On the Approximate Solution of Random Operator Equations
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1. Introduction

In the late fifties the Prague school of probabilists around
Spadek and Han§ began to investigate random operator equations
(cf. [19]), which resulted in a unified treatment of various
stochastic models (see [1]).

Especially the contributions by A. T. Bharucha-Reid, his book
[1] and the survey [2] initiated an essential improvement of the
theory and the approximation of random operator equations
some years ago. The works by Engl [15] and Nowak [28] satis-
factorily explained the measurability of solutions of such equa-
tions on the basis of the fast development of the theory of
measurable multifunctions and measurable selectors (see [21, 26,
33, 37]). But in the meantime there have been published several
works on the approximation of random operator equations and
their random solutions, too. Let us mention [3, 10, 16 and 27,
25, 29, 30], which contain iteration methods, stochastic pro-
jectional schemes and general approximation schemes. On the
one hand this paper aims at contributing to the further develop-
ment of such abstract approximation schemes, where we consis-
tently apply the concept of random operators on random (or
‘stochastic’) domains introduced by Engl [13], which seems
to be especially suitable for application as well as for approxi-
mation. Chapter 3 contains a general approximation theorem
for “locally** (in a certain random domain) unique random solu-
tions, where we understand by ‘approximation’ within the scope
of this paper a.s. —convergence. In chapter 4 this result is applied
" to random fixed point problems with contractive random ope-
rators on random domains. Thereby [25, Theorem 3.1.] is gene-
ralized and it turns out that in [10} and [30] the contraction
principle is finally applied. At the end of chapter 4 we present
an iteration method with a sequence of uniformly contractive
random operators. The results of the chapters 3 and 4 can be
applied to stochastic projectional schemes (Engl/Nashed [16])
as well as to ‘““discretization schemes* for nonlinear random
operator equations. The latter aspect represents the second aim
of this paper. Continuing the ideas of [31] we refer to further
advantages of the approximation by ‘‘discrete random operators*
in chapter 5. They essentially consist in the fact that the approxi-
mate problems prove to be ‘completely deterministic’ and that
statistical characteristics of the approximate solutions can easily
te calculated. A suitable practical and constructive realization
of such a discretization method seems to be the replacement of
the random variable z contained in the random equation by
certain conditional expectations. Consequently, chapter 6
provides some hints how to approximate Banach space-valued
random variables constructively by a sequence of discrete random
variables generated by conditional expectations. ‘“‘Constructive‘
means here that the conditional expectations may be calculated
from finite-dimensional distribution functions of z. Finally we
apply the results to the approximate solution of random ordinary
differential equations (see also [31]).

We start chapter 2 with a short introduction to the necessary
notations and statements from the theory of measurable multi-
functions and random operators.

2. Measurability and random operators

Let (2, %, P) be a complete probability space and X, Y be real
separable Banach spaces. By B(X) we denote the o-algebra of
Borel sets of X, i.e. the one generated by the open sets of X,
and by A ® B(X) the smallest o-algebra containing {4xB|
A e, BeB(X)}. Further we define B(X) := {D|D < X, D + 0}
and Cl (X):= {D|D e P(X), D closed}. A map C: 2 —» B(X) is
called a multifunction and we define

Gr C:= {(w,x) € 2xX|x € C(w)}. C: 2 > PB(X) is called

measurable if for all open Bg X {we|C(w) ~ B+ ﬂ}e%[
(weakly measurable in [21]). Let

S(C):= {x|x:2 > X measurable, x(w)e C(w) for all we!)}

be the set of all measurable selectors of C and we say that C
has a Castaing representation if there exist x,, € S(C), m € N,
such that {x,(w)lme N} is dense in C(w) for all w € 2 ([37)
Here N denotes the set of natural numbers.

Lemma 1

Let C: 2 — P(X) and we consider the following properties:
a) C is measurable;

b) C has a Castaing representation;
¢) Gr CeA® BX).

Then:

(i) a) <c)=b)
(i) If C: 2 — CI (X), then all properties are equivalent.

Proof

(i) [21, Theorem 3.4.] and [26, p. 408].
(i) [21, Theorem 3.5. and Theorem 5.6.].

Remark 1

If (2, %, P) is not necessarily complete, one can show by using
the technique of [15, p. 72] that Gr Ce U ® B(X) implies the
existence of a countable set x,,:£2 — X, me N, of measurable
functions such that for P-almost all w €2 {x,(w)ime N} is
a dense subset of C(w). }
In this case it holds for C: £ — CI (X) that

a) & b)= o ([21].

Definition 1([13])

a) Let C: 2 —» B(X). T: Gr C — Y will be called random operator.
ifforallx € Xandopen D < ¥, {w ef|x € C(w), T(w, x) € D}e.
If in addition C is measurable, T is called a random operator
with random domain C.

