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Abstract: :
Stochastic programming problems are viewed as parametric pro-
grams with respect to the involved probability measure M. A
general result about continuity properties of expectation
functionals w.r.t. the Prokhorov metric in the space of all
Borel probability measures is proved and used to obtain a
quantitative continuity result for the optimal value of sto-
chastic linear programs with complete fixed recourse w.r.t.
M. This result provides "convergence rates" (of the optimal
values) for approximations by discrete probability measures,
e.g. via conditional expectations.

1. Introduction

Let us consider the following class of stochastic program-
ming problems:

min { Elg(z(w) ,x)] | xe R", P[{w] xe X(z))} ]2 o} (1.1)

where z is a random variable (defined on some probability
space (,4,P), E denoting the expectation with respect to P)
with ’valu'es in 2z € ]Rr. g is a mapping from Z x R™ into R,
X is a multifunction from Z into R"™ and % ¢ 0,17,

or, equivalently,

min {gg(z,x) du | x € R, pllzez xex(2)}]2 x} (1.2)

where p is the probability distribution of z(+), i.e,, p is a
Borel probability measure on Zz.

Note that a number of stochastic programs with recourse and
(or) with chance constraints fit into this class (see [71]).

A well-known approach for solving (1.2) approximately consists
in the use of discrete approximations, i.e., in approximating
the probability distribution u by discrete probability mea-
Sqres Mn + "€ N (see e.g. [23, (61, (83, [9], (111, [13],
(153, (18], £231], [24]), Usually, it is assumed that the se-
quence (Nn) converges weakly to p in the space P(Z) of all
Borel probability measures on' Z (see £11). A theoretical basis
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of this approach is provided by results about the convergence
of the optimal values and optimal solutions of the approxi-
mate problems (containing;; » N € N) to those of the origi-
nal problem (1.2) (using various concepts) .

In this context, it is useful to note that (even if Z is a
separable metric space) P(Z) equipped with the topology of
weak convergence is metrizable, e.g. by the Prokhorov metric

p(pmiv) := inf {e€>a IF(B-)Q.U(BC) + ¢ for all Borel B ¢ Z},

where BY:={zez | inf {d(z,2) | ZeB)} < €}, d denoting the
metric on Z (see [13, [ 3], [141),

Hence, (1.2) can be viewed as parametric optimization problem
with parameter M varying in the metric space ®P(Z)., In par-
ticular, quantitative stability results of parametric program=
ming (see e.g. [10]) may be applied to (1,2),

This motivates our interest in quantitative continuity results
(at least) for the optimal value function e(Mm) (of (1.2)) w,
ret. s in (subsets of) P(Z) and suggests a possible approach
to obtaining estimates for |p(u) - Pl in terms of
?(F'ﬂn)' i.e., to "convergence rates" of (|p(H) - w(Hn)|).

As a first step in this direction, we consider the case that
X(Z)EEXO , where Xo is a subset of IRm, and, hence, are inte-
rested in the quantitative continuity of

p(N) ¢= inf { g g(z,x) dM l)(GXO } (1,3)
Wero.t, poeg P(Z). (The general problem (1.2) will be desalt

with in [17],) In the spirit of [16] and [ 5], we obtain in
Section 2 an estimate for

IZS f(z) d(m- )|

where M and © are probability measures on Z having certain
finite moments, in terms of 9(#40), the growth of the local
Lipschitz constants of f, a tail estimate of Mo and the mo-
ments of m and U . We use this estimate for the study of con-
tinuity of (1,3) if, for all x ¢ R", g(-,x) is locally Lip-
schitz continuous with Lipschitz constants which are indepen-
dent of x, and apply this result to stochastic linear programs=
ming problems with complete fixed recourse (Theorem 5),
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The latter result is related to those contained in (4], [ 20)
(where the stability of solutions to stochastic programming
problems with recourse with respect to parameters of the
given probability distribution is studied) and in [22](where
the case of empirical measures is considered and a version
of the central limit theorem for the optimal solutions is
given), Note that in [41], [20] and [22] the authors impose
strong differentiability conditions on g and regularity con-
ditions on Mo

2, Continuity properties of expectation functionals with

respect to probability measures

Let Z be a separable metric space (with metric d) and
P(Z) the space of all Borel probability measures on Z en-
dowed with the Prokhorov metric ? .

