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Introdu
tion

Consider the sto
hasti
 programming model

minf

Z

�

f

0

(�; x)�(d�) : x 2M(�)g (1)

M(�) := fx 2 X :

Z

�

f

j

(�; x)�(d�) � 0; j = 1; :::; dg

where f

j

from �� IR

m

to the extended reals IR

are normal integrands, X is a nonempty 
losed

subset of IR

m

, � is a 
losed subset of IR

s

and �

is a Borel probability measure on �.

(Re
all that f

j

is a normal integrand if it is Borel measur-

able and f

j

(�; :) is lower semi
ontinuous for ea
h � 2 �.)

We denote by P(�) the set of all Borel proba-

bility measures on � and by v(�) and S

"

(�) the

optimal value and the ("-approximate) solution

set (" � 0) of (1), i.e.,

v(�) = inf

x2M(�)

Z

�

f

0

(�; x)�(d�);

S

"

(�) = fx 2M(�) :

Z

�

f

0

(�; x)�(d�) � v(�) + "g;

S(�) = S

0

(�) = arg min

x2M(�)

Z

�

f

0

(�; x)�(d�):



Sin
e the underlying probability distribution � is

often in
ompletely known in applied models, the

stability behaviour of the sto
hasti
 program

when 
hanging (perturbing, estimating, approx-

imating) � 2 P(�) is important.

Here, stability refers to (quantitative) 
ontinu-

ity properties of the optimal value fun
tion v(:)

and of the set-valued mapping S

"

(:) at �, where

both are regarded as mappings given on 
er-

tain subset of P(�) equipped with some 
onver-

gen
e of probability measures and some prob-

ability metri
, respe
tively.

(The 
orresponding subset of probability measures is de-

termined su
h that 
ertain moment 
onditions are satis-

�ed that are related to growth properties of the integrands

f

j

with respe
t to �.)

Examples:

two-stage sto
hasti
 programs,


han
e 
onstrained sto
hasti
 programs.
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Weak 
onvergen
e in P(�)

�

n

!

w

� i�

Z

�

f(�)�

n

(d�)!

Z

�

f(�)�(d�)

(8f 2 C

b

(�));

i� �

n

(f� � zg)! �(f� � zg)

if �(f� � �g) is 
ontinuous at z:

Probability metri
s on P(�)

Monographs: Ra
hev 91, Ra
hev/R�us
hendorf 98

Metri
s with �-stru
ture:

d

F

(�; �) = supfj

Z

�

f(�)(�� �)(d�)j : f 2 Fg

where F is an appropriate set of measurable

fun
tions from � to IR and �, � are probability

measures in some set P

F

on whi
h d

F

is �nite.

Examples:

(a) F is a 
lass of lo
ally Lips
hitzian fun
tions on �,

(b) F = f�

B

: B 2 Bg, B is a 
lass of Borel subsets of �.

It is possible to asso
iate 
ertain 
anoni
al sets

F and, hen
e, 
anoni
al metri
s d

F

to spe
i�



lasses of sto
hasti
 programs.



Example 1:

(two-stage model with simple re
ourse)

m = s = 1, d = 0, f

0

(�; x) := maxf� � x;0g,

� := IR, X := [�1;1℄ (:= IR),

� := Æ

0

(unit mass at 0),

�

n

:= (1�

1

n

)Æ

0

+

1

n

Æ

n

2

; n 2 IN .

v(�) = 0, S(�) = [0;1℄ (= [0;1)),

v(�

n

) = n�

1

n

(= �1), S(�

n

) = f1g (= ;)

(n 2 IN).

Note: �

n

!

w

�, but �rst order moments do not


onverge !

Example 2:

(linear 
han
e 
onstrained model)

m = s = d = 1, X := (�1;0℄, � = IR,

f

0

(�; x) := x, f

1

(�; x) :=

3

4

� �

(�1;x℄

(�),

� :=

1

2

Æ

0

+

1

2

Æ

�1

,

�

n

:= (

1

2

+

1

n

)Æ

1

n

+ (

1

2

�

1

n

)Æ

�1

(n 2 IN).

v(�) = 0, S(�) = f0g,

v(�

n

) =1, S(�

n

) = ; (n 2 IN).

Note: �

n

!

w

�, but distribution fun
tions do

not 
onverge uniformly !



Quantitative Stability

Let U be some nonempty subset of IR

m

, and

F

U

:= ff

j

(:; x) : x 2 X \ 
lU ; j = 0; : : : ; dg;

P

F ;U

:= f� 2 P(�) :

Z

�

inf

x2X

kxk�r

f

j

(�; x)�(d�) > �1 ;8r > 0 ;

sup

x2X\ 
lU

j

Z

�

f

j

(�; x)�(d�)j <1 ; j = 0; : : : ; dg;

and the probability (pseudo-) metri
 on P

F ;U

:

d

F ;U

(�; �) = sup

x2X\ 
lU

max

j=0;:::;d

j

Z

�

f

j

(�; x)(�� �)(d�)j :

Lemma:

The fun
tions (x; �) 7!

