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1. Introduction 0

Results about the convergence of measurable multifunctions
(random sets) and of their measurable selections are of inte-
rest in different fields (see e.g. the volume [91). For in-
stance, such results have been used for the design and study
of approximation schemes in stochastic anslysis and stochestic
optimization ( [51, [12]). The convergence of measurable se-
lections was firet studied in [11] (for recent additions see
e.g. [1] ,(81):

In this note, we establish conditions under which sequences

(of sets) of measursble selections (of multifunctions with mea-
surable greph and values in Polish spaces) converge almost
surely and in probability (referring essentially to [81]). These
conditions are related to the respective modes of convergence
of the underlying sequence of messurable multifunctions. The
main aim of thie note is to epply these results to obtain con-
vergence of messurable optimal solutione of stochestic minimi-
zation problems., The results obtained are derived from the epi-
convergence of ‘the underlying seguence of normal integrands.

Throughout thie paper, let (Q,4,P) be a complete probabi-
lity space and X be a Polish space (i.e., complete separable
metric) with metric d. Let P(X) denote the power set of X,
B(X) the &-algebre of Borel subsets of X and A x B(X) the
emallest &-slgebrs on Nx X containing {A x B| A€ &4, BGB(X)}
We write d(x,F) for inf {d(x,y)]|y€e€F}, xeX, F< X, and
put d(x,#) = +c ., We say that a property depending on weQ
holdé almost surely (in abbreviation e.s.) if there is & set
A €4 with P(A) = O such that the property holds for all we A,
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For a multifunction C from Q into X (1.e., a mapping from £}
into P(X)), we define its domain by dom C = {vell | Cw) + 2%,
ite graph by 6r C = {{w.x)€ N x X | x€C(w)} and we put

c'1(F) ={weN I CWnF @) for F € X. We say that a multi-
function C 1is closed-valued (nonempty-valued) 1if C(w) 1is
closed for all wefNN (domC + Q). C 1s called Gr-measurable
1f Gr C € A xJB(X). It 1s a8 well-known conclusion from the pro-
jection theorem ([4, Theorem III,23]) that C'l(B) € A holds
for every Be€ B (X) if C 1is Gr-measurable.

For a multifunction C from £ into X we denote by S(C) the
set of all measurable x:l—s X (i.e., X-valued random vari-
ables defined on (2,A,P)) that are a.s.-selections of C, i.e.,
S(C) ={ x:——> X | x is measurable and x(w)€ C(w) a.5.} .
Consistently, S(X) denotes the set of all X-valued random vari-
ables defined on (€, A,P). Note that S(C) # § 1if C 1is nonemp-
ty-valued and Gr-measurable ([15, Theorem 5,10J]).

Excellent monographs about multifunctions, selections, inte-
grands, variational problems and their convergence are [6], [4],
£7), {21 and [12],

2, Convergence of measurable multifunctions and selections

In this section, we review some definitions and results con-
teined essentially in [11] and [B8]. Let C and C, rneN, be
Gr-measurable multifunctions from £ into X. ‘

Definition 2,.1:

The sequence (Cn) is said to conQergo to C

(1) almost surely if there is an A€ A with P(A) = 0 such
that for all weN~A, C(w) 1s the limit of the sequence
(Cn(u)) in the sense of Kuratowski convergence of eets
(see e.g. [11, p. 277] and [2, Sect. 1.4] for an introduc-
tion to set-convergence); .

(i1) 1in probability if for all €>0 and any compact subset K
of X, lim P A':n(x)) a0,

n-— 00

where A . (w) = (C(w)\E€C,(w)) U (C,(0) NeClw)) , WeEQ ,
and €F = {xe€X |d(x,F)<€} denotes the ¢g-enlargement of

‘
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a subset F of X.

(Note that A en is 8 Gr-measursble multifunction.)

These modes of convergences of measurable multifunctions are
studied extensively in [11] end £12]) . Note that (Cn) converges
in probability (to C) if it converges aslmoet surely (to C).

Now, let ¢ denote a.s.~convergence and convergence in probabi-
1ity ("P-convergence"), respectively, of sequences of X-valued
random variables, and let us consider the following limits (with
respect to 9 ) of the sequence (S(Cn)) of sets of measurable
a.s.-selections (cf. [5, Def. 2,11, (8] )

¢ - Liminf s(c,) = { x €5(X) | there exist x.¢€ s(C), neN, such
’ that (x,) converges to x w.r.t. ¢},

¢ - Limsup s(C,) = { x € 5(X) | there exist n,< np<ny<ess € N
and xke S(C_ ), k € N, such that
"

(x,) converges to x w.r.t. g Y.

g- Lim S(Cn) = ¢ - Liminf S(Cn) if
e - Limsup S(Cn) < 9- Liminf S(Cn) .

