4. Bildschirmdialog mit LEINET
Im Rahmen des LEINET-Dialog lassen sich
zunéchst die einzelnen Netze relativ
rasch auf den aktuellen Stand bringen.
Gleichzeitig lassen sich nach jeden Op-
timlerungsbaustein(also speziell auch
nach RF oder RL) ein Dialog fiihren,wo
die Ergebnisse der Berechnungen analy -
siert werden kdnnen und die praktische
Brauchbarkeit der L&ésung untersucht
wird.Man kenn sich auf diese Weise
leicht tiber die Giite von Losungen infor-
mieren,gegebenenfalls konnen Neurech -
nungen vom Bildschirm aus angestoBen
werden,
Die wichtigsten Moglichkeiten,sich iiber
eine Losung ein Bild zu verschaffen sing
im LEINET gegeben:
Dies ist méglich durch
- Darstellen von Vorgangsumgebungen
~ Darstellung von Brigadeplénen 55
- Anzeigen von speziellen Entfernun -
gen Ekl
~ Darstellen von Gesamtaufwendungen von
Ressourcen
- Anzeigen des kritischen Weges in #*
- Darstellen von Ressourcenbelastungen
auch flr nichtbilanzierte Ressourcen

5. Literatur:

[1] Autorenkollektiv:" Anwenderhandbuck
zum Leipziger Programmpaket Netz -
plantechnik" ,Leipzig 1981

[2] Merkel,G.: "Optimierung von Res -
sourceneinsatzplénen bei geographi-
schen Nebenbedingungen",Wiss,.Zeit-
schrift HfB Leipzig,Heft 2/1974

Eﬂ Merkel,G. :"Terminabschétzung bei
Ressourceneinsatzproblemen" ,Manus-—
kript an der TH Leipzig 1978

[4) N&gler,G.,Schallehn,W. ,Sebastian,H.:
"The problem of sequense in network
Planning",Internet 1969,Amsterdam

Autor: Dr.rer.nat,.Giinter Merkel

Technische Hochschule Leipzig
DDR

81

Roémisch, W.

REMARKS ON THE NUMERICAL TREATMENT
OF OPTIMAL CONTROL PROBLEMS

1. Introduction

In lots of practical applications the
numerical treatment of optimal control
problems with ordinéry differential equa-
tions (ODE) is necessary. We mention here
the optimization of chemical reactions,
electronic .circuits, the guidance of a
spaceship, energetic processes and mecha-
nical systems. Typical for many of such
‘problems are nonlinearities in the ODE
and control and state constraints, too.

In chapter 2 we formulate a general prob-
lem of optimal control and discuss special
cases. This problem is quite similar to
that in [15]; in [7] we show that also a
relatively complicate model for the opti-
mization of a suspension polymerization
may be formulated in this way.

In this paper we suggest as an approach

to the numerical treatment the application
of discretization methods and of descent
methods for the arising finite-dimensional
optimization problems This approach has

the advantage that' cost-profitable con~

trols may be expected after a short calcu-
lation time. In chapter 3 we go into a
“proper" and problem- oriented discreti-
zation of control and state variables.,
Especially it is referred to the conse-
quences of applying software packages to
the automatical integration of the state
equation. One consequence is a problem-
dependent choice of the state-discretiza-
tion, a further one the appropriate com-
putation of the gradient. The latter is
demonstrated with the case of variable
one-step methods and specially of the im-
plicit Euler method,

In chapter 5 concrete variants of methods
are suggested and hints to the related
literature are given. In case there only
occur vectorial control parameters, a va-
riable metric method for constrained opti-
mization is applied, and in the other casé
an adaptive scheme of discretization-,




conditional gradient-, and penalty-shif-
ting methods is used.

2, Formulation of the problem

We consider the following general pro-
blem of optimal control, where the system
is described by an ODE for the state va-
riables
(1) x{t)=Ff(t,v(t),p,x(t)) , teft .t

x(t )=x,(p),
the controls are functions v(.) and para-

ol

meters p, which satify the constraints of
the set of admissible controls

(2) C:=fueCy | g (x(t,).p) 0 , j=1,...,d}
(3) Cl:={u= [v,p]eLg(to,te)st]av(v(t)5 bY

a.e, in (to,te) , apg pgbp}
and where the system performance is mea-

sured in terms of the functional
(4) 3(u)i=g (x(t,).p) , u=[v,plecC .
Now the problem (P) is to minimize J(u)
subject to uecC,
The subset 01 of C contains all simple
linear control constraints and C is com-
pleted by terminal state constraints.
For the further consideration we assume:
JE R"xRS—RY |, 3=1,....d;
filt,,t 1xR xR®xR"—R", xgt RP—R";
to,teeRl; r.,s,n,d are natural numbers;
a¥,bver", aP,bPer®;
let 9y j=0,...,d, f, X, be continuous-
ly differentiable functions of x,v,p
and let (1) be uniquely solvable for all

occuring initial values xo(p).

