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On the Convergence of Measurable Selections
and an Application to Approximations in Stochastic Optimization

W. Romiscu

Es Werden.Bedin_gungen angegeben, die garantieren, daB eine Folge (von Mengen) meBbarer -
‘ Selektoren fast sicher, in Wahrscheinlichkeit und im Mittel konvergiert. Diese Bedingungen
sind mit den entsprechenden Konvergenzeigenschaften der zugrunde liegenden Folge meBbarer
Multifunktionen verwandt. Schlieflich werden die Resultate zur Untersuchung von Approxi-
matlonen fir das sogenannte Vertellungsproblem der stochastischen Optimierung verwendet :

d)opmyampylo'rc;{ ycaosusd, rapanmpymm;ue CXO[JMMOCTh HOCIE0BATENbHOCTI (Mﬂomec'rB)
U3MEPUMEIX CeNIeKTOPOB MOYTH HABEPHOE, IO BEDOATHOCTH U B cpenaem. Taxme ycmoBus
© CBABAHHL CO COOTBETCTBYIOIIEll CXONUMOCTHIO MOCTEHOBATENLHOCTH UBMEPHMEX MHOTOBHAY- |
HEIX oToGpareHuit. Pesyasrars HPUMEHAOTCH K aHHPOHCHMaHHM OUpeeTeHHOM Bagaun
CTOXACTHYECKOTO nporpaManOBaHnH : : :

Conditions are given that guarantee that a sequence (of sets) of measurable selections converoes
almost surely, inprobability and inmean. These conditions are related to the convergence of the
underlying sequence of measurable multifunctions. The results are apphed to a,pproxlmatlons'
for the so-called “dlstrlbutlon problem” of stochastlc optimization.

1. Intmduction-a‘nd 'preliminarie‘s" RO
§ /" ' ) o .
~ The studv of measurable multlfunc’olons and meaqurable seleetlons as Well as of thelr
convergence is motivated by sever: ,pphcatlons These include probablllty theory:
[9], stochastic geometry [16], stocha; tic analysis (e.g. [81]), stochastic optimization
[7, 20, 22, 23, 25], control theory, and mathematical economics, among other fields.

4

Particularly, results about the conVergence of measurable multifunetions and their -

measurable selections play an essential role for the design.and study of a;ppromma‘mon o

schemes in stochastic analysis and stochastic optimization (see e.g. [8] and [22]). The
first results on the convergence of measurable selections seem to be given by Saur-
~NETTI and WETs in [21] (for finite-dimensional spaces). Probably, [2]] 1n1t1ated the
recent research in this field (see [1, 8: Sect. 4, 17, 22]). .
In this paper we establish conditions under which sequences (of sets) of measurable}
selections (of multifunctions with measurable graph and values in Polish spaces)
converge almost surely, in probab:lhty and in mean. (Convergenge in distribution.is"
_not. considered ; this is done in [22] and' [1]).  These conditions are related to_the.
Tespective modes of convergence of the underlying sequence of measurable malti-
functions. Flnally, we outline the use of -the results about measurable selection
convergence in the: study of apprommatlon schemes for the “dlstrlbutlon problem” -
.of stochastic optimization. A
Throughout this paper, let (2, oA, P)bea complete probablllty space (of Remark ’

1.2) and X be a Polish space (i.e. , complete separable metrizable) with metric.d. Let

P(X) be the set of all non-empty subsebs of X and B(X) be the o-algebra of Borél sets’ L
of X. For anyF cX and € X let d(x, F) = inf {d(=, ¥) | Y E\F} d{w, F):= —l—oo i




278 W. RoMISOR

F = @. The smallest o-algebra on 2 X X containing {4 X B | 4 € 4, B € B(X)} will
be denoted by 4 >< AB(X). As usual, we say that a property depending on w € £ holds
almost surely (a.s.) or for P-almost all o € 2 if there is a set 4 € 4 with P(4) = O such
that the property bolds for all w € 2 \_A4. '

A set-valued map from Q into X is a mapping from Q into the set of all subsetb
of X. For a set-valued map C let

dom € 1= { € 2] C(w) & 0}
be its domain, |
 Gr0i= {0, € 2X X | € Clo)
be its graph and for B & X let

OYB):= {0 € 2| Olw) N B + 0}.