(Note that the inclusion ¢- Liminf S(Cn) ¢ ¢~ Limsup S(Cn)
holds obviously.)

In the following, we use the notation a.s.- Lim S(Cn) .

P- Limsup S(Cn) etc, if ¢ means s.s.-convergence and P-conver=-

gence, respectively.
In our first result, we state conditions that imply
S(C) = ¢ - Lim S(Cn) .

i1.,e., convergence of sets of measurable selections.

Theorem 2.2:

Let C and Cn Y
functions from £ into X. .

(a) Let (Cn) be almost surely convergent to C. Then we have

S(C) = a.s.- Lim S(C”)

n € N, be nonempty-valued Gr-measurable multi-

(b) Let G be closed-valued and (Ch) be convergent in probabi-

lity to C. Then
S(C) = P- Lim S(C ).

For the proof and further informations we refer to (817,

82

3., An application to the abi—convergence of normal 1ntégrands:

convergence of optimal solutions

In the following, we meke use of the concept of integrands
and their epigraph multifunctions developed in (61 . Let
f:f1x X —=>1R be &n integrand taking values in the extended
reals R and let Ef:.(i—- P(X x'R) be its epigreph multi-
tunction defined by
Ef(w) = epi f(w,-) = {(x.r)ex xR | flw,x) gr}, wea .
We shall say that f is a normal integrand if f 1is A X B (X)-mea-
surable (this modified definition of normality 1is suggested in
[6, p. 174 for the case that X is not finite-dimensional). Note
that the epigraph multifunction E; is Gr-measurable if f is a
normal integrand (see the proof of [6, Theorem 2AJ). A normal
integran. f will be called tight if for each §>0 there 18 a
compact subset Kg of X xR such that P(E;l(KB)) >1 -4 .

Let m:0——— R denote the infimal function of f, 1i,e.,
m(w) = inf {f(w,x) | xex}, we , and let M:Q—s P(X) de-
note the multifunction of optimal solutions of f, i,e.,
M(w) = argmin f{w,*) ={x€X | f(w,x) = mw)}, wen.

Lemma 3.1: :
(a) If f is a normel integrend, then m is measurable and M is

Gr-measureble.

(b) Let X = R™ and f be a normal integrand such that Ep is
nonempty-valued. Then f is tight.

Proof:

(a) The measurability of m follows from [4, Lemma III.39].

Since f is Ax B (X)-messurable and m is measurable, we have

Ax X N6rMe={(wx)enxX|flwx)>mw]s=

- k\GJN {lo)ex X [ fwx) > rtn{oeal nw) <r)x XeAx B (X),

where {rk |keN} is the set of all retional numbers. Hence

M ie Gr-measuyable.

(b) Since X xR = R™1 1e 6 -compact, there exists a sequence

of increasing compact subsets K, + NEN, of R™? with

R"™' U K, . This tmplies Exl(x x®) = U ethk)
nelN neEN 4
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Since E, is nonempty-velued. we obtain
1= P(EFH(X xR)) = Lim P(EFY(K)) -
n—+ o

This completes the proof. []

Now, let fn:n.x X —>TR , neN, be a collection of normal inte-
grands and let m_  resp. M, neN, be their infimal functions
resp. multifunctions of optimal solutions. Because of Lemma 3.1,
m_1is measurable and M_ is Gr-measurable for every neN,
In the following, we are interested in conditions guaranteeing
convergence of (mn) and of sequences of measurable optimal solu-
tions, i.e., of measurable selections of Mn , NeEN., As it 1s
known for approximations of deterministic variational problems,
epl-convergence implies essentially the convergence of approxi-
mate solutions (see [3],[23,[7]). The stochastic counter-
parts are, the following modes of convergence of normal integrands
introduced in [121.
A sequence (fn) of normal integrands 1s said to epi-converge al-
most surely (in probability) to the normel integrand f 1f the
sequence (E ) of epigraph multifunctions convergee almost sure-
n .

ly (in probability) to Eg (cf. Def. 2.1).

Note that (f") epi-converges almost surely to f if and only 1if
there exists A € A with P(A) = O such that for all we QA
the sequence (f (w,+)) of mappinge from X into ¥R epi-converges
to flw,-) ( [12 Prop. 3.81). This argument, together with
well-known properties of epi-convergence (see e.g. [ 2] ), ylelds
the following result in s straightforward manner. :

Proposition 3.2:

Let the sequence (fn) of normal integrends epi-converge almost
surely to the normel integrand f. Then the following relations
hold: (1) limsup m (u) < m(W) 8e8,,

n —» oo

(11) e.s.- Limsup S(Mn) c S(M) .

