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Introduction

Consider the stochastic programming model

min{ [ fo(&,2)u(d) 1z € M(} (1)

M) =o€ X : [ f;(¢2)u(d) <0,j =1,...d}

where f; from = x IR™ to the extended reals IR
are normal integrands, X is a nonempty closed
subset of IR™, = is a closed subset of IR® and u
IS a Borel probability measure on =.

(Recall that f; is a normal integrand if it is Borel measur-
able and f;(&,.) is lower semicontinuous for each ¢ € =.)

We denote by P(=) the set of all Borel proba-
bility measures on = and by v(u) and Sc(u) the
optimal value and the (e-approximate) solution
set (¢ >0) of (1), i.e.,

o) = inf [ ol z)n(d0).
Se(n) = {o € M)+ [ fol& )u(ds) < v(w) + <},

S(u) = So(u) =arg_min [ fo(¢2)u(de).

zeM ()



Since the underlying probability distribution u is
often incompletely known in applied models, the
stability behaviour of the stochastic program
when changing (perturbing, estimating, approx-
imating) pu € P(=) is important.

Here, stability refers to (quantitative) continu-
ity properties of the optimal value function v(.)
and of the set-valued mapping S:(.) at u, where
both are regarded as mappings given on cer-
tain subset of P(=) equipped with some conver-
gence of probability measures and some prob-
ability metric, respectively.

(The corresponding subset of probability measures is de-
termined such that certain moment conditions are satis-
fied that are related to growth properties of the integrands
f; with respect to &.)

Examples:
two-stage stochastic programs,
chance constrained stochastic programs.



Literatur

Surveys: DupacCova 90, Schultz 00

70s: Kall, Kankova (78), Marti, Wets

Kankova 80,..., DupacCova 84,...,

Wets 83, 89, Birge/Wets 86,

Kall 87, Robinson/Wets 87, Romisch/Wakolbinger 87,
Dupacova/Wets 88, Vogel 88, 92,94, King 89,
King/Wets 90, King/Rockafellar 93,

Salinetti 81, 89, Shapiro 89, 91, 94, 95, 99,
Ermoliev/Norkin 91, Lucchetti/Wets 93,
Romisch/Schultz 91, 93, 96, Schultz 92, 95, 96,
Artstein 94, Artstein/Wets 94, 95, Wang 95,
Pflug 96, 99, Pflug/Ruszczynski/Schultz 98, 99,
Fiedler/R6misch 95, Dentcheva/Romisch 00,
Growe 97, Henrion 00, Henrion/Rd&misch 99, 00,
Rachev/Ro&misch 00,......



Weak convergence in P(=Z)

pn = i 16 [ F©n(de) = [ F(E)n(de)
(vf € Cy(D)).

iIff pun({§ < 2}) = u({€ < 2})
if u({¢ < -}) is continuous at z.

Probability metrics on P(=)

Monographs: Rachev 91, Rachev/RUlschendorf 98

Metrics with (-structure:

dr(u,v) = sup{| [_F(©)(n—v)(de)| : f € F}

where F is an appropriate set of measurable
functions from = to IR and p, v are probability
measures in some set Pr on which dr is finite.

Examples:
(a) F is a class of locally Lipschitzian functions on =,
(b) F={xp: B € B}, Bis a class of Borel subsets of =.

It is possible to associate certain canonical sets
F and, hence, canonical metrics dr to specific
classes of stochastic programs.



Example 1:

(two-stage model with simple recourse)
m=s=1,d=0, fo(§,x) := max{{ — z,0},
= =R, X =[-1,1] := IR),

1 = dg (unit mass at 0),

Un = (1—%)504—%5”2, n € IN.

v(p) =0, S(p) = [0,1] (=[0,00)),

v(pn) =n _% (= —o00), S(un) =1{1} (=0)

(n € IN).

Note: un, —% u, but first order moments do not
converge !

Example 2:

(linear chance constrained model)
m=s=d=1, X .= (—~c0,0], = = IR,
fO(gax) =z, f1(§7x) .= % — X(—oo,;c](g)r
pi= 500 + %5—1,
pn =G+ 1)1+ (G- i1 (ne ).
v(pn) =0, S(u) = {0},

v(pn) = 00, S(un) =0 (n € IN).

Note: un, —% u, but distribution functions do
not converge uniformly !



Quantitative Stability

Let &/ be some nonempty subset of IR™, and
Fu = {fi(Lbx) txeXndl,j=0,...,d},
Pru = {veP(=E): / inf f;(§, z)v(d§) > —o0,Vr > 0,

- HZH<

sup |/:fj<e,m>u<ds>| <00, =0,....d},

zeXNecll

and the probability (pseudo-) metric on Pry:

dru(pv) = sup  max | / £(602) (1 — ) (dE))

zeXNcl J=

Lemma:
The functions (z,v) — [ fi(§, z)v(d€) are lower semicon-

tinuous on X X Pry.

