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1. Introduction

This paper investigates a constructive possibility for the approximation
of stochastic optimization problems, including optimal control problems.
More precigely, our basic problem is of the following type:

(1) J(u): = B[g(w, uw)]—-Min! subject to u €C.

where € is a non-empty constraint set, g: 2 xC—R is such that for all
weC,g(-,u) represents a real random variable defined on a probability
space (2, U, P) and F denotes the mean value. Chapter 2 discusges this
type of decision problems in abstract spaces, where we often agsume
that C is a set with convergence. As examples we refer to two-stage pro-
blems of stochastic programming in a general setting (see [14], [16]) and
to the optimal control of random operator equations in Banach spaces.
In the latter case this paper extends works [22] and [26].

Chapter 3 shortly surveys approximation results for optimization
problems with fixed constraint set, especially results from nonlinear
parametric programming (see [1], [17], [18], [20], [21], [6]). These results
are applied to the above class of stochastic optimization problems. The
main problem in approximate solving (1) consists in the fact that usual
optimization algorithms require the evaluation of J(w) and (or) its deri-
vative, which is impossible due to the difficulty of computing the mean
value (see e.g. [13], [14]). These difficulties do not arise in so-called “discrete
approximations” of (1), which contain only random variables with a dis-

crete probability distribution (see [13], [14], [15], [23]). This is the reason -

why “discretization schemes” are proposed in Chapter 4. An important
special case of such discretization schemes seems to be the approximation
of the random variables entering problem (1) by suitable conditional
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478 W. ROMISCH

expectations (see [13], [14], [26]). Some advantages of using conditional
expectations are reported in Remark 6.

In Chapter 5 we apply the results to optimal control problems for
random operator equations. Especially the case of a discretization scheme
is discussed. We finish with a remark on the application to the optimal
control of random differential equations (see also [26]).

At the beginning we explain some notations. N denotes the set of
natural numbers, K the set of real numbers and B := BU{— oo} V{4 o0}.
Usually (2, %, P) is a probability space. If X is a Banach space, we define

P(X):={D| D X,D # @)

and by B(X) the o-algebra of Borel sets of X. AQB(X) denotes the
smallest c-algebra on QXX containing {A XB| 4 €A, B e B(X)).
L,(2,%A,P; X) (1< p< o) with the norm Iz, is the usual Banach
space of random variables, L,(2,%,P) := L,(2,%A, P; R). By a.s. we
mean the notion “almost surely”. 0: Q—2(X) will be called a multi-
Sfunction (see [4], [33]) and the graph of C is denoted by

GrC := {(w, #) e 2xX| z € 0(w)}.

Finally we remark that we are often concerned with the situation of a non-
empty set with convergence ¢ and that we use the notions “p-continuous,
g-compact, p-lim” (see [19], p. 90).

2. A class of decision problems in stochastic optimization

Throughout this paper we consider decision problems of stochastic opti-
mization in abstract spaces (comp. [22], [32]). It is known that several
problems of stochastic programming and stochastic control fit in this
framework (see e.g. the examples below). We are given a probability
space (2,%, P), a non-empty set ¢ and a mapping g: 2 xC—R such
that for all € 0, g(+, u) is a real random variable defined on (2, %, P).
Let E denote the mean value on (2, %, P).
Then we consider the following stochastic optimization problem:

J(u) := E[g(w, w)]>Min! st. ue

(8.t. for “subject to”). We note that under the usual convention ([25],
p. 184, [11], p. IV.3) J has a well-defined value in R.

Remark 1. (a) We will often assume that for all ueC, g(-, u)
e L, (2,%UA, P). Then we have J: C—R.
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(b) If C is a set with convergence g, then the following conditions
are obviously sufficient for the g-continuity of J:

(i) g(w, *): O—R is g-continuous a.s.;

(ii) there exists a random variable ¢ € L, (2, %, P) such that for all
wed, |glw, ) < c(w) a.s.