" A set-valued map C is called measurable (weakly measurable) if C~1(B) € A for each
closed (resp. -open) subset B of X. C is called Gr-measurable if Gr C € :4 X B(X). If
dom € = Q, thenC is called a multifunction. For a multifunction C from £ into X we
denote by S(C) the set of all measurable x : 2 — X (X-valued random varwble defined
on (2, A, P)) that are a.s.-selections of C, i.e., '

S(C) = {x Q = Xl measurable and- x(w) € C(w) a.s.}.

Cons1s’oently, S (X ) is the set of all X-calued random variables (defined on (2, 4, P)).

ixcellent sources for propertles of measurable set-valued maps and measurable -
selection theorems (i.e., results stating when S(C) == @) are [5 10 15] [18] (fo;‘X Rm)
and [24]. There the following: facts can be found.

Proposition'l.1: Let C be a set- mlued map fmm Q nio X ‘ SRR
a) C us Gr-measurable tmplies that C is measurable, and this zmplzes that C is weakly .
measurable. If C is closed-valued, then C is Gr-measurable iff C 1s weakly measurable.
b) C s weakly measurable iff for all x € X the map d(x (- ) from Q mto the extended
reals 1s measuwrable. I'f C is weakly measumble, then dom C € A. B
¢) If C is Gr-measurable, then there exists a measurable map x : dom C > X such thati z
z(w) €C(w) a.s: If Cisa Gr-measuroble m\ultzfunctzon, then S(0) :i: @ (wkere “a 8.7
can be replaced by forall w € .Q”) ‘

. Let @ € 8(X) and x; € S(X) (n € ‘\I). ,The following modes of conv'ergence of the }
_ sequence (%, )neN will be considered : ' : . R

o (@w)nen converoes tox . - o o ,

.(i)  almost surely (“a.s. —conVergence ) if there is an 4 € A with P(4) = 0 such
o thatforalleQ\A ' : _ S S
 lim dfzy(w), 2(0) = 0;.°

n—>00 ) . ) i

(i) in probability (f‘P—@onvergenée?") if for"kQVery'i.s >0,
lim P{o € 2 | d(za(w), 2(0)) Z &) = 0;
f—>00 [ i

: ‘(i-i,i‘) m mean ("“m-c'dnvérgevnce”) if '
lim [ den(w) , %)) dP = 0.
n—>00. R ) ) . -
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For the following, let ¢ denote any of these modes of convergence in S(X). If (,)uex

converges to « in the sense of ¢, we shortly write x = o — lim z,.
n—>00

Now, let C and C, (n € N) be multifunctions from Q into X. Let us consider the

following limits of the sequénce (S(Cn))nEN of sets of measurable selections (see also
[8: Def. 2.1]):

¢ — Liminf §(C,) := {x € 8(X) | » -g——hmxn, z, € 8(C,), for all n € N},

n—>00 n—>00

o — Limsup 8(C,) := (¢ € S(X) | w = o — lim a, € S(C,,), for all k€ N and
n—>00 k—>00 .

for some mflrﬁte ordered subset (nk)keN of N},

o — Lim 8(C,) := o — lelnf 8(Cy) = o — Limsup S(C,).

N~>00 n——>oo

Now, we are in the position to state the aim of this paperas follows: Find cond1t10ns
that guarantee that

S(C) S o — L1m1nf S(O’ ) | | L ' (1.1)
and | ‘ " _ , o | - .
S(O) =0 — le S(O:n), _ o o o (12)

~ respectively. (We Wlll write a.s. — lelnf P Limsup and m — Lim ete. m the
N—>00 $1—>-00 n—>c0
case of a.s. — convergence P- -convergence and m-convergence, I‘espectlvely )

Remark 1.2: We need that the underlying probab1l1ty space is complete for -
- establishing Prop: 1.1 and Prop. 4.1 in the general setting of this paper. The reader
is referred to [18: p. 164/165] “for a discussion of , completeness”. But; note that
Theorem 2.4 (Theorem 3.4) is also valid for complete measure spaces with o-flmte :
(flnlte) measure. '

.

2. Almost sure eonvergence of measurable selectlons .

. The study of convergence of sequences of measurable selecmons has been mmated byf :

SarinerTi and WETS in [21] There, the case of X'=Rm™ and of closed-valued
‘measurable set-valued maps is studied. In the following let C' and- () (n €°N) be Gr»
measurable multifunctions from @ into a Polish space X.

