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1. Introduction

In the following we will consider stochastic optimal control problems
in which the dynamical system is described by a nonlinear random ordi-
nary differential equation and the functional is established with re-
spect to the expected value:

inf J(u) (P)
ueC
where J(u) := E{g(xl,x(T))} (1)
x(t) = £(t,z(t),u(t).x(t)) ,refe ,T] ,x(r,)=x’ (2)
C is a nonempty set of deterministic or {3)

stochastic controls.
x°,x1 are random variables and z is a stochastic process defined on a
probability space (2,0 ,P). (2) represents an initial value problem
for a random ordinary differential equation and E is the symbol for the
expected value. Possible integral=parts in the functionel (1) let be
transformed by introducing new state variables,
The following investigation aims at the application of a Ritz-Galerkin
method for the approximate solving of (P). This method is based on an
spproximation of stochastic processes by processses with finitely many
realizations (see chapt. 2). Besides a general convergence theorem we
obtain in chapter 3 that the approximate problems are completely deter-
ministic ones. In the case of deterministic controls each of these prob-
lems represents a certain deterministic optimal control problem and in
the case of stochastic controls a family of deterministic optimal con=~
trol problems.
We investigate (P) under the following general supposition (S):

1 is continuous and there exist constants L>0, a>0,

(1) g: R"xR" — R
berY, pe[l,o) such that lalygavo)l € 8+ L(|y1|2n +|y2|:n)
and g(yl.ya) 2 b holds for all yi.yzeR".

(11)f: [t .T]sterxR"-—-»Rn is continuous and for all 2, € R®,u, e RV,
x,€R", i=1,2, tE[to.T]

If(t.z:l_,ul.xl)-f(t,zz,uz,xz)IRn < L(|21-22|Rsv|u1-u2'Rr+|x1-x2|Rn)
holds.

(i11)(0 .0 ,P) is a probability space, x°,x1e L:(.O..OL,P).

i
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ze L, ([t,.T]. L? (_Q. a.P)),
(iv) ¢4-cct_([t T]L (D.00,P)).

Remark 1:

e2) Under the supposition (S) the random differential equation (2) can
be understood as an abstract differential equation in the Banach
space B-LS(Q.O’..P). The operator
£: [to.T]xL:(.O.. ol .P)xL;(.O..OL ,P)xL;(.()..OL ,P) —> L;(.Q.. o,P)  then
satisfies a Lipschitz condition that is analogous to (ii). Hence an
unique solution xec([t .T1, L'p‘(O. &« ,P)) exists for esach
uel, ([t ,TlL (.(1 o P)) (comp.[11],p.541;[5];[9], Theorem 1).

b) If x,X are the -according to a) uniquely determined- solutions of
the random differential equation (2) with the input parameters x°,
z,u and x°,Z,U, respectively, then (S) and Gronwall's inequality
(comp.[12],p.189) yield the estimation:

t
IxCe-R(e) || € "R (PxO3 |+ L § ( J2(9)-E(8))
L L t L
p p o p
+ flu(s)-t(s)| [)ds ), for each te[t ,T].
“p
c) According to (S)(i) g can be considered to be a continuous operator
g: Lp(n_ s s P)pr(.Q oL P)——»L (x,x,P) and the functional (1) is
untquely defined for each uel (Ct Tl (.O. a,P)) (resp. for
ueLi([t »T].R ) especially). Furthermore the condition (S)(i) se-

cures inf J(u) > =« . It turns out that (P) cen be formulated as
ueC
a minimum problem in the Banach space L1([to,T],L;(Q.OL.P)).

2. An approximation of stochastic processes

In the following let (fL,C,P) be a probability space, (rR", %") the
Borel measurable space and I < Rl. Ltet x: Ixa—R" denote a vector
stochastic process with the state space R” and the parameter set I,
a, be the smallest e -algebra with respect to which each random vari-
able x(t), telI, of the process is measurable. For a random variable
z: 2 — R" defined on (£, ,P) let E(zJA) (A€ 0t ,P(A)>0) denote
the conditional expected value of z relative to the event A. L" {(c1,0x,P)
with the norm |z||p t= [E(]zlp ]P shall denote the Banach space of

random variables defined on (.O. o ,P) being integrable to the p(th)
power (1<p <eo). Moreover, let a saquence {{AT}lal s }meN
veseaBy

be given with the following properties:
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(L) vmeN: {A']'_‘}lal s is a finite decomposition of O,
MY m

m
(11) vmeN: &, & a,,, ., where O := Ol({Al}l.l,,..,sm) '

(111) o, ¢ al UV ap)
P meN
{Here o (E) is the smallest & -algebra that contains g < oL and

it holds that &1 c & if for each A €3l there exists an event
P

X e Bl with P(AaA)=0.)
If we now suppose that x: I — L';(n..Ol,P) and if we define for each
meN the following processes with finitely many realizations
s
m
x (t) := Z E(x(t)}a™) 1 , TET,
m 1 "
= Al
then the following convergence statement is valid (see[8], Theorem 4):

