM ≥ 1 such that

max{‖y(u2)‖, ‖y(ũ2)‖} ≤ KM max{1, ‖u2‖, ‖ũ2‖} ≤ KM max{1, r}.

We obtain

Φ(ũ) − Φ(u) ≤ f(ũ1, y(ũ2)) − f(u1, y(u2))

≤ L(KM max{1, r})(‖ũ1 − u1‖ + ‖y(ũ2) − y(u2)‖)
≤ LML(KM max{1, r})(‖ũ1 − u1‖ + ‖ũ2 − u2‖),

and that completes the proof.
Proposition 4.2. Let W (ξ) be as described by (4.2). Assume the relatively

complete recourse condition (A1) is satisfied and that ker (Wjj) ∩ Y ∞
j = {0} for j =

1, . . . , l − 1. Then, there exist constants L > 0, L̂ > 0, and K > 0 such that the
following holds for all ξ, ξ̃ ∈ Ξ and x, x̃ ∈ X ∩ ρB:

|f0(ξ, x) − f0(ξ̃, x)| ≤ Lmax{1, ρ, ‖ξ‖l, ‖ξ̃‖l}‖ξ − ξ̃‖,
|f0(ξ, x) − f0(ξ, x̃)| ≤ L̂max{1, ‖ξ‖l+1}‖x− x̃‖,

|f0(ξ, x)| ≤ K max{1, ρ, ‖ξ‖l+1}.

Proof. Due to the assumptions, all sets of the form Mj(vj) := {yj ∈ Yj : Wjjyj =
vj} are bounded polyhedra for all vj ∈ R

rj and j = 1, . . . , l. Furthermore, the
set-valued mappings Mj from R

rj to R
mj are Lipschitz continuous on domMj with

constant Lj . Due to (A1), we have recursively hj(ξ) − Wjj−1(ξ)yj−1 ∈ domMj for
all yj−1 ∈ Yj−1, y0 = x ∈ X, ξ ∈ Ξ, and j = 2, . . . , l. Hence, if Lemma 4.1 is used
recursively by setting Φ = Φj , fj(u1, yj) := qj(ξ)yj + Ψj+1(ξ, yj) with u1 = ξ and
u2 = uj−1, each subproblem (4.3) is solvable. First we consider the functions Φl and
Ψl:

Φl(ξ, ul−1) = inf{ql(ξ)yl : Wllyl = ul−1, yl ∈ Yl},
Ψl(ξ, yl−1) = Φl(ξ, hl(ξ) −Wll−1(ξ)yl−1).

Then the Lipschitz constant of fj on {(ξ, yl) ∈ Ξ×Yl : ‖ξ‖ ≤ r, ‖yl‖ ≤ r} has the form

Ll max{1, r} and Lemma 4.1 implies that Φl has the Lipschitz constant L̂l max{1, r}
on {(ξ, ul−1) ∈ Ξ × domMl : ‖ξ‖ ≤ r, ‖ul−1‖ ≤ r}. Due to the term Wll−1(ξ)yl−1 in
the definition of Ψl, however, the function Ψl has the Lipschitz constant L̃l max{1, r2}
on {(ξ, yl−1) ∈ Ξ × Yl−1 : ‖ξ‖ ≤ r, ‖yl−1)‖ ≤ r}. Since Ψl enters the definition of
fl−1 and the infimum, Φl−1 is Lipschitz continuous with constant L̂l−1 max{1, r2} on
{(ξ, ul−2) ∈ Ξ × domMl−1 : ‖ξ‖ ≤ r, ‖ul−2‖ ≤ r} according to Lemma 4.1. Due
to the term Wl−1l−2(ξ)yl−2, the function Ψl−1 is Lipschitz continuous with constant
L̃l−1 max{1, r3} on {(ξ, yl−2) ∈ Ξ × Yl−2 : ‖ξ‖ ≤ r, ‖yl−2)‖ ≤ r}, etc. This process
may be continued until one concludes that Φ1 is Lipschitz continuous with constant
L̂1 max{1, rl} on {(ξ, u0) ∈ Ξ× domM1 : ‖ξ‖ ≤ r, ‖u0‖ ≤ r}. Hence, the function Ψ1

depending on (ξ, x) satisfies the Lipschitz continuity property

|Ψ1(ξ, x) − Ψ1(ξ̃, x̃)| ≤ L̃1 max{1, ρ, rl}(max{1, ρ}‖ξ − ξ̃‖ + max{1, r}‖x− x̃‖)
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on the set {(ξ, x) ∈ Ξ ×X : ‖ξ‖ ≤ r, ‖x‖ ≤ ρ}.
This yields the assertions about f0 and completes the proof.