(For T(w, x) we will also write T(w) x).

b) Let C: 2 — P(X). T: Gr C — Y will be called A® %(X)-
measurable if for all B € B(Y),

T-1(B) = {(, x) € Gr C|T(w, x) € B} € A ® B(X).

T:Gr C— Y is called continuous if T{(w, .): C(w) - ¥ is con-
tinuous for all w € 2. A multifunction' C: 2 — Cl (X) is called
separable [13] if C is measurable and if there exists a countable
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set Z < X such that for all weR cl(Z~ Clw)) = C(w).
We remark that every measurable C:2 — ClI(X) with
C(w) = cl (int C(w)) for all w € 2 is seprarable [15, p. 70].

Lemma 2

a)Let C: 2 - P(X)and T: Gr C—> Y be

A ® B(X)-measurable. Then:

(i) T'is a random operator with random domain C;

(i) for all x € S(C) T(., x(.)): 2 — Y is measurable.

b)If C: 2 — Cl (X)isseparableand T: Gr C — Y is a continuous
random operator with random domain C, then T ist % ® B(X)-
measurable.

Proof ) ‘

a) The first part results from Gr C = T-4(¥) e Y ® B(X) and
Lemma 1 and from

G:= {(w, x) e Gr C|T(w, x) € D} eA ® B(X)forallopenD £ ¥
and the well-known projection theorem ([33, Theorem 4, p. 121]).
In fact it holds for all x € X that

{weR|xe C(w), T(w, x) € D} = prejg (G ~ (2x{x})).
The second part is obvious by definition.

b) This follows from [21, Theorem 6.1.] with a simple modi-
fication by taking into account the separability of C.

) q.e.d.
Remark 2

If in Lemma 2 b) T is the restriction to Gr C of a continuous
. random operator T: 2xX — Y, it suffices that C: 2 — CI (X)
is measurable. In this case we can omit the separability condition
for C (cf. [6, p. 11/12]).

Lemmma 2 shows that the % ® B(X)-measurability of a random
operator plays an important role (see also [14, Lemma 10]).
In the following we will see that this measurability property
is essential for the existence of measurable solutions of random
operator equations, too. Let C: 2 - B(X) and T:Gr C—> Y
be a random operator with random domain C and we consider
the random operator equation

T(w) x = 0. ) a

We use the usual notions of solution (see [19, 1], i.e. we say
x:2—> X is a ‘wide-sense solution’ of (1) if for P-almost all
wef x(w)e Clw) and T(w)x(w) =0, and x:2—-> X is a
‘random solution’ of (1) if x is a wide-sense solution and x is
measurable.

In a Jot of practical cases the existence of a wide-sense solution of
(1) can be proved by means of the theory of deterministic operator
equations. The following theorem ([28]) establishes conditions
under which the existence of random solutions results from the
existence of wide-sense solutions. '

Theorem 1

Let C: 2 — B(X)and 7: Gr C — Y be such that

T-1({0) eA® BX) and S(w):= {xe C)|T(w)x = 0} + 6
a.s. Then: .

There exists an at most countable set of random solutions
X' 82— X, me N, of (1) such that {xm(w)lm € N} is dense in
S(w) a.s.

Proof

Analogous to [28, Theorem 1] we choose £2; € % such that for
allw e 2, S(w) + 0 and S(w) = 0 for all w e 2\ 2.

Let A;:=A~Q, and we consider the multifunction
S$: 8024 - B(X). We have - . :

GrS:= {(w, x) €2, xX|x € S(w)}

= T1({0) €%; ® BX) £ AT ® BX),-

where U} < is the completion fof %; with respect to P.
By Lemma 1 S has a Castaing representation with respect to
(24, 5)1’1", P). Extensions of these measurable functions to measur-
able functions from 2 to X provide the desired random solutions
of (1). q.e. d.

Remark 3

a) If (2, %, P) is not necessarily complete. Theorem 1 remains
valid by using the technique of [15, p. 72].

b) If the condition of Lemma 2 b) is satisfied and S(w) + 9 a.s.,
then Theorem 1 is valid. For random fixed point problems such
a result was obtained in [15, Corollary 7] and [5, Theorem 1].
The condition S(w) + @ a.s. may be replaced by arbitrary suffi-
cient existence results for operator equations [15, p. 73].

¢)Ifin Theorem 1 a.s. S(w) are singletons, then there exists a unique
random solution of (1).