Theorem 1:
Suppose that x:I—-Lg(n,OL.P) and Xn+mEN, are defined as above, then:
a) For all te I it holds that:

lim |xm(t,w) - x(t,w)IRn =0 a.s,

M~* oo

i [lx,(t) = x(e)] =0 . if x(t)e L;(.D..U..P) . 1<p<eo .

m—.”
b) If I is measurable, bounded and x ¢ Lq(I,Lg(n,a,P))(l $P.g <o ),
then it holds that:
lim  {x (t) - x(t))3 dt = ©
I P

M —» co
c) If I is a compact interval and xEC(I.L;(.Q.Ol.P)), then
lim max nxm(t) - x(t:)u2 =0 .
m—soo tel
The proof is a consequence of continuity properties of the conditional

expectation.
Remark 2:

a) Under some weak suppositions to x (comp.[7].[{8]) there exist such
sequences {{Al{}lsl,...,sm}meN of finite decompaositions of ().

According to the way in which they are generated there exist possi-
bilities for the computation of the realizations E(x(.)lAT) of the
approximate process X and their probabilities P(A'{'). lai.....sm.

b} Provided that there exists a sequence {zi}ieN of real random vari-

ables defined on (5, O ,P) with (%) o, € o( VU o, ), then
P ieN i

such sequences as in a) can be generated - by means of families of
finite decompositions {Ig 1}331 n © :(,1. t,neN, of R under
further proper suppositions ~ as follows:
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k k
(n,k) -1,:0 k i-1
A 2 N oz, (1 ) L l=,...,n7, l=1 + 3 (1.-1)n .
1 11 1 1yl i 1

1, €{1,...,n}, n,keN.
(n.k) 1 (n.k)
Obviously P(A1 *"7) and E(x(t)IA1 ‘"7), respectively, are deter-
mined by the distribution of (z,.....z. )" and (x(t),z,,....2,) ([81).

c) For the case of a real Gaussian process an effective algorithm for
the computation of the realizations E(x(.)lAT) was given in [8],
chapter 6. There the {zi}ieN are chosen as proper independent
N(O,1)-distributed real random varisbles. Convergence
1im llxm(t) - x(t)“2 = 0 for each t€ 1 is already secured for
m-—» oo

processes being continuous in probability. For the carrying out of
the algorithm we only need the mean- and the covariance function of
the process.

d) The represented approximation of stochastic processes is in its kind
related to Monte-Carlo methods. Contrary to the Monte-~Carlo methods
(pseudo-) random number generators are not needed.

3. A Ritz-Galerkin method in stochastic optimal control

For the approximation of stochastic optimal control problems (P) we now
use a Ritz-Galerkin method. This method is based on the represented
approximation of stochastic processes., The approximate problems result
by replacing the stochastic input parameters xo,xi,z by the corre=-
sponding approximations x°.x1,zm and by minimizing in proper subsets

n'Tm
Cm of C. The approximate problems consequently are of the form

z::cm 3,(u,) (Pm)
where 3, (u,) := E{g(x;.xm(T))} (1m)
*p(t) = FLE.Z(6) up (€)x (€)) Ltelt . T] ,x (t )=xD  (2m)

B4 Cp Lyl ThLI(O. ay.P)) (3m)

The problem (Pm) represents a Ritz-Galerkin approximation to (P). Since
the usual simple convergence proofs for ordinary Ritz methods do not
apply (see [3]), we use a general approximation scheme according tof[1].
In the following we denote by [C,3] the minimum problem (P) and by
[Cm.Dm] the problem (Pm). As in [1] we define:

{[cm'am]}meN approximates [C,3] iff ;frm 3; . J%:a tzé J(u) ,

where 3; z= inf T (u) .
umecm



173

Lemma s
{[cm'an]}meN approximates [C,J] 4iff

(I) to each ueC and easach meN there exists o V€ Cm with
lim 3 (v)) € J(u) .

m—> co

(I1) for each sequence {vm}meN‘ Vp€Cpe with lim (am(vm)-a;)-o,there

m—> oo

exists a sequence {u }_ .. C C such that 1im (I(ug)=3g(vy)) <0 .

m —» oo
Proof: [1], p.157 .

Theorem 2:

Supp.,:a) Let (S) be fulfilled; the stochestic process (x°,x1,z(.))T

2n+s

defined on (L1, & ,P) with the state space R satisfies

the condition (%) in remark 2b); o := a({AT}lai e )
geve; m

x:,x:.zm. meN, are defined as ip chapter 2.

b) C ¢ Ll([to,T].L;(.O.,OL,P)) end 0L gpa , where

O:= a(aou Oll UG,) .

c) If Qp: L (L[t,.T], Lr (n a P))——'L (Ct,,T1, L (2, o,.P))

denotes the operator (Q u)(t):= §:m E(u(t)lAl) 1 AM .te[to.T].