LLocalized concepts for optimal values and solution sets:
uy(v) = inf{/: fo(&,z)v(dE) :x € M(v) N cU},
Su() = {xeM@)n du: /_ fol&, 2)v(de) = w(v)}.

A nonempty set § C IR™ is called a complete local mini-
mizing (CLM) set of (1) with respect to U/ if Y C IR™ is
open and § = Sy (u) C U. Clearly, sets of global minimiz-
ers are CLM sets and it holds Sy (p) = S(p) if S(u) C U.



Theorem 1: (Rachev/Rdmisch 00)

Assume that S(u) is nonempty and U C IR™ is
an open bounded neighbourhood of S(u), and
that p € P}“,u.

If d > 1, let the function =z — |= fo(&, x)p(dE)
be Lipschitz continuous on X NclU, and, let the
function (z,y) — d(z, My(pr)) be locally Lipschitz
continuous at each (x,0), z € S(u).

Then there exist constants L, > 0 such that

lv(p) — vy (V)| < Ldgy(p,v)
0 #= Sy(wv) C S(p)+ V(Ldry(p,v))B

holds for all v € Pxr; and that

Su(v) is a CLM set w.r.t. U whenever v € Pry,
and d]:,u(,UJ,V) < 0.

Here W(n) :=n+vy~1(n) and

(7)== min{ J= fo(§, z)pu(d) —v(p) = d(z, S(p)) >
T, € M(p) N cdU}(n,m € Ry), and My(p) =
{xre X J=fj(§,x)u(ds) <yj,j =1,..,d}.

The function ¢ is the growth or conditioning function of
(1) on U. ¥ and W are lower semicontinuous on IRy; v is
nondecreasing and W is increasing, both vanish at O and

() :=sup{r € Ry : ¥(7) < t}.

(Proof by appealing to stability results of Klatte 87, 94 and
Rockafellar/Wets 97.)



Theorem 1 shows that dz;, plays the role of a
minimal probability metric for (1) implying quan-
titative stability.

Furthermore, notice that Theorem 1 remains
valid when bounding dgz from above by an-
other distance and when reducing the set Pr,
to a subset on which this distance is defined and
finite.

Such a distance is called a canonical probabil-
ity metric deq associated with (1), if it has the
structure dr generated by some class F = Fcq
of functions from = to IR such that F., contains
the functions Cf;(-,z) for each z € XN clld, j =
O,...,d and some normalizing constant C' > O,
and that the functions in F., have the same an-
alytical properties as f;(-,z), j =0,...,d.



Typical analytical properties defining canonical
classes F.,, which are relevant in stochastic pro-
gramming, are piecewise Lipschitz continuity pro-
perties.

Example: (Fortet-Mourier metrics)
Let p > 1, & € = and consider the following class of
continuous functions from = to IR

Fo={f : |f&) - f|< ] o
max{1,||¢ — &lP~ 1, [|€ — &olP Y€ — &I, V¢, € € =}

and the corresponding probability metric generated by F,
and defined on P,(=):
Cp(p,v) = dr(p,v) :§§£| (O (p—v)(dE)

(=) = v eP(=) | llglfv(de) < oo}



Convex case and d .= O:
Assume that fg(&, ) is convex on IR™ V¢ € =.

Theorem 2:

Assume that S(u) is nonempty and U C IR™ is
an open bounded neighbourhood of S(u), and
that p € P}“,u.

Then there exist constants L, > 0 such that

lv(p) —v(@)| < dFpy(p,v) and
0#=S(w) C S(u)+V(dry(p,v))B

whenever v € Pry with dr(n,v) <&, and that
it holds for any € € (0,¢&)

Dir(Se(), S:()) < Zdp (1 )
whenever v € Pryy, dr yy(u,v) < e.
Here W(n) :=n+¢¥~1(2n), n > 0, ¢ is the con-
ditioning function of Theorem 1 and Dy is the
Hausdorff distance of nonempty closed subsets
of IR™.

Proof using a perturbation result by Rockafellar/Wets 97.



Linear two-stage stochastic programs

We consider the linear two-stage stochastic program with
fixed recourse

mm%m+/d®M®M%):WM©=h®%4N®%

y(§) >0,z € X}

where c € IR™, X C IR™ is a polyhedron, = is a polyhedron
in R*, W is an (r,m)-matrix, p € P(Z), and q(¢) € IR™,
h(¢) € IR" and the (r,m)-matrix T'(¢) depend affine linearly
on ¢ € =.

Denoting by ®(q(&),h(€) —T(€)x) the value of the optimal
second stage decision, the above problem may be rewrit-
ten equivalently as a minimization problem with respect
to the first stage decision z.