(c¢) Similar conditions can be formulated for the differentiability

of J, too. We refer to [2], [14], Theorem 3, [23], pp. 15, 16. If C is a con-
vex subset of a linear space and g(w, ) is convex a.s., then J is a convex
functional. For results concerning the lower semicontinuity of J we refer
to [34], [11], p. IV.15. These results carry over to the case of a o-lower
semicontinuous functional J and thus an existence result for (1) on
a g-compact set C can be formulated.

(d) [31] contains a general approach to stochastic programming,
which discusses (1) in the framework of a general notion of solution.

ExAMPLES. (a) Two-stage problems of stochastic programming ([14],
[16]):
Ju) := EB[g(w,u)]>Min! st. ueC,
where
g(w,u) :=inf{f(w,s,u)| veCow,u)}, wefl,uel,
f: 2xX xC—R, 0, 2xC-»?(X),
X is a real separable Banach space.

If we assume that for all w € C, f(+, -, u): 2 xX->Eis a Y @ B(X)-measu-
rable function and GrC,, (-, u) e A @ B(X), and that (£, A, P) is complete,
it results from [4], Lemma IIL.39, that for all w €0, g(-, u): 2—>F is
meagsurable and the two-stage problem is well-defined.

We refer to [12], [13], [14], [15], [23], Chapter 10, for the structure
and discussion of “discretization schemes” (see Def. 1) for such problems.

(b) Optimal control problems with random operator equations:
J(u) := E[g(w, #(w), u)]>Min! st. we0,
where
T(w,z(w),u) =0, z(w)ely(w,u) s,
C.(+, u): -2 (X),
T(, -, w): GrC, (-, w)=>Y, wued,
g(-y -, w): Gro,(-, u)'*R-a

X, Y are real separable Banach spaces.
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If we assume that for all weC g(-, -, u) and T(-, -, u) are ARB(X)-
measurable, and additionally

S(w,u) :={w el (0w, u) T(w,z,u) =0} #O a.s.,
then by [24], Theorem 1 the random operator equation
T(w,z,u) =0

has a random solution x: Q—X for all u e C ([3], [8], [27], Chapt. 2),
the mapping ¢(-, #(-), u): Q->F is meagurable and the optimal control
problem is well-defined.

3. Remarks on the approximation of optimization
problems with fixed constraint set

In the following we collect some well-known results on the approxima-
tion (or “stability”, “perturbation”) of optimization problems with fixed
constraint set.

We are given a non-empty set O, functionals J, J,,: (—E, m e N,
and we congsider the problems:

(2) J(u)->Min! s.t. u e,
(2m) JIp(u)—>Min! st ueC.
We define the optimal values
p: =inf{J(u)] wel}, @, :=inf{J,(u) vel}, melN,
and the optimal set mappings
pvi={uel|l Ju) =¢}, y,:={uel| J,(u)=¢,}, meN,

and ask for the convergence of the sequences {@,}.cx 10 @ T3P {Wpnlmen
to v (In some sense).

First we give a simple lemma that results from [17], Lemmas 1.1
and 1.3. - :

LEMMA 1. Let for every sequence {up}men < O,

Hm (I () — (%)) = 0.

m—o0

Then lim ¢, = ¢.
m—>o0
Remark 2. The assumption of Lemma 1 is equivalent to the uniform con-
vergence of {J,,}men t0 J (comp. [22], Lerama 3.1). Only by further assump-
tions on C and J, resp., it becomes possible to weaken the condition of
Lemma 1 concerning the convergence of {J,}n.x t0o J (see Theorem 1).
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TEEOREM 1. Let C be a set with convergence o and assume that
(a) C is p-compact and J is g-contiMUOUSs;

(b) for all u, w, €C, m €N, such that o-limu, = u,

m—>o0

lim J,, (%,) = J (%).

m—-o0

Then we have
(i) lim @, = ¢;
m—>00
(ii) for every sequemce Uy, € Wy M €N, there exists an accumulation
point (with respect to o) u* € y.

Proof. (i): We use Lemma 1 and choose a sequence {u,},ey in C
such that the condition of Lemma 1 is not fulfilled. By the assumptions
of the Theorem this leads to a contradiction.