A
then Qm(c) cc, holds for meN.

Then {[Cm'am]}mEN approximates [C,J] .

Proof:

a) We aim at applying the lemma and start with proving condition (I)

by showing that 1lim Dm(Qnu) = J{(u) for each ueC.

M= oo

For ueC let x and ) respectively, denote tha solution of (2)

and (2m) with U= Qmu . Then we obtain
[au) = 300w € E{ja(x*.x(T)) = g(xk.x (TH]]
and according to remark 1b)
SL(T-1) {
“X(T)-Xm(T)HLn (MX L" + L { (ﬂz(s)-zm(s)llLs

P J o P
* Ju(s)=(Quu) (e} ) de)

P
This estimation, the definition of Qm' the supposition and Theorem 1

prove  lim [x(T) = x (T)f| 4 =0 .
m—s oo L
P

The continuity of g completes the proof of condition (I}.
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b) In order to prove condition (II) we have to show that
lim |3(vm) - am(vm)| = 0 for arbitrary sequences {vm}m WV € CoomeN.

[ R X -]

Now let ?m and X respectively, denote the solution of (2) with

usav  and of (2m) with u :=v_ . Again using remark 1b) we obtain
=2, v L h2(8)-z, ()] 4 d9)

mln t m L8

P o P

VS0(T) = xg(M < ot (T-%5)

and therefore

Lin 3(v,) = 3,(v,)) & E{la(x . x,(T)) = g(xt.x (T} == © .
e g.e.d.

Remark 3:

a) The case of deterministic controls:
We suppose that p+Cc Li([to.T],Rr). cm:a C, meN, In this case
the suppositions b) and ¢) of Theorem 2 are trivially fulfilled.

According to chapter 2 x:,x;,zm have reprasentations of the form:
8
] m o o ‘e 0 R n
X = > *m,1 1 m P Xp,p 3= E(x lAy) €RT
l=1 Ay
s
x:" = 3" x?r'| 11m . xz" 1 = E(xllA';)eR" .
1=1 oAy '
Zm m s
z,(.)= ;:1 zy 1(0) 1n vz g ()= E(2()IAD € Ly ([t TLRY) .
* 1
Then the solution Xm of (2m) has the representation (comp. e.g.[81)
8
xp(e)= ;;m xm,l(‘) 1Am . where Xn.1 eC([to,T].R") is the solu-
1

tion of the deterministic ordinary differential equation

im‘l(t) = f(taz, () ,u(t).xy () . tefr  TT, x, y(t )= x:'l ,

1=1,...,sm. Moreover the follawing representation for (im) results:

-]
3,(u) = ;ﬂ; 9(xy 1%y 1(T)) P(A])  , uec .

=1

Thus, 1f {x:.l.x;'l,zm.l,P(AT) }1=1 are known, then the

reeesB
approximate problem (Pm) represents a compTetely deterministic opti-
mal control problem. With respect to the deterministic control problenm
corresponding to (P) (with deterministic input parameters x°,x1,z)
only the outer form of the functional and the dimension of the sys-
tem of the o.d.e. changed. The properties of the problem (im),
which e.g. make a numericasl treatment possible, remained unchanged.

b) The case of stochastic controls:
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We suppose ¢ # C:n{z:eLl([to.T].L;(fl.ﬁ.P))lu(..az)eCd 8.s.} ,

Cq € Ll([to.T],Rr) and C,:= Cr\Ll([to,T].L;(ﬂ, o,.P)).

1f xﬁ.x;,zm are of the form as in a) and if u, € Cm is of the

s
m
D= . . h -
form um( ) 2;1 um'l( ) 1Am um'le Cd according to the sup

position, then the representation
8
m i m
Ilug) = IV 9(xp 10%,1(T) P(AD)
im.l(t)- f(t'zm.l(t)‘"m,l(t)'xm,l(t)) , te[to,T], xm.l(to)'x:,l

results for (1im) and (2m), respectively.
In this case the problem (Pm) is equivalent to the following family
of deterministic optimal control praoblems:

{ inf J (u ) }
m,1'"m,1 l=1,...,s
um'lecd * m

where am,l(um.1)== Q(X;,l-xm.l(T))
)‘tm'l(t)s frozy 1 (t),up o (E)axg (0)) teft T, xm.l(to)-x:'l

(1=1,...,s8_ )
m
Each of these deterministic problems represents just a deterministic
optimal control problem corresponding to (P).