 Definition 2.1: (C,)sen is said to- convelge almost surely to C'if there is an 4 € A
with P(4) = 0 such that for all w € 2\ 4, .

R

C(w) = Limin C,(w) = Limsup C,(w), | | ey
T n—>00 - - & n—>00 o ) o Y
~ where - o . ‘ T I . o
Liminf C, (co) ={rx € X I z = lim #,, ¥, € Op(w) for all =€ N}, (2:2)
n—-)oo n—>00 S S0 ;
Limsup C (w) = {w€ X | @ = lim a, @, € Crgl®) forall keN, (23)
, n—>00 k>0 S L

and for some 1nf1n1be ordered slubset (n,,)keN of N}

: Remark 2.2: Almost sure convergence of (measurable) multlfunctlons was intro-
duced in [21] (qee also [25]) Note that the sets Liminf C u(®) and lesup C ( ) (co € .Q)-

. N—>00" n—>00 .
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are clearly closed. If X is locally compact and C is closed-valued, then it follows from
[16: p. 10] (see also [21]) that (O, ).en converges almost surely to C if and only if there
exists an 4 € A with P(4) = 0 such that forallx € X and w € 2 ™\ 4,

lim d{z, Cy()) = d(z, C(w). : ' (24)

n—>00

.. Now, we are interested in conditions that guarantee (1.1) and (1.2), respectlvely,
for the case of almost sure convergence, and their relations to the notion in Def. 2.1.
The next result turns out to be useful for the proof of convergence results for measur-

able selections.

Lemma 2.3: Let C,, (n € N) be Gr-measurable multifunciions from Q wnto X. For all
- € S(X) there is a sequence x, € S(C,), n € N, such that for all n € N and w € .2, we have

d(e(0), 2,(w)) = d(@(w), C (@ ) + 7t
. Proof Let € 8(X) and n € N be arbltrary, but flxed We define
B(o‘o, r) = {V€X|d(z,x0) <r}, for =z, € X, 7‘>O
D Q- cfp(X) , ' .
| Dy@) 1= {2 € Cu() | dfz, 2()) < d(w(w), Calw)) + n~1}
| = Oy() 0 Ba(0), ra(w)) “for weQ,

~ where ' : ' : : A

ra(@) 1= d(z(w), Cy(w)) -+ n”l ®€Q.

_ che the map (w, z) > d(z, Oy()) is & Caraﬁheodory function from QX X into R,
d(x( ¥, Cul- )) is a real random variable. Because of [5: p. 88] and Prop. 1.1, B( (+),.
T(* )) Q — P(X) is a Gr- measurable closed-valued multlfunetlon This 1mplles

GrD, = Gr C, nGrB( (),r,,())exxc%( ),

e, D is Gr- measurable Again using Prop. 1.1 we obtain a measurable map Xy Q ‘ |
' _‘»X%uchthatxn(w)GD( w), forallw € 2 o

Theorem 2.4: Let C and C,(n € N) be Gr-measurable multzfunctzons from Q inbo X. -
- a) 8(0) S as. — - Liminf S(C,) if and only if there is an A €A wztk P(4) = 0 such

n—>00

that for all w E Q \ A, C(w) C Liminf C, (w) (equivalently : hm d(x, (w)) = 0 for o
all z € C(w)). A—>00 o ;
b) Let (Cp)uen be almost surely convergent to O Tken ‘
S§(C) = a.s. — Lim ( ,,) B | SRR

N—>00 |

Proof: a) Let « € §(C) be arbltra,ry, but flxed Because of Lemma 2 3 ﬁhere isa
sequenoe 2, € S(Cy); n€ N, such that foralln € N and o € _Q e

| d(z(w), x,,( )) = d(x(w )+ nl.
Thivs implies - o |
lim d(w(w), (e ) = 0 as. ;ie. @€ a5 — Liminf §(C,).