Proof:

It suffices to prove (i1). Let x € a.s.- Limsup S(Mn) and

X, € S(Mnk) , keN, be such that (xk) converges almost surely to
x , i.e,, lim x () = x(w) for P-almost all we Q ., Since

—_ o0
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there exists A € A with- P(A) = 0 euch that (f (w,:)) epi-
converges to f(w,+) for every w € N~NA, it follows (see e.g.
[2, Sect, 2 ]) that for all we QNA,

Limsup M (w) - Limsup argmin f (L.). ) < M(w)
(where Limsup is a Kuratowski limit (see {2, Sect. 1.41)).
Since for all k€N k(<.>)e Mnk(ws, a,8,, this implies

x(w) € M(w) a.s. Hence xeS(M). ]

{12, Theorem 8,11] contains a' result on the a.e.-convergence of
(mn) to m. Our next reeult provides an esnalogue of Prop. 3.2 for
the cese of epi-convergence in probability (of (fn)) and extends
f8, Theorem 4,27 .

Theorem 3,.3:
Let the sequence (fn) of normal integraende epi-converge in probe- '
bility to the normal integrend f. Assume that Eg end Ef , NEN,

are nonempty-valued and that f ie tight and E; is closed- alued,

Then the following relations hold:

(1) 1im  P{w | m (W) = n*(w) >e)) =0 for all a>0 and
n— oo N

£>0 , where m*(w) = ua’k{-e&"'. a(w) +x} , WEQD ,
(11) P-‘Limsup S(M_ ) S S(M) .
Proof:
To prove (1) let &« >0, € > 0 and &> 0 be arbitrary. but fixed.
Let WEL 'be such that m (w) - n*(w) > £ “. Then there exists
(x r)eX xR with f(w,x)‘m“(w)‘r<n (w)* - &  Hence

Eglw) n {(x,r)EX xR |r+e<f (w.X)} +9 .

The set {(x,r)eX xR |r + & < f (w, %)Y 18 contained in
X xR\‘Ef (w) = {(x,r)eX xR | d ((x,r), Ef w)ze} .,

where d' 1s the metric on X:x R defined by d ({x,r),(y,8)) =
= max {d(x,y), lr.-861}. Thus  Egfw) > gEf (W) # @ . This implies

P({w | m (W) - n*(@)>e}) € P({w |Ef(w>\eef ) +81) .

Since f 1s tight, there exists a compact eubeet Kg of X xR
such that P({w IEf(w)nKS +P})> 1 - % . This implies

P({w | m(w) - n%(w) > €}) € P({w | Eglw)n K N eE¢ (0) + #1) + 5.
n

Since the epi-convergence in probability of (fn) to f implies
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1im P({w | Ep(w)nKyg N €E¢ (W) +@g}) =0,
n

n—» @

it follows that P({w | m (0) - n*(w)> €} )< § for large n.

(ii) Let x € P- Limsup S(Mn), n, < n, < ng <...€N and

X, € S(Mn ) » k€N, be such that (xk) converges in probability
k

to x. Let « >0 be arbitrary, but fixed, We define
m:(w) = max { m (), n*(w)} , for all weO and neN, and note
that (1) yielde convergence in probability of (m:) to m™.

Hence, the sequence ((xn : m: }) converges in probability to
k k
(x, m*) and 1t holds that (x  (w). mnk(é)) € epl fnk(w,-) 8.8,
k

Thus m"’“k) € S(E; ) for all k€EN.

(xy o
k i

This meane (x, m*) € P~ Limeup S(E¢ )v. Since (fn) epi-conver- .

ges in probability to f and E; 18 clgsed-valued, Theorem 2.2(b)
impliee {x, m*) € S(E;) . Hence we obtain that

flw,x(w)) ¢ M (w) = max {- «~1, mw) +x} a.s,
Since o > 0 was arbitrary, this implies x € S(M) end the
proof is complete. []

Remark 3.4:
Prop. 3.2 #nd Theorem 3,3 represent stochastic versions of well-
known results in the deterministic case (see e.g. [3, Theorem 1},
[2, Prop. 2.9]). The results remain true if Mn(u) is'replaced
by €, - argmin f.,';(w,'-) = {xex | f (@,x)< mex {-e;i,m"(o) + En}}
for neN, wen , for every sequence (en), €,>0 , converging
to zero. If X = R", the assumption that f is tight is super-
fluous (Lemma 3.1(b))- , I
Convergence (almost surely and in probability) of multifunctions
of optimal solutions in stochastic linear progremming was first
studied in [14] . For results concerning convergence (in distri-

bution) of the stochastic infima (mn) to m we refer to (121

and the recent papers [101 and (131 . In [10] and [13] the
authors assume that X ie locally compact end (fn) epi-converges
in distribution to f (for an introduction to this concept see
[12] ). Then they give minimal conditions that imply convergence
in distribution of (mn) to m.
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