R

�

f

j

(�; x)�(d�) are lower semi
on-

tinuous on X � P

F ;U

.

Lo
alized 
on
epts for optimal values and solution sets:

v

U

(�) = inff

Z

�

f

0

(�; x)�(d�) : x 2M(�) \ 
lUg;

S

U

(�) = fx 2M(�) \ 
lU :

Z

�

f

0

(�; x)�(d�) = v

U

(�)g:

A nonempty set S � IR

m

is 
alled a 
omplete lo
al mini-

mizing (CLM) set of (1) with respe
t to U if U � IR

m

is

open and S = S

U

(�) � U. Clearly, sets of global minimiz-

ers are CLM sets and it holds S

U

(�) = S(�) if S(�) � U.



Theorem 1: (Ra
hev/R�omis
h 00)

Assume that S(�) is nonempty and U � IR

m

is

an open bounded neighbourhood of S(�), and

that � 2 P

F ;U

.

If d � 1, let the fun
tion x 7!

R

�

f

0

(�; x)�(d�)

be Lips
hitz 
ontinuous on X\ 
lU, and, let the

fun
tion (x; y) 7! d(x;M

y

(�)) be lo
ally Lips
hitz


ontinuous at ea
h (�x;0), �x 2 S(�).

Then there exist 
onstants L; Æ > 0 su
h that

jv(�)� v

U

(�)j � Ld

F ;U

(�; �)

; 6= S

U

(�) � S(�) +	(Ld

F ;U

(�; �))IB

holds for all � 2 P

F ;U

and that

S

U

(�) is a CLM set w.r.t. U whenever � 2 P

F ;U

and d

F ;U

(�; �) < Æ.

Here 	(�) := �+  

�1

(�) and

 (�) := minf

R

�

f

0

(�; x)�(d�)�v(�) : d(x; S(�)) �

�; x 2 M(�) \ 
lUg (�; � 2 IR

+

), and M

y

(�) :=

fx 2 X :

R

�

f

j

(�; x)�(d�) � y

j

; j = 1; :::; dg.

The fun
tion  is the growth or 
onditioning fun
tion of

(1) on U.  and 	 are lower semi
ontinuous on IR

+

;  is

nonde
reasing and 	 is in
reasing, both vanish at 0 and

 

�1

(t) := supf� 2 IR

+

:  (�) � tg.

(Proof by appealing to stability results of Klatte 87, 94 and

Ro
kafellar/Wets 97.)



Theorem 1 shows that d

F ;U

plays the role of a

minimal probability metri
 for (1) implying quan-

titative stability.

Furthermore, noti
e that Theorem 1 remains

valid when bounding d

F ;U

from above by an-

other distan
e and when redu
ing the set P

F ;U

to a subset on whi
h this distan
e is de�ned and

�nite.

Su
h a distan
e is 
alled a 
anoni
al probabil-

ity metri
 d


a

asso
iated with (1), if it has the

stru
ture d

F

generated by some 
lass F = F


a

of fun
tions from � to IR su
h that F


a


ontains

the fun
tions Cf

j

(�; x) for ea
h x 2 X \ 
lU, j =

0; : : : ; d and some normalizing 
onstant C > 0,

and that the fun
tions in F


a

have the same an-

alyti
al properties as f

j

(�; x), j = 0; : : : ; d.



Typi
al analyti
al properties de�ning 
anoni
al


lasses F


a

, whi
h are relevant in sto
hasti
 pro-

gramming, are pie
ewise Lips
hitz 
ontinuity pro-

perties.

Example: (Fortet-Mourier metri
s)

Let p � 1, �

0

2 � and 
onsider the following 
lass of


ontinuous fun
tions from � to IR

F

p

:= ff : jf(�)� f(

~

�)j �

maxf1; k� � �

0

k

p�1

; k

~

� � �

0

k

p�1

gk� �

~

�k;8�;

~

� 2 �g

and the 
orresponding probability metri
 generated by F

p

and de�ned on P

p

(�):

�

p

(�; �) := d

F

p

(�; �) = sup

f2F

p

j

Z

�

f(�)(�� �)(d�)j

P

p

(�) := f� 2 P(�) :

Z

�

k�k

p

�(d�) <1g



Convex 
ase and d := 0:

Assume that f

0

(�; �) is 
onvex on IR

m

8� 2 �.