(ii): This assertion follows from the g-compactness of C, from (b)
and (i). =

Remark 3. (a) Theorem 1 results e.g. from [1], Satz 4.2.2, [20], Satz 2.1
and 2.3. But in [1], [20], [21] the statements were proved for metric
spaces. These proofs can easily be generalized to the present case of
sets with convergence (see also [19], p. 154 £f.). For optimal control prob-
lems it seems to be advantageous to apply Theorem 1 in the case of weak
convergence in Banach spaces (comp. [6], Chapter 2, [18], Satz 1.2, Chap-
ter 5).

(b) The p-compactness of ¢ cannot be dropped in Theorem 1 (comp.
various examples in [1]).

(¢) Condition (b) in Theorem 1 represents something like a “discrete
o-convergence of {J,}n.ny to J” ([30]). Therefore this condition can be
replaced by:

(b") For all v eC, limJ,(uw) = J(w); forall u,, v, €C, m e N, such

m—>00

that ¢-lim %,, = ¢-lim v,, we have

m—-oQ m—>00

Lm |Jy, () — 0 (V)| = 0.

m—»00

(“o-consistency” and “p-stability”, [30], p. 290.)

(d) If we choose u,, € C such that J,, () < ¢+ em, m € N, where
{€m}men 18 @ positive null sequence, the assertion of Theorem 1 remains

valid.

31 — Banach Center t. 14
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4. On the approximation of stochastic optimization
problems, discretization schemes and conditional expectations

As in Chapter 2 let us consider problem (1) and let additionally mappings
Im: 2 XO—R, m e N, be given such that for all u eC, g,(-, u), m e N,
are real random variables. Then we define J,: C—R, J,(u):=
Blgn(w,w)], weC, meN, and consider the problems

(1m) Jp(u)—>Min! st. ueC, melN.

Now our aim is to apply the results of Chapter 3 to obtain results for the
approximation of (1) by problems (1m), m € N. Let ¢, v and ¢,,, v,,
m € N, resp., be defined as above and let C be a set with convergence p.
Then the following Theorem is an obvious consequence of Theorem 1
and Remark 3(c).

THEOREM 2. Let condition (a) of Theorem 1 and the following assump-
tions be fulfilled:
For all w € C, lim |ig,, (-, w) —g(-, )z, = 0; for all Uy,,v, €0, meN,

m-—>0Q

such that o-lim u,, = e-lim v,,, we have

M—>c0 m—-o0

lm [|g,, (5 %) — Gin (*5 ”m)”Ll =0,

M—>00

Then the assertion of Theorem 1 is valid.

The main concern when approximating (1) is that the problems
(lm), m e N, are in some sense simpler to solve. It seems an essential
possibility to suggest the following notion of a “discretization scheme”
for (1).

DEFINITION 1. {2, Omimen 18 called a discretization scheme (for (1))
if for all m € N there exist

(i) a finite partition A4,,e%, 1 =1,...,m, of Q, i.e,,
ZQAW —0 and Aynd,, =0, 1%k,
such that
Wy, = 0 ({Amili=1,...m)

(here o(E) denotes the smallest c-algebra containing € < 20);
(i) ¢: C—R,1 =1, ..., m, such that

In(®; ) = Gy w €Ay, l=1,..,m.
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AN APPROXIMATION METHOD IN STOCHASTIC OPTIMIZATION 483

Now let a discretization scheme {U,,, 9, }meny for (1) be given and we
consider problems (1), (Im), m € N.

Remark 4. (a) An advantage of discretization schemes seems to he

that the functionals J,,, m e N, have a special “deterministic” form:

m
Jm(u’) i ngl(u)P<Aml)7 wed.
i=1
Of course the probabilities P(4,,;), ! =1, ..., m, must be known. Nice
properties of ¢,,;, | =1, ..., m, like continuity, differentiability and con-
vexity, yield the corresponding properties of J,,. Therefore the question
of a suitable construction of discretization schemes arises (see Remark 5).