Thus, the lf-part of assertlon a)is proved For the converse the reader is referred to
[8: pp. 2’71 "73]
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b) Because of part a), it remains to show that a.s. — Limsup 8(C,) S S(0).
Let #—>00

x € a.s. — jLimsup S(C,), ie., lim d(x(a)), ock(co)) =0 a.s.,
n—>00 k—>o00

where z, € 8(C,,) for all £ € N and (m)ren is & subsequence of N. Thus, we have -
x(w) € Limsup Cy(w) = O(w) a.s., ie., x € S(C) B

" n—>00
’

Remark 2.5: Theorem 2.4a) is also stated and proved as part a) of Theorem 4.1
in [8]. But, note that the {‘if-part” is proved using Lemma 2.3. In [8], the selections
x, {(n € N) are constructed in a direct way from CaStamg representations of O, (n € N).
Theorem 2.4b) generalizes Theorem 4.1c) in [8], since almost sure convergence of

(Cu)uen to C does not imply (2.4) in arbitrary Polish spaces. It is not clear whether -

the converse holds in this part of the Theorem! For a discussion of this subject and of
other aspects, the reader is referred to [8: Remark 4.3]. Theorem 2.4 can be viewed as
a generahzatlon of [21: Theorem 4.3] from R™ to a Polish space X. Another such
generahzatlon is stated as Theorem 1.1 in [17]. There the author assumes the follow-

ng: (2, A) is a measurable space, X a separable metric space and C, Cy(n € N) are
- complete-valued weakly measurable multifunctions. Then he proves a result similar

'to Theorem 2.4a), but does not permit exceptional sets of measure zero for the selec-.

tions. Note that in our concept of S(O) the exceptional sets may depend on the selec-
tions.

Example 2.6: Let Y be 8 metmo space, f : Q X X Y be A ><<Z’(X) measurable

[8: Def. 1.2] and B € B(Y). Let us cons1der the follovvlng set- valued map C from Q =

_ into X
: w i Clw) = mexum,mB}

Clearly we have

Gr 0= {(o, mgxzum,mBhdﬂfoxﬂwx

i. e., O’ is Gr-measurable

Addltlonallv, let 1, : Q >< XY (n € V) be 04 X J&’( )-medsurabie mappings a,n‘d‘_ o
C, (n € N) be defined by o R

Cplw) :={x € X | f,,(w, z) € B}, for "we Q.

 Assume that O and Cy (n € N) are mui‘mfunctlons The followmg pI'OpOSlthl’l glves
sufficient condltlons for the a.s. — oonvergence of (O Jnen to C.

Propos1t10n 2.7: Let C and C,, (n € N) be as mExample 2.6 (md assume tkat tkere 28
an A € A with P(A) = 0 such that for ull € 2\ A4, o
(@), m e X (ne N) are such that = = lim x,, then we have

n—00
lim £, (w, xn) = f(w’ ),
n—>00 )
| (i) C(w) = cl{x € X lf w, a') € int B}J where “cl” denotes tkg olosure and “int” tbe"‘ ‘
interior of a set, e _ : o b
(iii) B vs closed. ' ' - S
Then (Cy)nen converges to C almost swely :

The proof is a consequence of [14: Sitze 4.1 and 4. 2] applled to C(w) and C’,,(w)~ ‘
(n € N) for each w € 2\ A Especially, (i ) and (ii) lmply )

Clw) & Liminf On(Q) for € Q 4,

© 00
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and (i) and (ii) imply ,
O(w) & Limsup O, (w), for wc2 ™\ 4§ ' §

n—00

Remark 2.8: Note that (2.1) is closely related to the notions ¢ ‘open” (“lower semi-
continuous according to Berge”) and “closed” in [11, 14, 2] in the contex?t of para-
metric optimization. Example 2.6 and Prop. 2.7 only serve as an illustration of the
general result. Of course, more general Gr-measurable multifunctions (as in [7, 18:
p- 171/172]) ) could be considered. Itis well-known that the “constraint quahfloatlon
(i) is rather restrictive. This fact is discussed in [2: Sect. 3.1] and in [13] ¢ and it is
shown how to.overcome this obstacle (in partmular, by imposing certain convemty or
regularity conditions).

3. Convergence of measurable selections in probability and in mean

As in Section 2, let and C (n € N) be Gr-measurable multlfunctlons from Q into a
Polish space X. For later use we define the followmg set- valued maps from Q into X
forallneNandalle>O

Adn(@) —0( ) "\ eCx(@)

: . L f i1 Q,
Aenl@) 1= Nia(@) v (Culeo) \sc'<w>)} orat ¢

' Where eF := {x € X | d(x, F) < &} for any subset F c X. Note that the set valued o
maps Ae nand A q(n € N, e > 0) are clearly Gr—measufable '

Defmltlon 3.1: (C)uen is said to eonverge n probabzlzty to C if for all & > 0 a;nd¢ R
' any compact subset K & X, hm P(A“l( K)) = : e

