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On an Approximate Method for Random Differential Equations
W. Rémisch (Berlin, DIR)

Abstract

The approximate method of /13/ for random differential equations is
further developed into two directions. First a result on a.s.-con-
vergence of random solutions is proved for the case that the domain
of the right-hand side is "stochastic" using an approximation con-
cept for random operator equations. Secondly a concept for the dis-
crete approximation of Banach space-valued random variables is
sketched and used for a new derivation of a discrete approximation
of continuous Gaussisn processes by conditional expectations.

1. Introduction
In recent yearsthere has been considerable interest in the theory,
approximation and applications of random equations, especially ran-
dom ordinary differential equations., The theory of random differ-
ential equations is well-developed (eee the monographs /1/, /7/,
/15/). Recently the use of random fixed point theorems has unified
and generalized/the approaches to the existence and uniqueness of
random eolutions (see /4/, /8/, /10/). Diverse probleme' in the
real world, e.g. in mechanics and electricel circuit theory, lead
to more suitable models if rendom equations are used (see also /15/)
Thus, approximate methods for the solution of random equations are
of considerable interest. Much progress has been made in this di-
rection up to now. We reter to the surveys /5/, /11/ and to /2/.

The purpose of this paper is the further development of the
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approximate method of /1%/ end /12, chapt. 7/. Let us consider the
following random differential equation
x(t) = f(z(w,t),x(t),t), telt ,tl, (1.1)
x(ty) = x,(w),

where x, is a random variable and z a atochastic process defined on

some underlying probability space with a given joint distribution.

The problem is the approximete computation of some characteristics

of the distribution of a random solution.

The approach of /1%/ and /12/ for solving this problem is exactly

of the type which is called "direct numericel method" in /5,p.174/.

This approach involves two easential steps:

(i) Replace the random input by a "discrete” random variasble using
suitable conditional expectations;

(ii)Solve the resulting finite family of deterministic ordinary dif-
ferential equations by usual numerical integration methods and
by usual numerical software, respectively.

In the next two chapters we give results on the two malin problems

of this approach:

(a) Convérgence of approximate random solution to a random solution
of (1.1) if x, and £ (that means z) are approximated: We focus
our attention on the case of a.s.-convergence and note that ap-
proximations by conditional expectations converge almost surely
(because of martingale convergence results)., Our approach is
btased on the general approximation concept of /12/ and /9/ for
random operator equations. Generalizing /12, chapt. 7/ we treat
the case that the domain of f is "stochastic", i.e., it depends
on "w".

(b) Discrete approximations of rendom variables by conditional ex-

pectations: We give a short introduction to a concept for the
/
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discrete approximation of Benach spage-valued random variables
using conditionel expectations and sketch some basic properties.
As an application, a new description of a discrete approximation

for continuous Gaussiari processes (see /13, chapt. 6/) is ob-

tained.

2. Convergence of approximate solutions of random ordinary
differential equations

We consider initisl value problems for rendom ordinary differential
equations of the following kind:
x(t)
x(to)

flw,x(t);t), tEe€ ooty ,
(2.1)

x,(0).
Throughout this chapter, let (2,0,P) be a complete probability
space and let us assume that
x,: R » R" ie a random variable on (Q,01,P); (2.2)
f:6rDx [t ,t;] +E" is a mapping such that (2.3)
(i) for all weR flw,.,.): D) x {tyotyd = R" is conti-.
noous;
(11) for all weRand teft ,t;] f£(w,.,t): Dlw) = &" is
Lipschitzian on D{(w) with the Lipschitz-constant L(w);
(iii) £ is a random function on stochastic domain D, where
Bw) := Dw) x [t ,t, weR;
where D is the multifunction defined on R into P(R®) (the
set of all nonempty subsets of R")
D(w) := {x€RY Ix-x (W) % r(u)}, WER ,
where |.| denotes some fixed norm on R" and the "radius”
r: Q - (0,@) is a rendom variable on (ShOL,T).
Applying the generel concept of /12/, /9/ for the approximate so~

lution of random operator equations we now define the appropriate
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I : : n
setting for (2.1). Let X be the Danach space C([t ,t,];R ) endowed
with the usual norm