Remark 1:

a) Further problems of optimal control,
e.g. problems where the objective is an
integral functional, problems with more
general constraints to v,p and with
state path constraints may be trans-
formed into a problem of the above type
(P) by introducing suitable new state
variables x_, j=n+l1,... . We succeed
in doing the same for problems with
free initial and final time t .t by
transforming the problem to a fixed in-

terval and involving to.t, in the vec-

tor of the control parameter p (see[15],
[161,[71).

b) In practical applications it sometimes
occurs that some or all admissible con-
trol functions may be characterized by
a finite number of parameters, e.g. by
a fixed number of possible points of
discontinuity and the respective func-
tion values in the case of piecewise
constant controls (comp. also[15],[16])
These parameters can then be added to p
and the control function can be formu-
lated in the form v(t,p). If it is only
minimized with respect to the control
parameter p (i.e. r=0), then (P) repre-
sents a nonlinear programming problem
in R® and can be numerically treated
respectively effectively (see chapt.5).

c) In the present paper existence results
for (P) are of no interest, But we note
that C1 4 !
bert space H:= L2(to,te)xR and that C

is weakly compact in the Hil-

is also weakly compact and J weakly
continuous if the mapping S: C—R"
S(u):= x(te)
(according to our above assumption the

is weakly continuous

functions 95 j=0,...,,d, are continu-
ous).[3] contains e.g. a theorem on the
weak continuity of S (under certain

conditions).

3. Discretization of control and state

variables

If we aim at developing a computatio-
nal method in optimal control, then a
discretization of control and state vari-
ables is necessary in any case.

For the discretization of controls we
consider a grid G:={t =T <7, <...<%y=
te} on [to;te] and use the following
finite-dimensional approximation of C:
15) CG:={u=[v,p]€C ] v(.) is piecewise
constant, left-continuous and
has jumps at ?3, j=1,...,M-1},
We want to restrict ourselves to this
simple version for the discretization of
C, although essentially more general va-
riants are imaginable (see [15], [16]).
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Now, in order to minimize the functional
Jon C, it is often necessary to solve
(1) by an ODE code. Thereby an available
standard code will be chosen, or a meth-
od will be applied that takes into ac-
count certain properties of the problem
(1), e.g. stiffness, smothness. In most
cases the used code chooses at each step
the particular integration procedure and
the stepsize on the basis of a tolerance
parameter & and the local behaviour of
the ODE (see[19]). As a result we obtain
a variable multistep method (see [101).
But, we want to restrict ourselves here
to the case of variable one-step methods
(e.g. variable step, variable formulsa
Runge-Kutta methods) and for the more ge-
neral case we refer to [7]. We consider
the following method:
(6 xp=xy_g * hy¥(Porgvixg,xy_y)
1=1,...,N, x°=x°(p),

where h1=t1-t1_1 ,1=1,...,N,'tN=te , is
the used sequence of stepsizes and
P i RExRITXRMXR"—R" |, 1=1,...,N,
shall be differentiable with re-
spect to all variables;
er:=(v("f1),...,v('FM))T contains
all information about v,

First we note that in general the step-

. sizes hl‘ ?1 and N depend on u=[v,p], but

we want to assume that, with only small

perturbations of u, the used ODE code

leaves hl,Fi, l=1,...,N, unchanged.

After having performed the discretization

of the control and state variables we get

a discrete optimal control problem, where

the functional Jp depends on the grid G

and the tolerance parameter d :

(PD) JD(u):=go(xN,p)——>Min! subject to
uéC, , where x\ 1s determined by (6)
and x(te) is replaced by Xy

Remark 2:

We assume that it holds for (6) that:

121, .. P enlo
Here & mostly represents a bound or esti-
mate for the local discretization error,
If we have, moreover, the denotation

h:i= max It,- 1] , then it would be
1<j¢m -
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desirable if it was valid that:

(%) inf ' J p(W) 7= 1nf J(u)

UECG §—»0
Special statements of the type (%) were
proved for the case of the explicit Euler
method with the same grids for control
and state variables (the tolerance & is
dropped) in ([1],[81.
Yet, for practical applications it seems 7
to be better to choose the grid for the '
state variables in dependence on the
problem and automatically (by an ODE code
for a tolerance §) and to fix (for the
present) the grid for the control vari-
ables,
The general results of [81,[9] about per-
turbations of optimization problems, es-
pecially continuity results for the ex-
tremal value function, seem to be appli-
cable to the more general problem, too.