Convergence in probablllty of measurable multifunctions was introduced in [2?1'
Sect. 5] and [22: Sect. 1]. In [21] and [22] the usual relations between convergence i

o probability and almost sure convergence (and convergence in distribution, respec-
. tively) are proved for the case X = R™. The followmg resulb establishes one of thesee R
- relations in a more general s1tuat10n :

Propom tion 3.2: Let X be a non-~ compact Polzsh space. (C’ JneN comVerges z'n prob-
ability to C' if it converges almost surely to O. :

Proof:Let (Cp)en converge almost surely to C and let e >0 and K< X compaet--‘
be arbitrary. Because of Prop. 1. 1, there exist measurable mapplngs %, ;dom ( A ()

o K) —> X (n € N) such that

) € Nelw) 0 K for all o € dom (AL,,,«)nK) N,

Mwhere N, € a@ Wlth P(N,) = 0. We deflne

— U Ny, Ay = dom (Aea() v K) \ W, for all n,
neN - .

and we note that P(N) = 0. For a fixed y € X \ K we defme for each n € N meas- |
urable mappmgs @, 2 - X, - :

{ (w), w€Ad,
Y,

xn(w)z wE.Q\A,,. .
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For all n € N we have
P(A\7HE)) :_P(An) = Pl{w € Q| d(2,(w), y) > 0})
= P({w € 2 | d(wy(w), y) Z d(y, K)})-

Because of the almost sure convergence of (Cy)uey t0-C, the sequence (/\.,z)nen cON-
verges almost surely to @. This implies :

lim d(xn(w), y) = 0 a.s., and thus, lim P({o € Q | d(2,(), y) = d(y, K)}) =0 8 -
n—>00 N~>00"

Remark 3.3: The following result can be proved analogously to Prop. 3.2: For all
¢ > 0 and any compact subse‘g Ko X,

lim P((AG) (K)) = 0‘

n—>00 B
if there is an A € A with P(4) = 0 such that for all ia) €2\ 4,
C(w) S Liminf C,(w). I

'Theorem 3.4: Let C and C (n € N) be Gr-measurable multzfunctzens from into X.
a) S(C) & P — _ Liminf S(C,) of for all.: e >0 and.any compact subset K S X, B

Tim P((Af,) (K)) = 0.

b) Let O be closed-valued and “(O'nv)neN converge in probabil@'i‘y to C. Then
8(C) = P — Lim §(C,). |

>0

~ Proof: a) Let 2 € 8(0) and lot e>0andd > OIbe arblbrary, but fixed. Because

. of [4: Theorem 1 4] there is a comp&cb K cX such that

)
z-1 \ < =
P( , ()1 K)) 5
By assumptlon there is an ny € N' such that for all n = ng,

Pl 2| Ab, n<w>..n K+0) <.

| Because of Lemma 2. 3, there is a sequence x,, € S((’ ) n€ N, such that for all neN
- and w € Q, , o :

- dfa(w ) (o ))<d(( ), Cal ))+%"1

Then, there is an 7 €N, n; = ny, such that for all n=ng,

o | P({w € Q| d(x(w), xn ) > s}) »_\‘. . |
é ’ ({w et ) n(w)) }):P({w € Q2| x( ) € A(elm n(w)})

‘ <P({weglxw)€A(e/2)n(w)nK})+ —é-a'

o] o

,‘Thus,xEP Liminf S(C,) A .

N—>00

b) Because of part a), It remains to show that
SC)=2 P — lesup S( n) |

n—>oo




| ‘ This 1mplles d( x(w), O(w)) =0 a_J_.’s. Since 0 is qlosed-valued by assumptiqr‘l’,‘lwfé A
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Let « € Limsup 8(0,), i.e., a sequence (2;)ycx converges to x in probability, where
n—>00 :

@, € S(Cy,), for all k € N, and (n;)zey is a subsequence of N.
Let ¢ > 0 and 6 > 0 be arbitrary, but fixed. Because of Prohorov’s Theorem [4:

Theorem 6. 2], there is a compact subset K; & X such that

skul]‘;I)P(lw €Q ]xk(co) € X\ Ka}),____é-.

By assumption, there is a &, € N such that for all £ = k,,

PAA(K) = 5.