3. A general approximation scheme for random solutions

Of central interest of this chapter is a general approximation
theorem for random solutions of random operator equations.
With the notations from chapter 2 let

C,Cpu:Q—P(X),meN,and T: GrC - Y, T,,,: Gr C,, > ¥

be given, where 7'and T;,, m € N, be A ® B(X)-measurable.
Now we consider the random operator equations

Tw)x =0 )
Tm(@) Xy =0, meN, (1m).

Now our attention is focussed on the conditions to the operators
T, T,y, m € N, under which random solutions of (Im) converge
a.s. to a random solution of (1). Such a problem was also con-
sidered in [10, 30], in [16] for the case of stochastic projectional
schemes in Hilbert spaces, in [4, 25] for contractive random fixed
point problems.

Theorem 2

a) For all x € S(C) let a sequence x,, € S(Cy),. m € N, exist such
that lim |lx(w) — x,(w)llx = 0 a.s. and

- 00

lim ||T(w) x(w) — Tp(®) X, (0)lly = 0 as.

n1— oC )

b) Let o: 2x[0, 00) — [0, c0) exist such that a.s.

«(w, .) is a function continuous in ¢ = 0 with &(w, 0) = 0,
and thata.s. and forall me N, all X, X, € C,(w) one has the
condition:

H)-Cm - -’?mux = 0‘(0), ||T,,,(0J) Xm — Tm(w) xm”Y)-

c) Let there exist random solutions x,x,:2—> X, meN
of (1) and (I m), respectively.
Then we have lim |lx(w) — x,(w)|x =0 as.

n-—> 0

Proof

We choose a random solution x* € S(C) of (1) such that
x*(w) = x(w) a.s. Then there exists a sequence x,'n e S(C,),meN,
with the property:

lim |lx(w) — x,(@)llx =0 as. and
Ht— 0

lim ||Ty(w) x, (0)ll, =0 a.s.
nm—> o0

Frdm b) we obtain:
(@) — Xp(@)llx < o, | Tu(w) xp()lly)  a.s., meN.

The continuity property of a(w, .) a.s. proves the theorem.
g.e.d.
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Remark 4

a) Conditions a) and b) of Theorem 2 are in some sense sto-
chastic versions of a ‘“‘consistency condition for 7, 7,,, me N,”
and an “‘inverse stability condition for T,,, me N, respectively
(see:[36]). The motivation of the above concept originates from
[36].

b) Under the conditions a) and b) of Theorem 2 the random
solutions of (1) and (Im) are unique. In this sense, the approxi-
mation of locally unique random solutions of (1) is possible
by means of Theorem 2. Condition c) can be replaced by assum-
ing the existence of wide-sense solutions (Theorem 1).

¢) The consistency condition a) can be replaced by the sufficient
condition of Lemma 3 for the convergence of measurable
selectors, which is a certain generalization of [34, Theorem 4.3.] to
the case of Banach spaces, and by the condition: For P-almost
all we and all x € C(w), x,, € Cn(w), m € 'N, with the property

lim |lx, — x|lx = 0 one has lim [|7,(w)x, — T(®)xly =0.
n—» n1—» o0
Condition a) simplifies itself essentially in the case of C,(w)

2 C(w) a.s., m € N. Then we can choose x,, := x and a) reduces
itself to:

Im ||T(w) x — T(®) xlly = 0, for all x € C(w), as.
m-—>»
Of course it is sufficient for the validity of Theorem 2 if a) is
only fulfilled for the random solution x € S(C) of (1).

Lemma 3

Let Cp: £ - Cl(X), me N, be separable and such that:
lim D(C(w), Cu(w)) = 0 a.s. (D denotes the Hausdorff-dis-

m-—> 0

tance)

Then, for all x € S(C), there exist x,, € S(C,,), m € N, such that
lim |x(w) — x,(@)llx =0 as.

m - 0

Proof

We choose x € S(C) and define the following multifunctions
(¢m > 0, meN): :
Sp 12— CLX) Sp(w):= {x"€ Cp(w) | Ix" — x(w)llx

= d(x(), Cu(@)) + &m}. F

From [20, Lemma 2.1.] we know that d(x(-), Cn()): 2 — R!
is measurable and from [6, Theorem 1] we conclude that the
multifunctions S,, are measurable. ’
Now, for every sequence x,, € S(S,), m € N (Lemma 1), it holds
that

“x;n(w) - x(w)HX = d(X(OO), Cm(w)) + &y, ME N’ weL.

If we choose &, — 0, the proof is finished. g.e. d.

Remark 5

a) It seems to be possible to apply Theorem 3 to stochastic
projectional schemes in Hilbert spaces ([16]) for constructing
measurable approximations to random solutions of nonlinear
random operator equations and a result like [16, Propos. 3.3.]
seems to be available for the nonlinear case.

b) A fundamental purpose in the approximation of (1) is to
solve the problems (Im) in a certain sense “‘simpler”. Stochastic
projectional schemes reduce (1) to a finite-dimensional but still
stochastic problem (Im). That is the reason why so-called
“discretization schemes”, in which (1m) represents a deterministic
problem, are suggested in chapter 5.

