On Weak Convergence of Approximate Solutions of
Random Operator Equations
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1. Introduction

This paper deals with random operator equations, suitable
solution concepts and their approximate solution. In section 2,
we consider the concepts of a "random solution” and of a "weak
solution®. An existence theory for random solutions ie well-de-
veloped (see e.g. [6], [10] and Theorem 2.2)., But, as observed
in [73 and [8], fandom solutions cannot be expected as limits
of approximate solutions of random equations if the stochastic
inputs (entering into the equetion) are approximated in the
sense of weak convergence of probsbility distributions. What
can be expected is that these limits are weak solutions, a con-
cept which was introduced in [8]. (Note that our Def. 2.1b 1e
an adaptation to the type of random equation we consider in
this paper.) Roughly epesking, a weak solution ie the probabi-
lity distribution of a random solution on some probability
space (Remark 2.5). Moreover, we present a general existence
and uniqueness result for weak solutions (Theorem 2.6).

In sectign 3, we review a general result (L8, Theorem 4.6]) on
weak convergence of approximete eolutions of random operator
equations (to a weak solution of the original equation), where
the underlying deterministic equation and the stochastic inputs
are approximated simultaneously (the latter w.r.t. weak conver-
gence). A result of thie kind providee a theoreticel baeis for
the use of approximation procedures for solving random equatione
which often consist of a "discratization" of the equation and
an approximation ("simulation") of the etochastic input (eee
seversl papers in [31, and e.g. [4], £7]). :

For detaile, proofs and spplications of the genersl results we
refer to [121.

Let ue now fix eome notatione. For a metric space X we denote
by B(X). the @-algebra of Borel subsets of X and by P(x) the
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soet of all probebility meassures defined on (X, B(X)) equipped
with the topology of weak convergence ({5]). For ue€X let

6u € P(X) denote the unit mass at u. If x is an X-valued ran-
dom variable (defined on some probability space (Q1,A,P)), we
denote by D(x):= Po xle P(X) ite probability distribution.

2. Random operator equations: solution concepts and existence

results \

In the following, let X,Y and Z be separable metric spaces,
z a Z-valued random veriasble (defined on some probability space
(£1,4,P)) and T a mapping from ZxX into Y. We will be concerned
with the random operator equation

T(z(w),x) = 0 (wer), (2.1)

where O €Y 1is some fixed element in Y,
In the sequel, we coneider the following solution concepts for
equation (2.1). The first one 1is the classical concept of a
“random solution” (see e.g. [2]), and the second that of a
“weak solution” (introduced in [81).

Definition 2.1:
a) A random variable x:fl—— X 18 called a "random solution"
of (2.1) iff T(z(w),x(w)) = 0 holds P-almost surely.
b) A probability measure M, € P(X) 1s called a "weak solution"
of (2.1) iff there exists a M€ P(zxX) such that
pTi J 5 D(z)-f-d.pz1 and px-ypx 5
where Px and Pz denote the coordinate projections from ZxX

onto X and Z, respectively. .

There exists a well-developed existence theory for random solu-
tions of (2.1) (e.g. L61, [10}) based on measurable selsction
theorems (cf. [15]). The first result we state is an immediate
consequence of [10, Theorem 1].

Theorem 2,2:

Let X be complete and T:ZxX — Y Borel measurable, i.e.,
measurable with respect to B(ZxX) and J3(Y). Assume that there
exists B € $(Z) such that D(z)(B) = 0 and T(Z,x) = 0 is
solvable, for 8l1l ZeZ\B.

Then (2.1) has a random solution.
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Remark 2.3:
An example in [10] ehows that Theorem 2.2 would not remain true

i1f T 1is only individually Borel measurable with respect to the
first and second variable. Note that T:ZxX — Y is Borel mea-
surable if for each ZeZ T(Z,:) 1s continuous and for each
x€X T(:.x) is Borel measurable.

Lemma 2.4:
Let T:ZxX — ¥ be Borel measurable and x:l—— X a random

solution of (2.1). Then My= D(x) 4is a weak solution of (2.1).

Proof:
Putting p: -D(z x) = Peo(z(+),x( Yy~ e P(ZxX) it remains to
show that M T - =48, . For B € B(Y) we have

p(TE)) = Pwe D : (2(0).x(@) e THBY})
= P{we Nl : T(z(W).x(w))€B ) = 60(3) .

Remark 2.5:
However, an example shows (see [12]) that a weak solution need
not be the distribution of a random solution (on (Q,A,P)). A
weak solution p of (2.1) may be interpreted as follows:
There exists a probability space (Q,A,P) and random variables
5:0—>2 , %:00— X (on ({1,4,P)) such that T(Z(w).X(w)) =
holds E—almost surely, and D(z) = D(Z) , M, = D(X) .
Thus a weak solution ie the probability distribution of a ran-
dom solution on some probability space (with fixed input dis-
tribution D(z)).