Theorem 2:

Assume that S(�) is nonempty and U � IR

m

is

an open bounded neighbourhood of S(�), and

that � 2 P

F ;U

.

Then there exist 
onstants L; �" > 0 su
h that

jv(�)� v(�)j � d

F ;U

(�; �) and

; 6= S(�) � S(�) +	(d

F ;U

(�; �))IB

whenever � 2 P

F ;U

with d

F ;U

(�; �) < �" , and that

it holds for any " 2 (0; �")

D

H

(S

"

(�); S

"

(�)) �

L

"

d

F ;U

(�; �)

whenever � 2 P

F ;U

; d

F ;U

(�; �) < ".

Here 	(�) := �+  

�1

(2�); � � 0 ,  is the 
on-

ditioning fun
tion of Theorem 1 and D

H

is the

Hausdor� distan
e of nonempty 
losed subsets

of IR

m

.

Proof using a perturbation result by Ro
kafellar/Wets 97.



Linear two-stage sto
hasti
 programs

We 
onsider the linear two-stage sto
hasti
 program with

�xed re
ourse

minf
x+

Z

�

q(�)y(�)�(d�) : Wy(�) = h(�)� T(�)x;

y(�) � 0; x 2 Xg

where 
 2 IR

m

, X � IR

m

is a polyhedron, � is a polyhedron

in IR

s

, W is an (r;m)-matrix, � 2 P(�), and q(�) 2 IR

m

,

h(�) 2 IR

r

and the (r;m)-matrix T(�) depend aÆne linearly

on � 2 �.

Denoting by �(q(�); h(�)�T(�)x) the value of the optimal

se
ond stage de
ision, the above problem may be rewrit-

ten equivalently as a minimization problem with respe
t

to the �rst stage de
ision x.

De�ning the integrand f

0

: �� IR

m

! IR by

f

0

(�; x) =

8

<

:


x+�(q(�); h(�)� T(�)x);

h(�)� T(�)x 2 posW ; q(�) 2 D;

+1 ; otherwise;

posW := fWy : y 2 IR

m

+

g;

D := fu 2 IR

m

: fz 2 IR

r

:W

0

z � ug 6= ;g

�(u; t) := inffuy :Wy = t; y � 0g ((u; t) 2 IR

m

� IR

r

);

the equivalent minimization problem takes the form

minf

Z

�

f

0

(�; x)�(d�) : x 2 Xg: (2)



Assumptions:

(A1) There holds h(�) � T(�)x 2 posW and

q(�) 2 D for ea
h pair (�; x) 2 � �X (relatively


omplete re
ourse and dual feasibility).

(A2) � 2 P(�) has a �nite se
ond order mo-

ment.

Theorem 3:

Let (A1) and (A2) be satis�ed and let S(�) be

nonempty and U be an open, bounded neigh-

bourhood of S(�).

Then there exist 
onstants L; �" > 0 su
h that

jv(�)� v(�)j � L�

2

(�; �)

; 6= S(�) � S(�) +	(L�

2

(�; �))IB

whenever � 2 P

2

(�) and �

2

(�; �) < �", where 	

is de�ned as in Theorem 2.

Furthermore, it holds for any " 2 (0; �")

D

H

(S

"

(�); S

"

(�)) �

L

"

�

2

(�; �)

whenever � 2 P

2

(�); �

2

(�; �) < ".



Chan
e 
onstrained sto
hasti
 programs

minf
x : x 2 X; �(f� 2 � : T(�)x � h(�)g) � pg

where 
 2 IR

m

, X is a polyhedron in IR

m

, � a polyhedron

in IR

s

, p 2 (0;1), � 2 P(�), and h(�) 2 IR

r

and the (r;m)-

matrix T(�) depend aÆne linearly on � 2 �.

We set d = 1, f

0

(�; x) = 
x, f

1

(x; �) = p� �

H(x)

(�), where

H(x) = f� 2 � : T(�)x � h(�)g, and obtain

P

F ;U

(�) = P(�) ;

d

F ; U

(�; �) = sup

x2X\
l U

j�(H(x))� �(H(x))j (�; � 2 P(�))

The sets H(x) are polyhedra with a uniformly bounded

number of fa
es. Canoni
al metri
:

d

ph;k

(�; �) := supfj�(P)� �(P)j : P polyhedron

with at most k fa
esg

Theorem 4:

Let S(�) be nonempty and U � IR

m

be an open

bounded neighbourhood of S(�), and � 2 P(�).

Let the fun
tion (x; y) 7! d(x;M

y

(�)) be lo
ally

Lips
hitz 
ontinuous at ea
h (�x;0), �x 2 S(�).