Let f be a mapping from Z into TR such that

|f(z) - f(2)] < L(max{d(z,0), d(Z,0)}) d(z,¥) (z.Zez)(2,1)

where L: R, — R, is a right-continuous.monotonically
increasing function and 0O€ Z is some distinguished element,
For the following, we introduce some notations:

Ll(t) = L(t)t , for all ¢t EIR+,
1
Mo () ==[Z$ (Ly(d(z.0)))P 4P ( peP(2), 1€ psom),

S)L,p(z) 1= { ‘u_eg)(Z) | Mp(/q.) <+e} (1€ p < +e00),
Note that g f(z) dp  is finite if H‘G.3>L,1(Z) and more-
over, if p.e“PL p(Z), it follows that

1
Py |P
[§ 1@Pau]? < 1t + o
Now, we ask for estimates of the form
| §f2) - o) € yetpow) (po e (2))(2.2)

where \pf(rx,o) tends to zero if ?((u.,u) —_— 0 ,




Theorem 1:

Let fo L E SBL,p(Z) for some p € 11, +[. Then

1
[§ #2) d(u-wo)| <e + )[max{z, Lih(g(uim)) + g(ro)} s

L. 1 (2:3)
where C := 2|f(0)]| + Mp(HJ + Mp(o) '
| h(8) := inf {K>0| p({zez |d(z,0)>K})<8§}(§el0,1]).
Proof:

We consider the mapping F: P(Z)—— P( R) defined by
F(H)(B) :=r4(f-1(8)) for all Borel sets B € R and peP(z).
Let § denote the Prokhorov metric in 9 ( R). Then (5, Theorem
1] provides the estimate

FF(W) F(o)) € max{2, L(h(g(0)) + g(pw))}p(piv) + (2.4)
By Strassen's theorem ( [ 19, p. 4381]) there exist real ran-
dom variables El and §2 (defined on some probability space
(L, AP)) such that F(r) and F(v) are thie probability distri-
butions of §, and £,, respectively, and that

SF(u)F(o)) = inf {x>0 | P[{w ][ (w)-E,(w)[>x}]ex}.(2.5)
Now, let &« €]0,1] be such that P(Ay) € < , where
Ag i={w | [E(0) =~ E (@) >} . Then

Sf d - = t d F(u) - F =
[$ f@ sip-or| = [§ et - Fron |
=| SCE ) - By(@) dP| < x + § (£ (0) - Ey(w) ] dP
ok Ax
1 1
o+ PA)Y §IE (W) = B, P dP )P, where 14 1.1,
X o ) 1 P q
p

S v 9 [(§ 1f(2)IP du )
1 Z
X+ CxO € (C + 1) x

+ ($11(2)|P do)P ]
Z
p - L
P (2.6)
(where we used Hélder's and Minkovsky's inequality, respec-
tively). Now, taking the infimum over all « € JO,1] with
P(A ) € < , (2.6), (2.5) and (2,4) imply (2.3). [}




Corollary 2:

Let p,uE PL'p(Z) for some peli, +l. Then1(2.3) is

valid with h(é):= inf{K;O | L(K)K = Mp(H)é_ -’5} ( §€l0,1]).

Proof:
Since f‘eg)L p(Z), a Chebyshev-type estimate implies

§ (Ly(d(z,00))P dp [M (rﬂ]p

(Ly (1))P F1 ()

Thus, the assertion follows from Theorem 1. []

H({zez |d(z,0)>K }) <

Corollary 3:

Let L(t):

Lot t € R, (Lo> 0), and M,0e P(Z) be such that
§ (d(z,O))2p dmu  and S (d(z,O))2p dv are finite for somse
z Z

pe 1, +oo(, Then %
§ f2) d(p-0) | € (CrtImax{2.Lor (LM (1)) 2 gl o) TP (2.7)

where C is defined as in Theorem 1 and r(p)i=(1 = é%)(l -‘3).

p
Proagf:
We apply Corollary 2 and obtain

Ep(ﬂ) % o é%
|§ £(z) atp -] < (crn)maxiz,ig(( ) (o) Prp(uiv) )+
4 - L
g(o] P

1 1
— 1_ e -
<(C+1)[max{2,Lor (LM (P} ge,0) 2P ] P
and, hence, the estimate (2.7). [}

Remark 4:

Note that Theorem 1 and its Corollaries give estimates of the

type (2.2) at least on subsets of S)L'p(Z) where Mp(H) is uni-

formly bounded,

Let g be a continuous mapping from Z xiRm. Z Qer, into R

such that :
|g(z,x)~g(Z,x)| < L{max{hzn, NZU) 4z - 2l (z,2€z, x ¢ R™),




where L:ZP+———>R+ is a right-continuous monotonically in-
creasing function and lllldenotes the Euclidean norm on R"
Let X be a compact subset of R™ and H,ovE PL 1(Z). Then
() and w(v) (defined by (1 3)) are finite and there exists
an xeXo suth that

| p(pM) = (o) | < l§ 9(z,%) d(p-0)| .