Ixl := max |x(t)|
hd to,tﬂ
and we define:

C:Q +P(X) Cw) := {x€X| Ix-x ()l £ r(w)], weR,
T: Gr C » X[T(w,x)] (t) := x(t)-x (0)- 3 f£(w,x(8s),8s)ds,
teR,tl, xeClw), veR. 2
We note that by (2.3) the multifunction C and the mapping T are
well-defined and we consider the "rendom operator equation”
T(w,x) = 0. (2.4)
Proposition 2.1. Let (2.2) end (2.3) be satisfied.

a) T: Gr C =+ X is a continuous random operator on stochasti‘c domain
Ce

b) Assume that (2.1) has a wide-sense solution. Then there exists a
random solution of (2.4) which is almost surely unigue.

¢) For a1l weR and all x,y e C(w) it holds:

2L(w) (t1-tq) IT(w,x) = T,y

Proof. a) Firet we note that D:Q = P(R™!) and C:Q + P(X) are weak-

Ix - yl £ 2

1y measurable, separable, closed-valued multifunctions (/B,p.70/).

The components f,, i=1,...,n, of f are continuous real random func-
tions on stochastic domain D (by (2.3) (i), (iii)).

Therefore, /3, Theorem 2/ applies to our situation and there exist

continuous real random functions ¥;: &2 x R x [tysty) - R" such

that
fi(k),x,t) = fi(w,x|t)’ x€ D(U), t€ [to’t1] ’

wESR | i=1,...,n,
1f we define T:Qx X + X analogous to T, but with f instead of At
then it is clear thet F(w,x) = T(w,x), for all (w,x)€ Gr C.
With the same arguments as in /8, p.75/ it results that T:Qx X »X

\
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is a random operator. By definition of T this yields that

T: Gr C =X is a random operator on stochastic domain C. Further-
more (2.3) implies that T(w,.): C(w) + X is Lipschitzian for all
weQ .

b) This follows from a), usual random fixed point theorems (see /8
Corollary 7/) and from condition (2.3), which implies that a wide-

senge solution of (2.1) is a.s.-unique.

c) Let weR end x,ye C(u.) be/arbitrary, but fixed. Then we define

hel, s=  max  LeTPLW)(t=to)|y(iy 4 iy,
telt ,tyd

b,
[S€w,2)] (£) := x (w) + § T,x(e),8)a8, t€ Ity,tl.

0
Because of (2,3%) we have

Ist,x) - stw,yl,
and it follows that

(13

éllx = Yl

i

WT 0, 2) =T,y & Nx-gl, = IS0, x)-S(w,3)l, & Jix-yl,
=2L(w) (t1-ty)

"

%e 1x-yi.

This completes the proof. gee,.d.
In addition to (2.1) we now consider its following "approximetions”

x(t) folu,x(t),t), te [to,t,l .

meN : (2.5)
x(to) = x n(0),
We assume for (2.5) that for all me N
%ot @ = R® is a random variable on Q,0,P); (2.6)

f, fulfills condition (2.3) with D Ly Xop
of D, L, x, and r. (2.7)
Analogous to the above we define for all m€ N
Cpt 8 -+ P(X) Cplw) := {x€ X =2 (w2 rm(w)l, WER,

t
Tpt G Cp = X B (w,x)] (t) := x(t)=x ()~ é £ (w,x(8)8)ds,
[}

tE fo,ty], XEC (W), wER,

and consider the "approximate random operator equations"
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T, (w,x) = 0 (mEN). (2.8)
We note that analogous to Propos. 2.1 a) T : Gr C, +X, m€N, are
continuous random operators on stochastic domaini Cope Especially T
end T , m€ N, are Ox 3(X)-measurable (see /12, Def.! and Lemma 2/)
end our situation is the same as in /12, chapt.3/.
Theorem 2,2, Let the assumptions (2,2), (2.3), (2.6), (2.7) be ful-
f£illed. In addition, we assume thet for ell wER\A, P(A)=0:

i = - rtw)l = 0;
(1) 112|xom(“’) - x,(w)| =0 eand g‘:lrm(“’) w ;

i =x1=0, it
(ii)  for all x€C(w), x €C (w), mE€N, such that 111:1lxln x1=0,

holds:
1im max lfm(w,xh(t),t) - f(w,x(t),t)| = 0;
mae t€ [t ,t,)
(i3i) Iy (w) £ L(w), for all me N,
Let wide-een.se solutions of (2.1) end (2.5), for all m€ N, exist.
Then there exist random solutions x* of (2.1) and x:n of (2.5), for

all m€ N, and it holds

lim max  |x*(w,t) ~ x}(w,t)] = 0 a.s.
M=>e t€[t°,t1]