Then we have for all k = k,,

Pl € 2| d(a(o), O(o) = o)

<P({weg|xk(w)ez<‘,, d(z(w), O(w)) = })+.g_-
= Pllwe2] (0, (w)\gO( ))nKH:@})Jr% “
S PO + L B | o

This means that the sequenc,e (@ (xk( )s ( )))keN converges in probability to zero, There

exists a subsequence (vckj),eN such that ,

hm d(,ck (0), 2 (w)) —0as and hm d(xk (@), O(w)) = 0 as.

veS(0) kK .
Let us mtroduee the followmg notatlons ‘ ‘ e
D+(E, F) = sup d(z, F), R oot b .

o€k S
| (B, FeXx)
" D(E, F) := max {sup d(x, F), sup d(x E)} R :

ZEE © weF

b (“Hausdorff dlstance”) L : ]

Corollary 3.5: Let C and O’ (n € N) be as in Theorem 3. 4
a) S(C) S P — lemf S(C,) zf for all >0,

ggﬂweﬁrwxm» w»zﬂun

b) Let O be closed- wlued and <Lssmne that fo'r all & > 0
© lim P( w€ Q l D(C’(w), (w)) = 6}) = 0.

n—>oo

" _Then S(0) = P — Lim 8(C N

Proof: Let™ €N, e>0 and KSX eompact be a,rbltrary By definition folli_)ws
(Aw),l(K)“{weQIxeow)nlqu, )>e=[:@} .
C”{a)EQ[D*( a)), H/e}

o
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Thus, a) follows from part a) of Theorem 3.4. Analogously,
HK) S {w € 2] D(C(w), Cu(w)) = &},
and assertion b) also follows from the Theorem 2

Remark 3.6: It can be seen from the corollary that Theorem 3.4 generalizes [8:
Theorem 4.2]. It follows from Prop. 3.2 and Remark 3.3 that the conditions of Theo-
rem 2.4 are stronger than those of Theorem 3.4. Because of [8: Remark 2.2] it is
clear that

S(CY = a.s. — Lim S(C,) implies S(O’) =P — Lim S(C)-

Definition 8.7: (C)nen is said to converge in mean to C if

lim [ D(Cy(w), C(w)) dP = 0.

n—>00 2

~ This mode of convergence of measurable multifunotions was considered in [23, 9].
: Clearlv, convergence in mean implies convergence in probablhty <

- Corollary 3.8: Let C and C,(n € N) be as in Tmeorem 34.
a) 8(0) S m = Liminf S(C,) of lim fD+(O (w), Ow) )dP 0.
N~>00 n—>00

b) Let C be closed-valued and asswme that (Cy)uen converges vn mean to C. Then B
8(C) = m — Lim §(C,).

N—>00

“Pro of It is an lmmedlate consequence of a Chebyshev-type 1nequal1ty and Corol-

Alary35 1

Theorem 3.4 and its corollaries represent the main results of this paper. Apph—
.\ cations to concrete measurable multifunctions seem to be possible if e.g. the results of

[2] are used A s:lmple example can be found in [8: p. 278/279].

REN

4. An a;pplid;ation to approximations in stochastie 6ptimization

In this section, we outline the use of measurable selection convergence for the situdvy

of approximations for the so-called ““distribution problem” of stochastic optlmlza,tlon
This application of our results is only meant to be illustrative.

Tetf: 2X X — Rbed X B(X) — measurable and O : Q - P(X) be a Gr- measur-

| ‘able multifunction from 2 1nto X. We introduce the followmg notatlons

"R:=Ruv {ioo}
s .Q - R, <p(a)) == mf {]‘(w, ) | @€ C(w)} for o€ Q,
P Q —> X (w) =={x € O(w) | flw, ) = p(w)} for @ €.

" Proposition 4.1: Let f and Cbeas above. Then, @ Us measurable and p 1s Gr-measur-
~ able. ' ,

Proof: The measurabllltiy of‘qa follows from [5: Lemma IIT. 39] The (zr-measm‘a-
‘ blhty of y follows from :

, erwGrOn«w,x)eQxle(w, 9 = olo) € X BX)

by s‘bandard arguments and by essumptlon I /
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The question for the distribution or some of its characteristic values of the “opti-
mal value” ¢ and (or) of an “optimal solution’ (i.e., a selection of y) is usually called
the distribution problem of stochastic optimization (see [6, 12]). Note that this pro-