(b) Discretization schemes represent a well-known method in sto-
chastic programming problems with recourse (see [12], [13], [14], [15],
[23], Chapt. 10) and in more general decision problems of stochastic
optimization ([22], Chapt. 6). The presented concept generalizes the known
approaches in some sense.

In the following we refer to a simple, but essential possibility to
congtruct disceretization schemes.

Suppose we are given a real separable Banach space Z, a random
variable

z2: Q7
with range
R(z):={z(w) we < ieZ,
and a function
g: ZxC—-R
such that for all w e C
glz("),u): Q>R
is a real random variable. Then the problem
1)’ J(u) := B[g(z(w), w)]] >Min! st uel
is well-defined.

Remark 5. (a) If 2z is replaced in (1)’ by simple random var{ables
2 Q—Z with m values and R(z,) < Z, i.e., 2,(0) =2,€4%, wed,,,
1=1,...,m, where {4,,};_1,..m» is & partition of £, then discretization
schemes result in a natural way. Especially one has

D5

I (%) ::E[g(zm(w),u)]z 92y WP (Apy), weC,melN.

l

Il
....
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Therefore it is suggested to replace the probability distribution of the
data entering a stochastic optimization problem (1) by finite discrete
distributions. By using Lemma 1 or Theorem 2 approximation results
for (1)’ are available.

(b) It seems to be a suitable possibility to replace 2 by conditional
expectations with respect to certain finitely generated c-algebras (see
Remark 6). This way was suggested in the context of stochastic program-

ming with recourse by Kall [13], [14] and in [28], [26], [27] for various
problems.

Remark 6. As mentioned above, conditional expectations of z seem
to be advantageous for the construction of discretization schemes (for
(1)’). More precisely, if 2 € L, (22, %, P; Z) and if a sequence {4
< A of partitions of Q is given, we suggest to choose

Zmi=H(@|U,), A, := G({Aml}l=1,...,m)’ meN,

1
1P A
P, Af 2(w)dP, W E Ay,

ml}l=1,..,.,m}meN

tn(w) 1= H(2ld,y) :=
mi

I =1,...,m.

In the following we state some reasons for this choice:

(i) In case that U, < Ay, m € N, and 2 is measurable with respect

to o(lJ th), we know from the well-known martingale convergence
melN

theorems (see [5], Theorems 1 and 4) that

lim ||z, (0) —2(w)|lz = 0 a.s.,

m—-o0

limllzm—zHLp:O it z2eLl,(2,%A,P;Z), 1<Kp< oo.

m—>00

These convergence results can be used to verify the assumptions of Lemma 1
or Theorem 2 (for problem (1)).

(i) If Z is a Hilbert space and 2z € L,(2, A, P; Z), it is known that
for all m € N 2, minimizes the distance ||z —y|z, subject to y e L,(2, U,,,
P; Z).

This fact is important for a wide class of applications in stochastic
optimization, because one often has the following type of inequalities
(see e.g. [14], Theorem 4 and Remark 5, [22], p. 325):

|25 (e(0), w)] ~ 2 [gly (o), w)] | < ke, 9, W) le—yly,, w0,

wherek: L, XL, XxC—[0, o).

(¢]
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(iil) 1if Z is convex and closed, g(-, %): 7R is convex for « € ¢ and
W, © Wppyr, then Jensen’s inequality yields:

E[g (zm(w)’ u)] < FE [g (zm+1(w)’ u)] < J(w)

(comp. [14], Theorems 5 and 7). This estimate provides a possibility to
get error bounds. [14] contains results concerning computable a posteriori
error bounds.

(iv) For wide classes of random variables z it is possible to produce
such partitions {Ap}my,..m =W of 2, me N, that (i) holds and the
computation of .P(4,), E(@Au), ! =1,...,m, meN, is possible by
using finite-dimensional distribution functions of z (see [27], Chapter 6).
But, in general, the computation of multiple integrals is necessary. For
important special classes of random variables there exist effective methods
for the computation of the probabilities and conditional expectations.
For instance, for the cases of multivariate normal and exponential random
vectors we refer to [29], for Gaussian random variables in Banach spaces
to [27], Chapter 6 and in the Banach space Z := C([0, 1]) to [28], Chap-
ter 6.