Due to the previous result we obtain

PF ⊇ Pl+1(Ξ)={Q ∈ P(Ξ) :

∫
Ξ

‖ξ‖l+1Q(dξ) < ∞}

and
1

Lmax{1, ρ}f0(x, ·) ∈ Fl+1(Ξ)

for each x ∈ X ∩ ρB, and arrive, after specializing Theorem 3.2, at the following.

Corollary 4.3. Let W (ξ) be as described by (4.2). Assume the relatively
complete recourse condition (A1) is satisfied and that ker (Wjj) ∩ Y ∞

j = {0} for
j = 1, . . . , l − 1.

Then there exist constants L > 0 and ε̂ > 0 such that for any ε ∈ (0, ε̂) the
estimates

|v(P ) − v(Q)| ≤ Lζl+1(P,Q),

dl∞(Sε(P ), Sε(Q)) ≤ L

ε
ζl+1(P,Q)

hold whenever Q ∈ Pl+1(Ξ) and ζl+1(P,Q) < ε.

The case l = 1 corresponds to the situation of two-stage models with fixed re-
course, and that situation was already covered by [24, Theorem 24]. We note that
the corollary remains valid for the slightly more general situation that Wjj−1(ξ)yj−1

in (4.1) is replaced by
∑j−1

i=1 Wji(ξ)yi, and, hence, all lower diagonal blocks of W (ξ)
are random. We also note that the corollary applies to recourse matrices of the form
(1.5) in risk averse two-stage models with polyhedral convex risk functionals.

If the recent stability result [10, Theorem 2.1] for linear multistage models is
restricted to the two-stage model (4.1), it implies the existence of positive constants
L and δ such that

(4.5) |v(P ) − v(Q)| ≤ L 
l+1(P,Q)

holds for every Q ∈ Pl+1(Ξ) with 
l+1(P,Q) < δ; the distance 
r denotes the Lr-
minimal or Wasserstein metric
(4.6)


r(P,Q) :=

(
inf

{∫
Ξ×Ξ

‖ξ − ξ̃‖rη(dξ, dξ̃) : η ∈ P(Ξ × Ξ), π1η = P, π2η = Q

})1/r

on Pr(Ξ) for any r ≥ 1, where π1 and π2 denote the projections onto the first and
second components, respectively. It is known that sequences in Pr(Ξ) converge with
respect to both metrics ζr and 
r if they converge weakly and if their rth order
absolute moments converge. To derive a quantitative estimate, let η∗ ∈ P(Ξ × Ξ) be
a solution of the minimization problem on the right-hand side of (4.6). Such solutions
exist according to [17, Theorem 8.1.1]. Then the duality theorem [17, Theorem 5.3.2]



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY OF CONVEX STOCHASTIC PROGRAMS 975

for the Fortet–Mourier metric of order r implies, via Hölder’s inequality, the estimate

ζr(P,Q) ≤
∫

Ξ×Ξ

max{1, ‖ξ‖, ‖ξ̃‖}r−1‖ξ − ξ̃‖η∗(dξ, dξ̃)

≤
(∫

Ξ×Ξ

max{1, ‖ξ‖, ‖ξ̃‖}rη∗(dξ, dξ̃)
) r−1

r
(∫

Ξ×Ξ

‖ξ − ξ̃‖rη∗(dξ, dξ̃)
) 1

r

=
(∫

Ξ×Ξ

max{1, ‖ξ‖, ‖ξ̃‖}rη∗(dξ, dξ̃)
) r−1

r


r(P,Q)

≤
(
1 +

∫
Ξ

‖ξ‖r(P + Q)(dξ)
) r−1

r


r(P,Q).

Since the convergence of probability measures with respect to 
r and ζr implies the
convergence of their rth order absolute moments, the stability result for optimal
values obtained in Corollary 4.3 implies (4.5) (with some constant L > 0). However,
the convergence of ζr(P, Pn) to 0 may be faster than 
r(P, Pn) for some sequence (Pn)
of probability measures, as illustrated in [18, Example 3.4]. Hence, the stability result
for optimal values in Corollary 4.3 strictly extends the estimate (4.5) for multiperiod
two-stage stochastic programs.