Pro(;f. From Propos. 2.1 b) it ’ia clear that random solutions of
(2.1) and (2.5) (m€ N) exist. We only have to prove their conver-
gence.

To this end we a;\>p1y /12, Theorem 2/ and have td check the assump-
tions of that Theorem. Because of Propos. 2.1 ¢) using (2.7) it

holds for all m€ N, w€R and x,y€ Cp(w):

2L () (ty-t

)
Ix - ylI £ 2e Ny (w,x) = T (w3l

L]
The above assumption (ili) yields that the "inverse stabllity" as-
sumption b) of /12, Theorem 2/ is fulfilled.
Using (i) and (ii) it follows irmediately thet for all w€ Q\A and

=xll = t holds
211 x€ C(w), x € C (w), mEN, such that :ir:l\xm xl=0, it ho
lim | T (w,x ) = T(w,x)|| = O.
e
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It remains to show that for every measursble selector x of C there

exists a sequence x' of measurable selectors of Cm

m » MEN, which con~

verges almost surely to x. We conclude from /9, Theorem 4.1/ that
the following condition is sufficient for this measurable selector
convergence; )

There is an A EOL with P(A,)=0 such that for a1l wGQ\AO and all
x€C(w),
lim a(x,Cp(w)) = 1im  inf |x - Yl =o0.
M oo yEC, (w)
Becausge of
4(x,Cy(w)) = max {0, Ix - x ()} - rp ()}
(/9, Example 4,4/)

— max {0, lx - X - r(w)}]  a.s. (ueing (1))

m>%
the latter condition is obviously fulfillegd. This completes the

proof, L

3« On_8n approximation of continuous Gavasian processes
by conditional expectations

In /13/ and /12, chapt. 6/ an approximation method for astochastic
processés and Banach space-valued random variables, using condi-
tional expectations was developed. In the following we present an

approach which seems to simplify the convergence proof and to unify

the descriptign of this approximation method. Our aim in this con-
text is to give a new derivation of the numerical method for con-
tinuous Gaussian processes presented in /1%, chapt. 6/,
Let Z be a real separable Banach space, Z" its dual, and let (.,.)
denote the dual pairing between Z* and Z., Let B(Z) be the ¢-algebra
of Borel sets of zZ, F={z;] jeN D€ a countable and total subset of 2*
and let €o(Z)< B(Z) be the set of cylinder sets (with respect to F)
£:(2) := {((z{I,.),...,(z_::m,.))-1(B)'iJ-G N, J=1,...,m, BEB(RD),
ne N},
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Furthermore, let (,0,,P) be a probability space, z: R -7 be a Z-val-

ued random variable on (Q,0(,P) end let for all m€N {Bm151=1’,..,5m

be a finite partition of R® into Borel subsets of R,

We define
NNVE T8 SRR LT e0 S il ¢:- W
Ay = K21zl Dy e (g m1 a ol
= 27 Lad, >y ee e sdBhy )7 (B3 )
(1= 1,.00,87)
Oy = & (Apbiar, ... e)¢ s BN
and coneider the conditionel expectations
E(z|o) if Eflz(wii<® ; (3.2)
% (3.3)

E((z’,zHUlm) if E[WKz*,z(w)>ll<=  for some PR AN
Remerk 3.1. a) We note the following well-known concluaions:
1If E[lz(w)i] € o , then it holds for all AR AR
(2" Blz|0)> = E({(z*,z3|0) a.s. (3.4)
If P(Ayy)> 0 for 1€ {1,...,8,], then it holds for wE€A ¢

E(a", 200 () = gi— A?ﬂ {z*,2(w)>aP (3.5)
ml

(in the case (3.3) and analogously for (3.2)).
b) If the sequence {{B}t }pey 18 chosen in such & way that o, meN,
is increasing and that

17®) | BERD] € 8({§z7 1 ((Kads >y eesEhe ) B b ens
it followe from the usuel martingale convergence that

{z*,2> &.s., in the case (3.3);

(1) lim E({z*,2>|0)

0 a.s., in the case (3.2).