Hence, the above results can be used to estimate IVQ*)'?“))"

3. An application to stochastic programs with complete fixed

recourse

In this Section we give an application of the results ob-
tained in Section 2 to stochastic linear programming problems
with complete fixed recourse (see [ 73, [21] for excellent
surveys)., We consider the following problem:

min{‘zf g(z,x) dp l xexo} , (3.1)

where XO is a compact subset of Rm, and

g({z,x):= ch + n(a,b-Ax) , 2=(a,b,c,A)§ Z, xe]Rm(3.2)

={Xa,bm,A)|aeRn,bERd,ceRm,AEL(Rm,RdL

{uerRd | wlu < al4 @},

y(a,v)i= inf {a'y |[yeR", Wy = v, y30}, aeR", veRrY,

weL(RrR", rY

(+ is a given Borel probability measure on Z.

) is the "fixed recourse” metrix and

We assume that the stochastic program has complete (fixed)
recourse, i.,e., that for all v GIRd the set
{y ('_]Rn lWy = v, y20 }is nonempty. Then m(a,v)<+ew for
all ae¢R", v e:Rd. Hence, due to the duelity theorem of
linear programming 'q(a v) 1is finite for all (a,v) € A :=
{aem l{uemdl Wnasa}4=¢}xmd,and

g(z,x) € R for all (z,x)€Z xR"
Thus, (3,1) fits into the setting of the preceding Sections
(note that Z is a closed (convex) subset of a finite-dimen-
sional space and, hence, is o complete separable metric
space). Using a well-known result of linear parametric pro-




gramming ( [ 12, Satz 8.8, p.219]) about the continuity and
structure of the function v (on @), it can be shown (see [17]
for details) that g is coqtinuous and that there exists a
constant L0>0 such that

la(z,x)-g(Z,x)| < Ly max {jz I, §ZHz - ) (2,22, xeR™)

(where I+l 18 a norm on R"x JRdx R"x L( R™, ]Rd)).

Hence we can apply Corollary 3 (see Remark 4) and obtain

Theorem 5

Let M, M€ P(z), ne N, be such that Suzu pdf.u and
S'||z||2pdt4 + N €N, are finite for some pell, +wl,

Then there is a constant C°>O such that

_ ' 1 '
le () - e(p)l€C (1 + (g llzuz"d,un)p) e(p.ﬁn)r‘p)(neu)(s.s)
where ¢ (um) (and (P(Hn), respectively) are defined by (1.,3),
C0 depends only onm, g and p, and r(p):=(1l - %)(1 - %).
Proof: '
With f(z):= g(z,x), z€ 2, for some iexo (see Remark 4),
and L(t):= L t, t € R_, we apply Corollary 3. []

A case of particular interest is that of discrete approxima-
tions for M via conditional expectations (see [ 2, Sect, 4],
Ced, 091, C23)).

Corollary 6:

Let {an' ] l=1,.;.,n} be a partition of Z into Borel sets
and let Mn be defined by

v = ¢t = 1

’l,(n(B). é #(an) , where mnl. W-Zn_ly gnlz d’L& .(3.4)
"1 €8 '

for all Borel subsets B of Z and all n € N,

Then 1p(k) = ()l € C4 gl 1P) L ripyem(a - Aia - by,

for some constant C1 depending only on Mo gs P




Proof:
From Jensen’'s inequality we get S||z"2pdﬁn < S uzuZPd“
z Z

for all n € N, Hence we can apply Theorem 5. [}

Remark 7:

By martingale convergence (Mn) (defined by (3.4)) converges
weakly to M if Sn:= {Zni ' l=1,....n} is a refinement of
Sn-l , i.e., Sn-i C Sn (n22), and if the &-algebra genera-

ted by the algebra U S, contains all Borel subsets of Z,
‘ neN '

If, in Corollary 6, S llzllde is finite for all peJ1,+ea(,
z

then 1p(m) = @) | = 00 ol ") for all r<1,

Estimates for IV(#) - V(Hh)‘ (for stochastic programs (3,1))
are also given e.g. in (6], (8], [11], but there in terms of
the Lp-distance of the underlying random variables. :
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