¢) So far we have restricted ourselves to the a.s.-convergence,

but the formulation of Theorem 3 and its proof give somie hints'

how the convergence in probability, the L,-convergence a. s. 0.
can be obtained under other convergence assumptions.

4. Approximation of random fixed points of contractive random
operators

As a special case of the results of chapter 3 we now turn to the
approximation of random fixed point problems. We consider
C: Q2 — P(X) and arandom operator T: Gr C — X with random
domain C and the random fixed point problem

x = T(w) x. (@)

For the following investigations we generally assume the follow-'
ing: .

(i) C:2 — Cl(X) is separable;

(ii) for all (w, x) € Gr C: T(w) x € C(w);

(iii) there exists an.o: &2 — [0,1) such that for all (w, x),
(w,y)e Gr _C: - :

IT(w) x — T(w) yllx = (@)l x — ylix

(““contractive random operator*, [14]).

The notions ‘“‘wide-sense fixed point” and “‘random fixed point™’
of (2) are defined analogous to the related notion of solution
for (1) ({1, 19]).

Under the above assumptions there exists, according to [14,
Theorem 11] resp. Theorem 1 (Lemma 2b), Remark 3c))
a unique random fixed point of (2). .

Moreover, let C,:2— P(X) and random operators T,,:
Gr C,, » X with random domains C,, be given for all me N
and we consider

Xm = m(w) X - ‘ (2m)

Tl;eorem 3

a) Let condition a) of Theorem 2 be fulfilled;

b) for all me N let C,: 2 — Cl(X) be separable, for all

(w, x) € Gr C,, let T,,(w) x € C,(w) and for all (w, x), (w,y) e
Gr Cp:

1T(@) x — T(@) ¥lix = () lIx — yllx.

Then we have lim |lx(w) — x,(w)llx = 0 a.s., where x and x,
m — co

are the unique random fixed points of (2) and (2m), respectively,
me N.

Proof

We use Theorem 2 and have to prove only condition b) of this
Theorem. We write (2m) as ( — Tm(w)) X = 0. Then it holds
for all we 2, me N, and X, X, € C,(w) because -of condition
b) that:

”(I - Tm(w)) -’_‘m - (I - Tm(w)) im“X

; Hfm - meX - HT,,,(U)) im - m(w) imHX

g (l - (X(w)) ”xm - im“){-

This proves the T:heorem‘ q.e. d.

Remark 6

a) In [2, p. 653] A. T.Bharucha-Reid asked for Theorems
like the one above. Since that time a number of results has been
obtained, e.g. [25, Theorem 3.1.; 4,Theorem 4]. Theorem 3
is a generalization of [25] to the case of operators on random
domains. We remark that we restrict ourselves to the case
of a.s.-convergence, but refer to Remark 5c¢).

b) A number of random fixed point problems, where the random
operators are not necessarily contractive, can be traced back
to problems with locally contractive random operators under
corresponding assumptions (cf. [10]).

Iteration methods for-the approximate solution of (1) or (2)
were often investigated, too (e.g. [19, 25, 27, 29]). In connection
with Theorem 3 it seems to be interesting to combine the well-
known fixed point iteration with the approximation process (2m).
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Such a result is already contained in [19, Theorem 2]. We give
a more general version of such a result for operators on random
domains. Let us consider:

Xn(w) 1= Tp(w) Pp(w, )-Cm—l(w))’ m=1,2, ..,0ef, 3

where

(i) %o:82 — X is measurable;
(i) Pn:Q2xX— X, m € N, are random operators with the pro-
perties:

Pw, x) € Cp(w) for all xe X
P(w,x) =x  forall xe Cy,(w)
|1Pr(w, X) — Py, Mlix = lix — ylix forall x,ye X

meN,
we.

(3) is a so-called approximation-iteration process and represents
a stochastic version of the iteration method in [24, p. 61].

Theorem 4

If the assumptions of Theorem 3 are fulfilled and %,:2 — X,
m € N, are the random variables defined by (3) (with the assump-
tions (i), (ii)), then

lim [x(w) — Xu(w)llx =0 a.s.,
mo o ’

where x is the unique random fixed point of (2).