5. Approximation of optimal control
problems with random operator equations

We consider optimal control problems of the following type:
(3) J(u) := Elg(w(w)]>Min! st ueC,
T(w,z(w), ) =0, &(w)el(w) a.s.,
where
g: X—R is continuous, C,: Q-2 (X),

T: Gr0,x(0—Y has the property that for all weC T(-,-,u) is
A ® B (X)-measurable and

S(w, u) := {z| z ey (w), T(w,x,u) =0} #O as.,

X, Y are real separable Banach spaces,

(2,%, P) is complete.

Problem (3) is somewhat simpler than the general problem in Example
(b) in Chapter 2. We note that under the above assumptions for all v € ¢
the random operator equation has a random solution x: Q—+X ([24],
Theorem 1, see also [3], [8], [27], Chapter 2). Thus g¢(»(-)): Q>R is
measurable and J: C—R is well-defined. T(-,+, %), u e, represents
a so-called random operator on the random domain C, ([8]).
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For the approximation of (3) let
Oom: 2-2(X), T,:GrC,,,xC-Y, mel,
be given such that for all weC T,(-, -, u) is ARQB(X)-measurable and
B (@, w) :={w € O ()| Tppw, 2, w) =0} # D a.s.
Then we consider additionally for all m e IV:

I (1) 1= B|g (2, (w)]>Min! st wed,

(3m)
Tm(”} D (@) u) =0, @,(w)el,,(0), a.s.,

where z,,: £2->X is measurable and ,,(») € S, (w, %) 2.5s. Now we apply

the results of the preceding chapters to the approximation of (3) by prob-
lems (3m), m € N.

THEOREM 3. Let the above and the following asswmptions be fulfilled:

(a) O is a set with convergence o and o-compact;

(b) for all we O, m e N and almost all we 2, 8(w,u) and S,,(w, u)
are singletons and S(w, ): C—X is o-continuous;

(c) there exisis a ramdom variable ¢ € Ly(2, A, P) such that for almost
all w e 2 and all v € X (w), where

X(0): = {S(w, w)| u € Oy U{S,,(w, w)| wel,meN}
we have

9 (2)] < ¢(w)

and g is uniformly continuous on | X (w);

we 2

(d) for all w e C we have lim ||8,,(w, u)—S{w, u)|x= 0 a.s.;

m—ro0

(e) for all sequemces u,,, v, € C, m € N, such that

o- lim u,, = p- lim v,,,
m—>co t m—co
we have

Im |8, (w, ty) —Sp(w, v)llx = 0 a.s.
M—>0

Then the assertion of Theorem 1 is valid for (3) and (3m), m € N, respec-
tively.

Proof. We have to verify the conditions of Theorem 2. First we note
that C is o-compact and by (b), (¢), J: O—R, J(u) := H[g(S(w, u))]
is g-continuous. Ifurther we have by (d), for all u e C,

lim | g (Sp (@, w)—g(S(w, w)] =0 a.s.

t1

A~ A
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Therefore condition (c) yields
:zimllg (Sm( ’ u)) -9 (‘S(‘ ’ '“’))HLI = 0.

Analogously it results from (e) and (c) that for all t,,, vn € C, m € N, such
that - lim %,, = ¢-1lim »,, we have

(LY m—>00
lim” g(SM(" um)) _9(Sm(" 'Um)) HL1 =0. =
m-—>o0

Remark 7. Let us discuss some of the assumptions of Theorem 3:

(a) For applications in optimal control it is a typical situation that
the set of admissible controls is weakly compact. Therefore one has to
choose ¢ as the weak convergence in a certain Banach space. In this
case the p-continuity of S(w, ) a.s. is often fulfilled in applications (see
Remark 10, [10]). But, it turns out that condition (e) of Theorem 3 is
the most essential assumption, which can be described as “uniform e-con-
tinuity of {Sp (@, Vlmen’ a.8.