‘blem makes sense by Prop. 4.1. The reader is referred to numerous results about this

subject (e.g. [3, 6, 7, 20, 22, 23]).
. Following the approach of [23, 20, 22] we now study approximations for the problem

Hw, 2) - Min! s.t. 2 € O(w) (o € Q): (4.1)
Let, additionally, /,: 2X X — R (n € N) be A X B(X) — measurable and O, : Q

= P(X)) (n € N) be Gr-measurable multifunctions. We consider a sequence of stochastic

optimization problems _ ‘ _
fulw, ®) > Min! st. 2 € Cyo) (@€ 2, n € N), ‘ 42
and we define for all » € N and o € 02, ’
Pal@) 1= Inf {fy(0, 2) | € Cyfo),
Pa(0) = {2 € Cu(0) | fu(, 2) = gale)}.

[3] and [23] contain results on the convergence of (@n)nex and (¥n)nen in the case éf

-stochastic linear programming. In [20] and [22: Sect. 8] the convergence of “‘stochas-

tic infima™ (i.e., of (p;)uen) is studied (for the case X — R™) using the theory of con-
vergence of measurable multifunctions. In the following we will present a result on
convergence of the sequence of “optimal solution sets” (S(z}gn))nen.’ ‘ S

Theorem 4.2: Let f, fu(n € N) be A X B(X) — wieasumble‘ mdppz’ng’s frp%h. XX
wto R and C, C, (n € N) be Gr-measurable multifunctions from Q into X. Assume that

(1). C s closed-valued and (Cu)nen converges in probability to C, o

@ii) for all x € S(0) and x, € 8(C,), n € N, such that z = P — lim z,, we have

f(" x()) =P — hmfn(: wn('))" . ‘
N—>00 ) ) .

(iii) v, vs defined as in (4.2) and sa multifinction from Q into X, for all n € N; pis

as above. . ; L L : ,

. Then P — Limsup 8 (%.) c S(y).

Proof: Because of Theorem 3.4, (i) implies .

8(C) =P —TLim8(C,). I @)

Let @ € P — Limsup S(y,), i.e., # = P — lim a, & € S(wn,), for all k € N. Especially,
we have &, € 8(Cy,), k € N, and it follows from (4.3) that » € S(C). By (4.3) there
exists a sequence 7, € S(‘C’,,),/n €N, such th_at @ = P — lim %,. For all n € N,Jlgt’ o

n—>00

. fm it n=m keN . ,
D " otherwise.- . . L
Then 2 = P — lim ,. (ii) implies -

P — /(e ) = P — lim /., () = P — Tim g () = ff- ().
It remains to show that f(w, x(a))) < p(w) a.s. Let ¢ > 0 be arbitrary, but fized.
We consider the following set-valued map D : from Q into X, =
| D(w) := {r € O(w) | flw, z) < r(w)},” for all oe Q,
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where
e e i plo) > —oo
re(w) == { 1 otherwise.

It is clear that-D is a Gr-measurable multifunction (see also Example 2.6). Let .
& € S(D) S S(0) (see Prop. 1.1). By (4.3) there exists a sequence &, € S(Cy), n € N,

with : )
P —lim £,(, () = (- ().

Consequently, there is a further subsequence of (m)ien, 88y (7a,)jeN, such: that, .
((pnkj)jeN and ( fﬂk,(" a&nkj(-)))j oy converge almos@ surely. Thus, we obtain  ~ :

f(o, z(w)) = }il?o(pnkj(‘a}j(g e, ;%(w)) =< 7(w) a.s.

Since & > 0 was arbitrary, this means f(w, w)) = @(w) a.s. and thus, z € S(y) ¥
Remark 4.3: Note that it seems not to be easy to check whether P— 1msup S(zpn)

%+ 0. One pos31b111ty for doing this is-to show that (S("/)n))nEN is contamed in & set of

X-valued random variables which is compact with respect to convergence in pro-
- bability. Note that [8: Theorem 4. 9] states a criterion for. compactness Wlth respect
.to this mode of convergence.

The study of approximation schemes (4.2) for the original stochastlc optlmlzatlon o N

problem (4.1) is motivated by an approach to solve (4.1) via “discretizing’ the ran-
dom variables.involved in (4.1) (see [20], and [19] in a somewhat different context;
- see also [26] for a Tevent survey on approximations in stochaqtle programmmg)

Aokno
Linz, Austr
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