5. Empirical approximations of two-stage models. Let ξ1, ξ2, . . . , ξn, . . . be
independent and identically distributed Ξ-valued random variables on some probabil-
ity space (Ω,A,P) having the common distribution P , i.e., P = Pξ−1

1 . We consider
the empirical measures

Pn(ω) :=
1

n

n∑
i=1

δξi(ω) (ω ∈ Ω; n ∈ N)

and the empirical approximation of the stochastic program (1.1) with sample size n,
i.e.,

(5.1) min

{
1

n

n∑
i=1

f0(ξi(·), x) : x ∈ X

}
.

Since the objective function of (5.1) is a random lsc function from R
m × Ω to R,

the optimal value v(Pn(·)) of (5.1) is measurable from Ω to R and the ε-approximate
solution set Sε(Pn(·)) is a closed-valued measurable set-valued mapping from Ω to
R

m (see Chapter 14 and, in particular, Theorem 14.37 of [23]).
Qualitative and quantitative results on the asymptotic behavior of solutions to

(5.1) are given, e.g., in [2, 6, 13] and [12, 15, 16, 18, 30], respectively.
Due to the results in the previous sections, the asymptotic behavior of v(Pn(·))

and Sε(Pn(·)) is closely related to uniform convergence properties of the empirical
process {

√
n(Pn(·) − P )f =

1√
n

n∑
i=1

(f(ξi(·)) − Pf)

}
f∈F

indexed by the class F = {f0(x, ·) : x ∈ X}. Here, we set Qf :=
∫
Ξ
f(ξ)Q(dξ) for any

Q ∈ P(Ξ) and f ∈ F . Uniform convergence properties refer to the convergence, or to
the convergence rate, of

(5.2) dF (Pn(·), P ) = sup
f∈F

|Pn(·)f − Pf |
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to 0 in terms of some stochastic convergence. Since the supremum in (5.2) is non-
measurable in general, the outer probability P

∗ (defined by P
∗(B) = inf{P(A) : B ⊂

A,A ∈ A} for any subset B of Ω) is used to describe convergence in probability and
almost surely, respectively (cf. [32]).

The class F is called a P–Glivenko–Cantelli class if the sequence (dF (Pn(·), P )) of
random variables converges to 0 P

∗-almost surely or, equivalently, in outer probability.
The empirical process is called uniformly bounded in outer probability with tail CF (·)
if the function CF (·) is defined on (0,∞) and decreasing to 0, and the estimate

(5.3) P
∗({ω :

√
ndF (Pn(ω), P ) ≥ ε}) ≤ CF (ε)

holds for all ε > 0 and n ∈ N.
Whether a given class F is a P–Glivenko–Cantelli class or the empirical process

is uniformly bounded in outer probability depends on the size of the class F mea-
sured in terms of bracketing numbers, or of the corresponding metric entropy numbers
defined as their logarithms (see [32]). To introduce this concept, let F be a subset
of the normed linear space Lp(Ξ, P ) (for some p ≥ 1) equipped with the usual norm

‖f‖P, p = (P |f |p) 1
p . The bracketing number N[ ](ε,F , Lp(Ξ, P )) is the minimal num-

ber of brackets [l, u] = {f ∈ Lp(Ξ, P ) : l ≤ f ≤ u} with ‖l − u‖P, p < ε needed to
cover F . The following result provides criteria for the desired properties in terms of
bracketing numbers. For its proof we refer to [32, Theorem 2.4.1] and [31, Theorem
1.3].

Theorem 5.1. Let F be a class of real-valued functions on Ξ. If

(5.4) N[ ](ε,F , L1(Ξ, P )) < ∞

holds for every ε > 0, then F is a P–Glivenko–Cantelli class.
If F is uniformly bounded and there exist constants r ≥ 1 and R ≥ 1 such that

(5.5) N[ ](ε,F , L2(Ξ, P )) ≤
(R
ε

)r

for every ε > 0, then the empirical process indexed by F is uniformly bounded in outer
probability with exponential tail CF (ε) = (K(R)εr−

1
2 )r exp(−2ε2) with some constant

K(R) depending only on R.
Next we consider the class F := Fρ of integrands defined by (3.3) in section

3 and derive conditions implying the assumptions of Theorem 5.1, particularly the
assumptions (5.4) and (5.5) for the bracketing numbers N[ ](ε,Fρ, Lp(Ξ, P )) with p ∈
{1, 2}.