Furthermore, it can be shown ((12]) that the conditions

pT == -6 and D(2) = sz (in 2.1b) hold if end only if
f"? e -6 x D(z) , where &, x D(z) is the usuel product
measure on YxZ and the mapping T:ZxX —s YxZ 1s defined by
F(2,x):=(T(Z,x),2), for all (Z,x)€ ZxX (Note that T is Borel
measurable if T is Borel measurable.).

Thie observation is useful in the proof of the following
existence and uniqueness result for weak solutions of (2.1).

Theorem 2.6:

Let X, Y and Z be complete separable metric spaces and

T:ZxX — Y Borel measurable.

a) There exists a week solution of (2.1) iff ‘I""l(B) $ @ for
every B € B(YxZ) with 60 x D(z)(B)>0 (where T is de-
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fined as in Remark 2.5).

b) Aesume that there exists B € B(Z) such that D(z)(B) = 0
and T(Z,x) = 0 has a unique solution for every Ze Z-\ B.
Then (2.1) has a unique weak solution.

Proof:

a) follows from [9,Theorem 2.5] and b) is proved in [12].

Remark 2.7:

Theorem 2.6a implies that a necessary condition for the exie-
tence of a weak solution of (2.1) 1is that there is no Borel
subset B of Z such that D(z2)(B)>0 and {xe X: T(Z,x) = 0}
is empty for every Ze€B.

3. Approximate solution of random operator equations

Throughout this section, let X,Y and Z be complete sepa-
rable metric spaces, X (n € N) subsets of X and O €Y some
fixed element. Let T:ZxX ——» Y and Ta3ZxX — Y (n € N) be
Borel measurable mappings, z and z, (n € N) Z-valued random
varigbles (defined on some probability espaces (f1,4,P) and
(n,.A,.P) (n€N), respectively).

We consider the random operator equation

T(z(w),x) = O (wefl) (3.1)
and its "approximations"
/ T (z,(@).x) =0 (wen, .neN). (3.2)

Assume for the following that random solutions xn:fln — &
of the approximate equations (3.2) exist for all n € N.

Now, our aim is to look for sufficient conditions on T and
(Tn) that imply weak convergence of the sequence (D(xn)) (in
(X)) to a weak solution of (3.1) if (D(zn)) converges weak-
ly to D(z).

The following concepts turn out to be useful in this context.

Definition 3.1:
Let S and S' be metric spaces, Snc S (n€ N) and A:S —» S°* ,
A,:S, —> S’ (n € N).
a) We say that (A ) is "discretely convergent” to A iff
(1) inf {d(s,8): Fe€ sn} — 0 , for all seS (d being
the metric in S), and ’
(11) for 8ll s€S, s, ¢ Sn (ne N), with s

T E (in 8),
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we have that A s —As (in S*)
(see e.g. 113, [13] ).

b) (A_) is called "collectively regular* iff U Alkyn e
g ' neN "

is relatively compact in S for each bounded B € S and
compact K &€ §'.
Remark 3.2:
It is shown in [8, Lemma 3.7] that the collective regularity
of (An) can be characterized in terms of the concept of "e-reg-
ularity” which is well-known in the literature on approximation
methode for (deterministic) equations (e.g. [1], [11], £143).

Lemma 3.3:
Let (Tn) be as above and assume that
a) for all Z2e2Z, (Tn(i,-)) is collectively regular, and
b) { T,(+.x) : xe BAX , né€ N} is equicontinuous on K, for
each bounded B € X and compact K& Z.
Then ,LJ]q T;1({0}) N KxB  1is relatively compact in ZxX, for
ne

each bounded B @ X and compact K ¢ Z.
Proof: ( [121, similar as the proof of [8, Prop. 4.51)

Theorem 3.4:
Let T, (Tn)' z and (zn) be as above and let for all ne N x
be a random solution of (3.2) for the index n. Aessume that
a) conditions a) and b) of Lemma 3.3 are satisfied,
b) (Tn)_ponverges discretely to T (Jjointly in both varisbles),
c) (D(zn)) converges weakly to D(z),
d) (D(xn)) ie "stochestically bounded*, i.e., for all € >0

there exists a bounded Borel set Bg in X such that

:me D(xn)(Bc) >1-€ .

n

Then (D(xn)) is relatively compact with respect to the topolo-
gy of weak convergence in $(X) and every weak limit of (D(xn))
is a weak solution of (3.1). If furthermore the week solution
of (3.1) is unique, (D(xn)) converges weakly to this limit.
Proof: (See [8, Theorem 4,63 using the methodology of that
paper; see also {12] for a short proof using Lemme 3.3 and
Prohorov'e and Rubin's theorems (L[5, p. 34 and 37]).)

Applications of Theorem 3.4 to approximation schemes for (lin-
ear and nonlinear) random integrel equationes and (ordinary end
partial) random differentiel equations are given in (71, (8] .
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