Proof

First let us remark that (3) is well-defined and that all %,,: 2 - X
are measurable by Lemma 2. If x,,, m € N, are the random solu-
tions of (2m), it holds for all m € N and a.s. that:

- Tm(w) Pm(w’ im—l(w))nx

bem(@) — Zm(@)lx = || Tim(@) Xpu(ew)
= @) (@) — P, Zm_1(@0))lIx
= (@) 1xm(@) — X 1(0)lx

and the proof can be continued as in [38, p. 78] We obtain

lim [|Jxu(w) ~ Zn(w)llx = 0 a.s. q.e. d.
n - o0

Remark 7

a) If C,_1(w) & Cp(w), we, m=2, 3, ..., we can choose
P, =1in (3). If X is a Hilbert space and C,: 2 — CI(X)
is such that for all w € 2 C(w) is convex, we can choose Py,(w, x)
= Pc, (o, x), where P, is the random metric projector ([17,
chapter 3]). ‘

b) In chapter 5 we give an application of the approximation
iteration method (3), which is completely deterministic (comp.
Remark 9).

5. Discretization schemes for random operators and equations

In this chapter we investigate methods for the discrete approxi-
mation of random operator equations and their random solu-
tions. The basic notion is a “discretization scheme* for random
operators, which is based on a “‘discretization* of the underlying
probability space (2,%, P), i.e. on partitions of £ into a
finite number of measurable sets, and goes back to ideas from
[31]. As in chapter 3 let C: 2 —» (X) and T:Gr C— Y be
A ® B(X)-measurable.

Definition 2

{Wns Cons Ty} m e x Will be called a ““discretization scheme” for
T'it for all me N there exist

(i) a finite partition A, €A, I =1, ...,m, of 2,

m
ie. UA1=~Q and Al/\Amk=ﬂ,l:':k,
oo I=1
such that %, = 0({Amz}1—1 )

(o(€) denotes the smallest cr-algebra containing € < ).

() CueBX), Ty : G = Y, [ =1,

Cp: 2 - PX) Culw) = Cyy
T:GrCp— Y Tu(w)= Ty

..., m, such that:
} WEAu, =1, ..., m.

The operators T, are called “discrete random operators”.
Now let a discretization scheme {¥,, C, Tnyme N for T be
given and we consider the random operator equations:

Twyx =0 [))
T(w) x,, = 0, meN. (1m)
Remark 8

a) For all me N T, is arandom operator on random domain C,,.

b) Every wide-sense solution of (Im) is also a random solution
and is of the form x,, : 2 - X, x,(0) = Xpy, 0 € Ay, [ = 1,..., m,
where x,,; € Gy and Tryxy = 0,1=1, ..., m.

Consequently (1m) reduces itself to m deterministic operator
equations.

¢)If g: X — R! and if E denotes the mean value with respect
to (2, ¥, P), it holds that

E(g(xn())

ie. the computation of statistical characteristics of random
solutions of (Im) is easily possible if the probabilities
P(Apmy), 1 =1, ..., m, are known. Under suitable convergence
properties of {x,,(-) } ey toarandomsolution x for (1) (Theorem 3;
Remark 5 c)) there also result convergence statements for the
statistical characteristics: :

lim E(g(xa(.) = E(g(x()))-

m — o0

Remark 9

= 121 g(xml) P(Aml)a

We consider the approx1matlon iteration method (3) with
discrete random operators 7,, m€ N, under the simplifying
assumption that C,,_;(w) S Cn,(w), w € 2, i.e. (3) is of the form:

(@) 1= Tp(@) Bp_y(@), m =2, 3, ..., 51 € Cy.

If we assume 2, < U,,;, me N, then this iteration process
can be described completely deterministic. If we additionally
assume that for all m € N there exists a k, € {1, .... m} such
that Ap k,, = Amiok, 2 Amits mits Ami = Ampts 15 .l + km, then
the following iteration scheme results:

(@) = Xy 1= Tmlxm—l,l WEAy,l=1,..,m~—1,
Tmm-fm—l,km_ls ® € Apm, [ = m.

In the following we want to refer to a simple possibility to
construct discretization schemes.

. For this purpose we consider a real separable Banach space Z,

a random variable z: 2 — Z with range
R(z):= {zw)wel} < Z,

a mu]tlfunctlon C: Z’ - B(X), and an operator T: Z'xX — Y.
Then, under suitable assumptions, the equation

T(z(w), x) = ' @

represents a random operator equation.