Theorem 5.2. Let the assumptions of Proposition 3.3 be satisfied and H : R+ →
R+ be defined by (3.7). If P ∈ PH(Ξ), then Fρ = {f0(·, x) : x ∈ X ∩ ρB} is a
P -Glivenko–Cantelli class for any ρ > 0, i.e.,

(5.6) lim
n→∞

sup
x∈X∩ρB

∣∣∣∣
∫

Ξ

f0(ξ, x)Pn(ω)(dξ) −
∫

Ξ

f0(ξ, x)P (dξ)

∣∣∣∣ = 0 P- a.s.

If, in addition, Ξ is bounded, then the empirical process indexed by Fρ is uniformly
bounded in probability with exponential tail; i.e.,
(5.7)

P

({
ω :

√
n sup

x∈X∩ρB

∣∣∣∣
∫

Ξ

f0(ξ, x)(Pn(ω) − P )(dξ)

∣∣∣∣ ≥ ε

})
≤ (K(R)εr−

1
2 )r exp(−2ε2)
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holds for some constant K(R) > 0, any ε > 0, and n ∈ N.

Proof. According to (3.6) in Proposition 3.3, the functions f0(ξ, ·) satisfy the
Lipschitz property

f0(ξ, x) − f0(ξ, x̃) ≤ L̂max{1, H(‖ξ − ξ0‖)‖ξ − ξ0‖}‖x− x̃‖

for all x, x̃ ∈ X ∩ ρB, and ξ ∈ Ξ. Setting F (ξ) := L̂max{1, H(‖ξ − ξ0‖)‖ξ − ξ0‖} for
all ξ ∈ Ξ, we conclude from [32, Theorem 2.7.11] that

(5.8) N[ ](2ε‖F‖P, 1,Fρ, L1(Ξ, P )) ≤ N(ε,X ∩ ρB,Rm) ≤ Kε−m

holds for some K > 0 and all ε > 0. Since ‖F‖P, 1 is finite, we may replace ε by
ε/2‖F‖P, 1 in (5.8) and obtain that N[ ](ε,Fρ, L1(Ξ, P )) is finite for all ε > 0. Thus,
condition (5.4) in Theorem 5.1 is satisfied.

If Ξ is bounded, the class Fρ is uniformly bounded and condition (5.5) in Theorem
5.1 is also satisfied due to (5.8). It remains to note that the supremum supx∈X∩ρB

may be replaced by a supremum with respect to a countable dense subset of X ∩ ρB.
Hence, the suprema in (5.6) and (5.7) are measurable with respect to A and, thus,
the outer probability P

∗ can be replaced by P.

When combining the previous result with Theorem 3.2, we arrive at conditions
implying a Glivenko–Cantelli result and a large deviation result for the distances of
empirical ε-approximate solution sets Sε(Pn(·)) to Sε(P ) in the case of the two-stage
model (3.2) with random recourse.

6. Conclusions. The quantitative stability results of section 3 extend earlier
work for two-stage models with fixed recourse [18] and for multiperiod two-stage
models [10]. Since Theorem 3.2 is stated in terms of the (uniform) semidistances
dFρ , it allows two types of applications. First, it is possible to utilize metric entropy
results and to quantify the asymptotic behavior of statistical approximations to two-
stage stochastic programs with random recourse. Second, the analysis of continuity
properties of the convex random lsc functions f0 enables bounding semidistances by
appropriate Fortet–Mourier metrics. Such metrics are easier to handle due to their
relations to mass transportation problems and their dual representations, particularly
for computational purposes (e.g., in scenario reduction algorithms developed in [5, 9]).

The general stability results for model (1.1) in section 2 provide continuity prop-
erties of infima and (approximate) solution sets relative to changes of the original
probability distribution. They are simple consequences of general perturbation re-
sults for optimization problems. Presently, they are stated in terms of the uniform
probability semidistance dFρ on the space of probability measures, although the same

results would be valid in terms of the corresponding epi-distances d̂lρ or dlρ, too.
Such epi-distances would allow for richer spaces of probability measures PF and for
extended real-valued objective functions E

P f0(x) with different effective domains,
respectively. But, since a theory for epi-counterparts of uniform distances of Fortet–
Mourier type and of uniform large deviation results (see (5.3)) is not yet developed,
the achieved generality would appear to be wasted. If, however, these gaps are filled
in the future, the framework developed in section 2 forms the basis for extending the
present results in sections 3, 4, and 5.
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