Then there exist 
onstants L > 0, Æ > 0 and

k 2 IN su
h that

jv(�)� v

U

(�)j � Ld

ph;k

(�; �)

; 6= S

U

(�) � S(�) +	(Ld

ph;k

(�; �))IB

and S

U

(�) is a CLM set w.r.t. U whenever � 2

P(�) and d

ph;k

(�; �) < Æ.

Here, 	 is de�ned as in Theorem 1.



Empiri
al Approximations

Let �

1

; �

2

; :::; �

n

; ::: be i.i.d. random ve
tors in

IR

s

(on (
;A; IP)) with 
ommon probability dis-

tribution � 2 P

F ;U

. We 
onsider the empiri
al

measures �

n

(:) =

1

n

n

P

i=1

Æ

�

i

(:)

(n 2 IN) and the

empiri
al approximations of (1)

minf

1

n

n

X

i=1

f

0

(�

i

(�); x) : x 2 X ;

1

n

n

X

i=1

f

j

(�

i

(�); x) � 0; j = 1; : : : ; dg:

Then v

U

(�

n

(�)) and S

U

(�

n

(�)) are measurable.

A 
lass F is 
alled permissible if the mappings

d

F

(�; �

n

(:)) from 
 to IR are measurable.

F is 
alled a �-Glivenko-Cantelli 
lass if

IP � lim

n!1

d

F

(�; �

n

(�)) = 0.

Ky Fan metri
 in X (IR):

�(X ;Y) := inff� � 0 : IP(jX � Yj > �) � �g.



Theorem 5:

Let the assumptions of Theorem 1 be satis�ed and F

U

be

permissible for �. Then it holds ea
h n 2 IN

�(v(�); v

U

(�

n

(�))) � maxf1; Lg�(d

F ;U

(�

n

(�); �);0)

�( sup

x2S

U

(�

n

(�))

d(x; S(�));0) � 	(�(d

F ;U

(�

n

(�); �);0)) ;

where L > 0 and 	 are as in Theorem 1.

Moreover, for IP -almost all ! 2 
 the set S

U

(�

n

(!)) is a

CLM set of (1) w.r.t. U for suÆ
iently large n 2 IN .

Whether (a rate of) 
onvergen
e of (d

F

(�

n

(�); �)) is avail-

able, depends on the size of the 
lass F measured in terms

of 
overing or bra
keting numbers.

Let F be a subset of the normed spa
e L

p

(�; �) (for some

p � 1) equipped with the usual norm k � k

p

. The 
overing

number N(";F ; L

p

(�; �)) is the minimal number of open

balls fg 2 L

p

(�; �) : kg � fk

p

< "g needed to 
over F.

Given two fun
tions f

1

and f

2

from L

p

(�; �), the set

[f

1

; f

2

℄ := ff 2 L

p

(�; �) : f

1

(�) � f(�) � f

2

(�) for �-

almost all � 2 �g is 
alled an "-bra
ket if kf

1

� f

2

k

p

< ".

Then the bra
keting number N

[ ℄

(";F ; L

p

(�; �)) is the min-

imal number of "-bra
kets needed to 
over F.

A 
lass F � L

1

(�; �) is a �-Glivenko-Cantelli 
lass if

N

[ ℄

(";F ; L

1

(�; �)) <1 for ea
h " > 0.



Theorem 6:

Let the assumptions of Theorem 1 be satis�ed

and F

U

be uniformly bounded and permissible

for �. Assume that either of the following 
on-

ditions holds for some 
onstants r � 1, R � 1

and " 2 (0;1):

(i) N(";F

U

; L

2

(�; �)) � (

R

"

)

r

for any dis
rete

� 2 P(�) with �nite support ,

(ii) N

[ ℄

(";F

U

; L

2

(�; �)) � (

R

"

)

r

.

Then the following rates of 
onvergen
e

�(v(�); v

U

(�

n

(�))) = O((logn)

1

2

n

�

1

2

)

�( sup

x2S

U

(�

n

(�))

d(x; S(�));0) = O(	((logn)

1

2

n

�

1

2

))

are valid, where 	 is as in Theorem 1.

Examples:

The 
lass F

ph;k

:= f�

P

: P polyhedron with at most k

fa
esg satis�es (i) of Theorem 6.

The 
lass F

lts

:= ff

0

(�; x) : f

0

is de�ned as for two-stage

models satisfying (A1), x 2 X\ 
lUg satis�es the property

N

[ ℄

("K

p

;F

lts

; L

p

(�; �)) � C"

�m

;

for ea
h 0 < " < 1, p � 1, some C > 0 depending only on

m and the diameter of X\ 
lU and some K

p

> 0 depending

on the 2p-th order moment of �.

Hen
e, (ii) is satis�ed if

R

�

k�k

4

�(d�) <1 and Theorem 6

applies if � is bounded.