Remark 10

a) If in (4) z is replaced by simple random variables z,,: 2~ Z
with m values and R(z,) £ Z’, then “‘discretization schemes”
for (4) result in a natural way.
b) The discrete random variables z,(w) = z,, © € A4,
=1, ..., m, have to be chosen according to various criteria,
e.g. the convergence, the numerical realization a.s.o. To replace
z by conditional expectations w.r.t. certain proper- o-algebras
(see chapter 6) seems to be a suitable possibility.
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6. Some remarks on the approximation of Banach space-valued
random variables via conditional expectations

As before let (2, U, P) be a probability space, Z a real separable
Banach space with the -norm ||l The spaces L,(£2, %, P; Z)
(1 = p < ) let be defined as usually. For ze L{(2, %, P; Z),
A e with P(4) > 0, E(z|A) := L z(w) dP is called the
P

conditional expected value of z with respect to 4. If %y < A
is a further o-algebra, then E(z|%,) denotes the conditional
expectation of z w.r.t. %, (see e.g. [12]). We note thatif {4,}, = A
is a finite partition of £2 and Uy := 6({4;};), then E(z|Up) (w)
= E(z|A4;), we A4,.

Lemma 4 ([11], Theorems 1 and 4)

Let zeL,(22,%, P; Z) and o-algebras U, = A, Ay S i1,

m e N, be given and define U := o( U A,).
meN
Then we have:

lim E(z|%,) = E(z|A')a.s. and in the sense of L, (1 £ p < o).

m — 0

Remark 11

a) If A(z) := o{z"1(B)|B € B(Z)} denotes the smallest o-algebra
in 9 with respect to which z: 2 — Z is measureable and if

AW := o( U U,) (for the definition of < see [31, p. 526]),
P meN P
then it results in Lemma 4:

(*) lim E(z|%,) = za.s. and in the L,-sense. In case the o-alge-
m — 0
bras %, are moreover generated by finite partitions {4, }1=15-+» m
< Uof 2, then (*) represents a statement on the approximation
of z by discrete random variables (with the values E(z|A,,;),
I=1, ..., m) (cf. Remark 10).
If E(zlAw), =1, ...,m, meN, can be computed from the
distribution of z, then this approximation is constructive.
b) In [35] possibilities are given how such partitions
{Ami}i=1,....m» mE N, can be generated from the corresponding
partition sequences of Z. We remark that in this case the in
general infinite-dimensional distribution of z is needed to deter-
mine P(A,;) and E(z|4,), =1, ...,m, me N, and that this
method is not constructive in the case of infinite-dimensional
spaces. The following notion allows more practicable possi-
bilities to construct discrete approximations of random va-
riables.

- Definition 3 [31, p. 527])

A random variable z: £ — Z will be called ‘separably pro-
ducible’ if there exists a sequence {z;}; y of real random varia-
bles on (2, U, P) such that
Az) S o U Az).

P ieN
Examples

a) Z = R" ie. z:£2— R"is a vector-valued random variable
with components z;, i = 1, ..., n. Then
Ae) € o U Alz).

i=1

b) Z = C{, R"), where I < R' is compact. Let S be a de-
numerable dense subset of 1. Then we have ([31, p. 526]):

Az < o(U U Wz)).
P teSi=1

¢) Let Z be a real separable Banach space, z: {2 - Z a Gaussian
random variable. Then there exists a sequence {z;}; ¢y of inde-
pendent, N(0, 1)-distributed real random variables such that:

Az) € o U Az)).
P ieN
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(In [23] a.s.-convergent expansions for Gaussian random va-
<0

variables of theformz(w)= 3" z,(w) ¢;+ E(z) a.s. are investigated,
i=1

where {e;};en is a proper set of linearly independent elements).
d) Every random variable z:£ — Z is separably producible
with a certain sequence {z;};en-

(For the proof we start as in [18, p. 72] from a sequence of
finite partitions {{Bu;};=1,....mmen < B(Z) of Z, which was
constructed by means of a sequence {u;}; <y being dense in Z,
so that it holds for z,,: 2 » Z

Z(®) = Uy, 0 € A= 2" Byy), j =1, ... m, meN,

that: z(w) = lim z,(w), for allw € 2.
m - 0
.m

[31, Lemma 1] yields: €(z) £ o( U U YU Amj)).
P  meNj=1

Remark 12

a) If {z;}; » is a sequence of real random variables on (2, %, P)

and if A is defined by %’ := o (| A(z;)), then we can proceed
. ieN

according to the following principle in order to generate A’

by a sequence of finite partitions of 2 (see Remark 11 a)):

Let {{I’};=1, .., rG. n)},,eN < B(RY), ie N, be sequences of

finite partitions of R!. Then we define:

k

k
APR =0 A, 1=1, ., T v, n),
i=1 i=1 .
Le{l, .., r@in},
i=1,..,k, .
loWy,.., 0, k,neN.

(see also [31, p. 528; 35]).

If the distribution of (zy, ..., z): 2 — R* is known (e.g. from-

the distribution of z, comp. Examples a), b)), then P(4{"*) can
be computed from multiple integrals.

b) In the case of Example ¢) E(z|4{™") can also be easily com-
puted:

k
E(z|APR) = 3 E(zilz7 ') e
i=1

By specialization of the Banach space Z we thus get a possibility
to approximate Gaussian processes .with continuous sample
paths and Gaussian random vectors, respectively.