(b) It is assumed that the occurring random operator equations have
a locally unique random solution. In this case [27], Theorem 2, contains
general sufficient conditions for the a.s.-convergence of random solutions
((d) in Theorem 3).

(¢) Condition (c¢) of Theorem 3 represents an integrability property
for ¢, which yields L,-convergence if a.8.-convergence is already available.
We remark that various sufficient conditions for (c) exist, e.g., growth
conditions for g and integrable bounds for X(w), e Q.

Remark 8. We mention that a direct application of Lemma 1 to obtain
approximation results for (3) is possible, too. Obviously, for the conver-
gence of the optimal values, the following condition is sufficient:

For all sequences #,, € C, m € N, we have

i (8 )~ (50 ) sy =0
m—>0
If a condition like (¢) in Theorem 3 is assumed, it is sufficient that

'nlzim 18 (@ Ym) —8 (@, uy)llx =0 a.s.
Such a case was treated in [26], Theorem 2 and we refer to [22], Chapter 6
for similar conditions (in connection with a more special problem).
Now let us turn to the application of “discretization schemes”. We
assume that a discretization scheme (U, Comy Tmtmen (s0€ [27], Def. 2)
is given, i.e., for all m € N there cxist
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(1) a finite partition Apihiey,...m = U of 2 such that
Uy, : = U({Aml}l=1,...,m)5

(il) Oy €P(X), Tpy: CogxC—Y, 1 =1,...,m, such that
Ox,m(w) = 0ml7

Tm(@y ) =Ty wedp, I=1,...,m..

Then we have S, (w, ) = {# € Omll Tou(w,u) =0}, w € Apy, 1 =1,...,m,
and random solutions #,, may be chosen as discrete random variables.

Remark 9. (a) In the case of the above-mentioned discretization sche-
mes problem (3m), m € N, is of the following form:

m

In(W) = D g(@m)P(A), weC,

=1
Loy (g, ) =0, @, ¢eCy, l=1,...,m.

It turns out that this problem is a “deterministic” one and that by
Wy Opoms Tulmeny & diseretization scheme for (3) is induced (see Def. 1).
But we observe that the computation of J, (4) requires to solve m deter-
ministic operator equations (see [26], Remark 3 (a)).

An analogous situation appears in the case of discretization schemes
for two-stage problems of stochastic programming (see [14], [15]).

(b) For a suitable construction of discretization schemes we refer
to [27], Remark 10, Chapter 6, and we again suggest to approximate the
stochastic input data by conditional expectations (Remark 6).

Remark 10. Finally, let us consider optimal control problems with
random ordinary differential equations (see also [26] or [23], p. 174):

(4) J(u): = Blg(v(w, t,))]>Min! st ueC

(4.1) B, 1) = f(t, 2(0, 1), u(t), @(0, 1), teltyh],
z(w, b)) = @(w),

(4.2) hiz(w, 1), 2(0,1) <0, telt,t],

where

C < L;(ty, t,) is a set of admissible controls,

g: R"—>R is continuous,

fi [ty 1] X R* X R" x R®*—>R" is continuous and has the property that
for all u € O there exists a unique random solution of (4.1), which satisfies
(4.2) a.s.,

h: B° XRE"—>R? iy continuous,

[ B~ o = 7]

[ PN = S o R B |
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z: 2 X[ty 1;]+>R° is a stochastic process with continuous sample
paths, and
%y: 2—>R"is arandom variable defined on aprobability space (2, %, P).

We note that this type of problem fits into our class (3) and (without
state constraints) was treated in [26]. As already mentioned, in [26]
Lemma 1 is used for the approximation of (4). But, under suitable assump-
tions it seems to be possible to apply Theorem 3 to this situation and
thus to extend [26] (see Remarks 7 and 8).

For the application of discretization schemes to (4) we refer to Re-

mark 9, [27], Chapter 7, and [26].
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