(ii) lim 1B(zlo) -2
(see e.g. /6 p.71/).
Note that also convergence in p-th meen (1 £ p < o) results if

E[|z*,2(w»|Pl<® and Eflz(w)iP]< oo,

respectively.
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c) Let z: Q -2 be a Geaussian random variable, i.e., for all z¥e Z*
22,20 ) R —~R' is Gaussian.

It follows that E[|<z",2(w)>|P] <« for all 1 £ p <, and that
E((z',z>l0tm), mEN, is well-defined and the above martingale conver-
gence results apply.

Proposition 3.2. Let z:Q —~Z be Gaussian and let z3 1=4z% 512> R-»R

J=1,+e.,m, be independent N(0,1)-distributed random varmbles. Then
it holds

m

E({z*,z>|o) = E_ E[(z',z)zj]E(zjlqm), e 2", (3.6)

J—

The proof is an immediate consequence e.g. of /14, p.324/.
We now turn to the special case of a Gaussian random variable
z2: R -C([0,11), i.e. a continuous Gaussien process. We suppose for
simplicity that Elz(t)}=0, for all t € [0,1], and that z does not
degenerate in (0,11 . Applying the general concept of this chapter
we choose a countable, dense subset

ftslsey of [0,1] such that for all k€N the

covariance matrices (E[z(t Yz(t. )'.()1 351,000,k BFC regular,
We define the subset Fc (C([0,11))*:
: -
F := {zjljeN (z's-,x5 = a_j].j'(x“j) - g?_‘_ aij(z'i,xw, (3.7)

x€c([o,11), JjEN,

where o

Zf__ralaaik—E[z(tJ)z(tk)], J=1,..0,k, KEN,

which corresponda to the Cholesky-decomposition of the above co-

variance matrices.

Proposition 3.3. Fe(C({0,11))* is total and zj==(z3,z(.)>, JEN,

are independent N(0O,1)-distributed random variables,

If O.m, mEN, are defined according to (3.1), it holds:

(3.8)
E(z(t)leg) = }J’?_T E[z(t)z;]E(z5l00), telo,1, meN,
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where .
;i-r 8y {Elz(t)zy) = Elz(t)z(tp], §=1,...,m, mEN. (3.9)
Proof. Let <z3,;>=o, for ell j€ N. Because of (3.7) x(t;)=0 resulte,
for all j€ N. It follows that x(t)=0, eince itj‘jeN is dense in
f0,11, i.e., F is total. From the usual traneformetion of multi-
variate Gaussisn random vectors (see e.g. /14, p.322/) if follows
that Z3 jE N, are independent N(O,1)-distributed rsndom variables.
The remainder of the proof ie a consequence of Propos. (3.2) and
(3.7). q.e.d.

Remark 3.4. a) Applying Remark 3.1 b) and c) to the above discrete
approximation of a continuous Geussien process, convergence results
for (3.8) can bte obtained.

b) Using the extremal property of conditional expectations with
respect to the quadratic mean, the following "estimate" is an imme-
diate consequence:

n 2
B{|a(t)-B(z(®lo))?) = BP0 - s:.;(E[z(t)zj])zE [(Bz 5105027

(t€[o,1], mEN).

¢) The finite number of sample paths of E(z(.)lam) can be computed

efficiently from (3.8), (3.9) if the finite number of realizations
ﬁtmauwﬂeMvaummuEuﬂ%Ljﬂ"nm,weMWm

The realizations of E(zj\um) can be easily computed from the N(0,1)-
distribution (see /13, p.531/) if the B; (see 3.1) are chosen to

be m-dimensional intervals.
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