Another method for the same purpose is to be found in [31,
p. 531;32]. ,

¢) Concerning possibilities to approximate random vectors
we want to refer to [35].

More details, further statements and detailed proofs on the
subject of this chapter are to be found in [32].

7. Application to the approximate solution of random ordinary
differential equations

Let us consider the following initial value problem for random
ordinary differential equations

) = £, ulw, ), x(t)), 1€ [to, 1] (5)

x(t0) = xo(w),

where u is a stochastic process and x, is a random variable on
a probability space (2, %, P).

Such problems were investigated in detail in [1, chapter 6;
9] and in the framework of random operator equations in
{7, 13, 15, 22].

In this chapter we want to show the applicability of the concept
from chapter 5 to the discrete approximation of random solu-
tions of (5) under relatively strong assumptions. Then, continu-



ing the ideas from [31], we get a general method for the approxi-
mate calculation of statistical characteristics of random solutions,
such as the distribution, moments a.s.0. The method is based
on the approximation of u and x, by certain, suitable conditional
expectations (comp. chapter 6).

For the following we assume:

() (2,9, P)is a complete probability space;

xo€L(Q,%, P; R") is a vector-valued random varjable with
xo(w) € R(xo) € R" for all w € 2, and R(x,) is convex, closed;
u: 2x[ty, 1] — R’ is a stochastic process with continuous sample
paths and such that we L;(2,%, P; C([to, t4], RD), and for
(0, 1) € x[to, 111 w(w, t) € R(u) < R', where R(u) is convex,
closed;

(i) f: [to, 1] xR(w) xD — R" is uniformly continuous and Lip-
schitz continuous in the last variable (with constant L), where

D:= U {xeR”||\x — Fllgn = ro}, L(ty — 1) < 1
x € R(x¢)
and
i

0< (1~ to)Lro + sup [ If(t, ul, 1), x)llgn dt = ro.
x€R(x,) to

Then we can formulate problem (5) as a random fixed point
problem and we define:

X := C([to, t1]; R™ with the supremum norm |||,
C:2-ClX) Clw):= {xeX]lx — xo(w)ll = ro},

t
T: Gr C— X [T(@)x] () := xo(@) + [ /(5 ulo, 5), x(s)) ds,

to
t€[ty, t1], (w,x)e GrC.

Analogous to [15, p.75/76] we show that C:£2 — Cl(X) is
separable and T is a random operator (with random domain C).
By standard arguments it follows that for all (v, x), (w, »)€Gr C:

Al
IT@)x = xo@)Il = [ ILf(2, ulw, ), xo(@)) Ixn dt
o
+ L(t; — to)llx — xo(w)ll
=r
IT(w) x — T(w) y = L(t; — to)llx — »Il.

The unique random fixed point x:2 — X of T can by [15,
Lemma 10; resp. 22, Proposition 4.2.] be interpreted as a stochast-
ic process the sample paths of which satisfy (5) a.s.

For the approximation of (5) and its random solution we further
assumie:

(iii) There exists a sequence {{Aml},=1, ...,,,,}m v & U of partitions
of 2 such that for all  €[#o, 2] (., t) and x, are measurable with
respect t0 A’ := o( U {Am}i_1,...,m) (see chapter 6).

meN
We define
) w€ Ay,
Xom: 2= R Xom(®) = E(¥o| An) e
Uy Qx[to, 11] > R tm(w, t) = E(u(-, )| Amp) me ]\,’, ’

and note that xop(®) € R(xo), tm(®, 1) € R(W), © €2, t€ (o, 111,
meN.

Therefore the following problem makes sense:

Xp(t) = f(2, up(w, 1), x,,,(z)), tefty, t4],

Xm(to) = Xom(®w). (5m)
Analogous to Remark 8 a) (5m) reduces itself to m deterministic
initial value problems for ordinary diiferential equations.

Theorem 5

Let the assumptions (i), (ii), (iii) be fulfilled. Then, for all me N,
there exists a unique random solution
X1 £2 = X of (5m) and it holds that:

lim |Ix(w) — xp(w)ll = 0 as.
Nt — ©

Proof

For all me N we define Cy,: 2 - Cl(X), T,: Gr C,,— X analo-
gous to C, T, where we only have to substitute Xom, #x, for xo, u,
and analogous to above we conclude that condition b) of theorem 3
is fulfilled.