4, Computation of the gradient

An essential consequence after the
discretization of the problem (P) is the
adjustment of the gradient to the discre-
tization, i1i.,e. the computation of the
gradient of Ip+ Thereby we want to assume.
that ! CG-———>R1 is differentiable and
that consequently the gradient
3 =[35 , + 9,1 CG————,Lg(to,te)st
can be computed according to the formula:

N
2

(Jb'p(u) :P)Rs
As a special case of a more general re-
sult in [7] we obtain:

d : . -
g J(u+ad) |, g =(JD,V(U)'V)L +

Y3
(7) 3 () (1) =(F;-F,_y) 1§Ifw(—5—l)Tz1

t Z(tj_l;:J] ' J-1,;;.,M;
o¥1 . T
(8) Jb'p(u)= 1Z=1h1(_a_p_)Tzl + (-Wo(p)) ZO
39
(35200 P

99
(1-hy( a""N) Y2 = (5520xg-p))T

l+1 T
) )z 1+1

5¢
(9) (I-hl(—ﬁi)T)zl (I+h
(1=N-1,...,1ld

= (Thy (e,

l+1(ax



( ~ denotes that the functions are con-
sidered at (p.rgvi xl'xl-i))'

For the special case of the implicit Eu-
ler method instead of (6) we have
P1(p.rgvi xl,x1_1)=f(tl,v(t1),p.x1)=:f|1
=f(t1,v(tJ),p,x1) Cif oty €(tJ_1,tJ] .

Thus we obtain:

N
[} _~_~ -1 Lf T
3 (U (= (F=F_ 715 g av|1) 2,
tle(?3-1'T5]

(t e(TJ_l,?J] s 3=, 000, M)

‘ - Of T
Ip,p(W)= %g;hl( 3P|1)

ax
.
2y + (752(P)) Z,

39
+ (5520 P
.

(1-hy (3£ DDz = 520

. l=N-1,...,1,

2141

z =z
o} 1

(1-hy (& RIREN

Remark 3:

These formulas for the computation of the
gradient yield the necessity to store Xq
hl,Vﬁ, 1=1,...,N, when performing (6), 1in
order to be able to compute the gradient
by means of (7),(8),(9) in a suitable and
simple way. In a certain sense (9) repre-
sents an induced discretization of the
so-called costate equation (see also [6])
For detailed investigations we refer to

£{71.

5. Some remarks on the numerical treat-

ment

Let us start with some remarks on nu-
merical methods for the discrete problems
(Py) (for the present let é and G be -
fixed) . (PD) represents an optimization
problem of the dimension s+M, where M may
be "great" in dependence on G. This is
the reason why different methods-are used
for the cases r=0 (i.e. there do not oc-
cur any' control functions v, thus M=0)
and r3»1.
Case 1 (r=0):
The nonlinear optimization problem (PD)
is iteratively solved by a variable met-
ric method for nonlinear constraints ac-
cording to Powell(13]. This method is
based on the successive minimization of a

quadratic objective function subject to
linear constraints, where the matrix of
the quadratic function is suitably up-
dated. As in [14] the implementation is
carried out by using the sub-programme
QUAPRO from [51],

In extensive tests of comparison with the
most important other codes for solving
nonlinear optimization problems this me-
thod has proved its outstanding efficien-
cy (especially with respect to the number
of function- and gradient-calls) and re-
liability (see [181]).

The necessary gradients of the objective
and the constraint functions are computed
as in chapter 4, The method is adaptively
implemented (in the sense of [117,p.283)
with the discretization (6), i.e. the
tolerance 6 ,

Case 2 (r31):

(Pp) is treated with a penalty sHifting

method by Fletcher/Powell ({413,(2]),

where an auxiliary function

T(uiy,r):=3_(u)+ = 2& r.max2{0 +
IYI g D 2 =1J ’ YJ

gJ(XN lp)} .y.f‘eRd.

is successively minimized subject to
ueC,y (discretization of Cl)' Here the
shifting and penalty parameters y, are
changed iteratively as in [2], chapt.4,
To treat the minimization problems on C1D
we use the method of conditional gradient
(e.g. seel20]). For this purpose methods
with a higher speed of convergence should
be used, as e.g. a method of conjugate
gradients modified for the case of simple
linear constraints,

Finally an adaptive scheme guarantees
that the total algorithm independently
changes its parameters (tolerance & , ma-
ximum grid-stepsize h, shifting and pe-
nalty parameter), depending on the suc-
cess of the convergence (see [11]).

Tn the present implementation we use the
implicit Euler method in (6) in order to
meet the case of stiff ODEs (1), too. For
‘this purpose we use a general concept of
Shampine [17]. We did without higher or-
der ODE methods (for the present) because
the controls entering into the right hand
Bide of the ODE are discontinuous and
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hence no higher order than that of the
Euler method can be expected in general.

There will be reports on numericai . 9e-
riences and results on the conference.
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