Remark 4:
a) If e.g. Cy is of the form Cqy:= {ue Ll([to.T].Rr)}u(t) €D(t) a.e.}

with convex, closed D(t), teft ,T1, then E(u(.)|A])e€Cy , lxl,....8,,
results from u(.,w)e¢ Cd a.s. (see [12],p.145) and supposition c)
of Theorem 2 is fulfilled.

b) The condition a ¢ & is fulfilled in most cases ([8]). In some

P
special cases wa can do without the condition

c CLl([to.T].L;(.n..ﬁ.p)) (see e.g.[9]).
c) If we succeed in determining a sequence u;ecm ,meN, in such a

E -
way that 3; €3,(un) €3, + ¢ {eplnen @ POsitive zero sequence,

m ’
then {u;}meN is a minimizing sequence for J on C. Statistical
characteristics of u; meN, such as the expected value, moments
and distribution can be computed in a very simple way ([8]).

Hence the task of practically realizing the approximation method
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consists in the approximate solution of the deterministic optimal
control problems being equivalent to (Pm).

Remark 5:

a) If the functional J in (P) has more generally the form

T
I(u) := e{)t‘ f,(t.z(),u(t),x(t))de + g(xLx(T)} . (1)

o
then this stochastic control problem can, as usual (comp. e.g.[4].

p.41), be transformed into a problem of the type (P). For this pur-
pose we introduce a new state variable Xq and the differential equa-
tion io(:)-fo(t,z(t).u(:).x(t)), vefr . T], x (t )=0 , and we
add it to the state equations, With the notations an(xo.x)T.
?:-(fo,f)T, %°:2(0,x%)7 the following problem of the type (P) results:
Iu)i= E{x (T) + g(x.x(T)]
R(r) = Fre.z(),u(e).%(t) . tefr, . T, %(t,) = 2° .
This remark aims at pointing out that the approximation method pre-
sented in this chapter can be applied to the more general problem
even if T does not satisfy an assumption like (S)(1i). For example,
it 1s sufficient that f setisfies (S)(ii) and that the following

supposition is fulfilled for foz

1

fo:[to.T1steran--R fo(t,z,u.x):sfol(t,z.x)¢f°2(t,u) '

where f01: [to.T]stan——-—'-R1 and foz:[to.T]er——*~R1 are
continuous and the conditions
[foq(t,20x)] € c(t)ﬂ.(‘zlgs +|x|§n) gt < c(t)#Llu[:r

are satisfied for each te[to,T],zeRs,ueRr.x eR"™ and for suitable
ce L:l([to’T]) and L >0,
Under these conditions the mappings

for(teesa)s LO(A, OLPIXLZ(0, O,P)— L, (1, X,P) end

foz(t..): L;(.ﬂ.,m,P) —_— Li(n.a,P) are continuous for all t.
Having a look at the proof of Theorem 2 and at the remark ib) shows
that, due to this, the convergence statements remains valid for the
general problem, too.
A special case of (P) with a functional (1)°' is the Tracking-problem
with a quadratic functional and a nonlinear random differential
equation,

b) An extension of the results seems possible, e.g. for weakened sup-
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positions to f and g, for problems with state and stochastic con-
straints.

4, Conclusions

An essential intention of the carried out investigations consisted in
showing the applicability of the approximation principle for stochastic
processes (see chapter 2) for the approximation of stochastic optimal
control problems. After results for random ordinary differential equa-
tions ([71,(8]) and the Tracking-problem with linear random control
equation and linear control constraints {[9]) had already been avail-
able, the results were to be expesnded on more general nonlinear opti-
mal control problems. For this and for the numerical, computational
realization of the approximation methods further investigations are
necessary. First numerical results for the already mentioned case of
the Tracking-problem with a random control equation and stochastic
controls we obtained in [9]. For the general method an algorithm was
developed there and an ALGOL-pragramme was worked out for the case of
Gaussian stochastic input parameters x°,z. The occuring deterministic
optimal control problems (comp. remark 3) were approximately solved
by 8 method of conditional gradients and approximations of various
statistical characteristics of the optimal control were computed, The
results showed the applicebility of the suggested methods. This fact,
we call it the universality of the approximetion method, seems to be
an essential advantage. A disadvantage is the high expense of the
method when using a great number s of realizations. That is why a
proper 8 priori selection of m and s , respectively, is of great im-
portance (comp.[8], chapter 6). But in general we have to make the
best of this disasdvantage since there seem to be no efficient methods
of another type which can be used for the approximate solution of
general nonlinear stochastic control problems.

Finally I want to thank my colleague Dr. Reinhard Schulze for many
inspiring discussions and valuable hints. The present paper is essen-~
tially based on the results of a long cooperation, e.g. on [7]1,[81,{9].
Further I thank Dr.sc. Roswitha Marz for many hints and for har sup-
port, Without her long work in the field of the numerical treatment

of deterministic optimal control problems these investigations would
have besn impossible.
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