To prove condition a) of Theorem 3 we observe that

lim |xo(w) — xom(@)llgn = 0 as. (Lemma 5) and that
m — 0

therefore the assumption of Lemma 3 is satisfied. Then, for
all e S(C), there exist x,, € S(C,), me N, such that

lim (|x(w) — xf,,(w)H = 0a.s. Because of lim |[lu(w) — un(w)|| =0
n— 00 m—
a.s. (Lemma 5) and the uniform continuity of fit results that

Tim ||T(w) () — Tp(w) x,,(@)|| = 0 a.s. Theorem 3 provides
Bt~ 00
the assertion. g.e.d.

Remark 13

a) If we choose the partitions 4, €U, [ =1,...,m, me N, of 2
such that P(A,.), E(xoldm), E@(, OlAm), I =1, ..., m, L € [y, 1]
can be calculated from finite-dimensional distribution functions
of (xo, u), then the method explained above is a constructive
possibility of the approximate calculation of random solutions
of (5) and their statistical properties. The algorithm is analogous
to that in [31, Remark 5, p. 529/530]. This proposed method is
of the type mentioned in [8, p. 174].

b) In [31] the random differential equations (ahd random
integral equations, respectively) were considered as equations
in Banach spaces of random variables. Hence, the above approxi-
mation methods could be interpreted as Galerkin methods there.
By means of the concept of random operator equations we succeed
in giving a more natural foundation of the methods and more
general convergence results could be obtained.
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Werner Romisch

Zur approximativen Losung stochastischer Operatorgleichungen

Es wird ein allgemeines Approximationsschema fiir nichtlineare
stochastische Operatorgleichungen und deren stochastische
Losungen vorgestellt. Als Spezialfall ergeben sich Approxi-
mationsaussagen fiir stochastische Fixpunkte kontraktiver
stochastischer Operatoren. Als geeignete Realisierung des all-
gemeinen Konzeptes werden ,,Diskretisierungsschemata® vor-
geschlagen, die zu numerischen Verfahren fiir die Berechnung
statistischer Charakteristiken von stochastischen Losungen
fihren. Dieses Vorgehen basiert auf einer Approximation von
Banachraum-wertigen Zufallsvariablen durch geeignete be-
dingte Erwartungen. Als Anwendung wird die approximative
Losung von Differentialgleichungen mit zufélligen Parametern
untersucht.
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Bepuep Pémuin

O06 annpoKCHMATHBHOM pelIeHHH CJIy4aiiibIX OHepPaTOPHBIX YpaB-
HeHMit

IlpencraBnserca obiias cxeMa AalpOKCHUMALNN HENTUHEHHbIX
CJIy4aliHBbIX OIEpAaTOPHBIX YPABHEHUI U UX CIYyYalHBIX PCIICHHUH.
YacTHBIM CIIyYaeM SIBJISIFOTCS. Pe3yJIbTaThl 00 alpOKCHMAIMHI
CIy4YailHBIX HEMOABIIKHBIX TOYKaX CIy4aiHbIX OEPaTOPOB CxKa-
tys. Kak BoirognHast peanmsauusi oOuieil cxemsl IpeiaraeTcs
«METOABI NUCKPETU3ALUW», KOTOPBIE DE3YJIBTHPYIOTCS B BBI-
YHC/IMTEIBHBIX METOHAX Ui CTATHCTHYECKUX XapaKTEPUCTHK
ciyya#iHbiX pemneHuii. Ha3BagHasi cxeMa OCHOBaHA Ha amnmpo-
KCHMAallM# CITy9alHBIX BEIIMYMH CO 3HAYCHUSIMH B OaHAXOBBIX
MIPOCTPAHCTBaX HEKOTOPBIMM YCIOBHBIMEM MATEMATHYECKUMU
oXumaHuAMH. B KkadecTse IIPUMEHEHHS WCCIEOYETCsl Aarmmpo-
KCHMAaTHBHOE pemeHue puddepeHumanbHbIX ypaBHEHHH CO
CIIyYalHBIMU ITapaMeTPaMH.

Werner Romisch

Sur la soluticn approximative d’équations a opérateurs sto-
chastiques

L’auteur décrit un schéma d’approximation général pour des
équations a opérateurs stochastiques non linéaires et leurs
solutions stochastiques. Comme cas spécial, il s’ensuit des énon-
cés d’approximation pour les points fixes stochastiques d’opé-
rateurs stochastiques contractifs. Pour la réalisation appropriée
du concept général, il propose des «schémas de discrétisation»
qui conduisent a des procédés numériques pour le calcul de
caractéristiques statistiques” des solutions stochastiques. Ce
processus est fondé sur une approximation des variables aléatoires,
a valeur d’espace de Banach, par des espérances conditionnées
appropri¢es. A titre d’exemple appliqué, il étudie la solution
approximative d’équations différentielles avec paramétres aléa-
toires.
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