Defining the integrand fy : = x R™ — IR by

cx + P(q(§), h(§) —T(&)x),

fo(€,z) = h(§) —T'(§)x € posW ,q(€) € D,
+o0, otherwise,

posW = {Wy:ye R}},
D = {u€R":{z€ R :W=z<u}# 0}
®d(u,t) = influy: Wy=t,y >0} ((u,t) € R™ x R"),

the equivalent minimization problem takes the form

WM/%@@M%%wEX} 2)



Assumptions:

(A1) There holds h(¢) — T(&)x € posW and
q(&¢) € D for each pair (¢£,z) € = x X (relatively
complete recourse and dual feasibility).

(A2) u € P(Z) has a finite second order mo-
ment.

Theorem 3:

Let (A1) and (A2) be satisfied and let S(u) be
nonempty and U be an open, bounded neigh-
bourhood of S(u).

Then there exist constants L, > 0 such that

[o(p) —v(@)| < Lea(p,v)
0#Sw) C Su)+ V(L((p,v))B

whenever v € P>(=Z) and (>(u,v) < &, where W
is defined as in Theorem 2.
Furthermore, it holds for any € € (0, ¢)

D(8-(1), 8:(1)) < Z o)

whenever v € P>(Z), ((p,v) < .



Chance constrained stochastic programs
min{cz: z € X, p({£ € =: T(§ )z > h(€)}) > p}

where ¢ € IR™, X is a polyhedron in IR™, = a polyhedron
in IR°, pe (0,1), p € P(=Z), and h(¢) € IR" and the (r,m)-
matrix T'(¢) depend affine linearly on & € =.

We set d =1, fO(S;fE) — CI, fl(xag) —DP— XH(ac)(g)r where
H(z)={{e€=:T()x > h(&)}, and obtain

7).7:,?/1(5) — P(E)a
dr,u(p,v) = sup (u(H(z)) —v(H(z))| (1, v € P(Z))

The sets H(x) are polyhedra with a uniformly bounded
number of faces. Canonical metric:

dpni(p,v) = sup{|u(P) —v(P)|: P polyhedron
with at most k faces}

Theorem 4:

Let S(u) be nonempty and U C IR™ be an open
bounded neighbourhood of S(u), and pu € P(Z).
Let the function (z,y) — d(x, My(p)) be locally
Lipschitz continuous at each (z,0), z € S(u).
Then there exist constants L > 0, 6 > 0 and
k € IN such that

[v(p) —vy ()| < Ldpy, p(p,v)

0 # Sy(v) C S(p)+ V(Ldy, r(p,v))B
and Sy/(v) is a CLM set w.r.t. U whenever v €
P(=) and dph,k(lu“ay) < 9.

Here, W is defined as in Theorem 1.



Empirical Approximations

Let &1,&o,...,&n,... De i.i.d. random vectors in
IR? (on (2, A, IP)) with common probability dis-
tribution u € Pry. VWe consider the empirical

n

measures pn(.) = + 3 &) (n € IN) and the
i=1 >V

empirical approximations of (1)

min{> > fol€i(),2) 1w € X,
=1

1=

S|

1=1

Then vy (un(-)) and Sy (un(-)) are measurable.

A class F is called permissible if the mappings
dr(p, un(.)) from  to IR are measurable.
F is called a p-Glivenko-Cantelli class if

P — 1im dg(p, in(-)) = O.

n—oo

Ky Fan metric in X(IR):
k(X,Y) :=inf{n >0 : P(X - Y|>n) <n}.



Theorem 5:
Let the assumptions of Theorem 1 be satisfied and F;; be
permissible for . Then it holds each n € IN

r(v(p), vu(pn(-))) < max{l, L}r(dru(pn(-),n),0)
k( sup  d(z,5(w)),0) < W(k(dru(pa(-),n),0)),

x'ESM(,LLH('))

where L > 0 and W are as in Theorem 1.
Moreover, for IP-almost all w € 2 the set Sy (u,(w)) is a
CLM set of (1) w.r.t. U for sufficiently large n € IN.

Whether (a rate of) convergence of (dx(un(-),n)) is avail-
able, depends on the size of the class F measured in terms
of covering or bracketing numbers.

Let F be a subset of the normed space L,(=, ) (for some
p > 1) equipped with the usual norm || - ||, The covering
number N(e, F,L,(=,un)) is the minimal number of open
balls {g € L,(=,1) : |lg — fllp < €} needed to cover F.
Given two functions f; and f» from L,(=,u), the set
[f1, f2] == {f € Lp(Z,1) : f1(§) < f(§) < f2(8) for p-
almost all £ € =} is called an e-bracket if ||f1 — f2ll, < e.
Then the bracketing number Nyj(e, F, Ly(=, 1)) is the min-
imal number of e-brackets needed to cover F.

A class F C L1(=, ) is a u-Glivenko-Cantelli class if
Np(e, F,L1(=, 1)) < oo for each ¢ > 0.



Theorem 6.

et the assumptions of Theorem 1 be satisfied
and F;; be uniformly bounded and permissible
for u. Assume that either of the following con-
ditions holds for some constants » > 1, R > 1
and ¢ € (0,1):

(i) N(e,Fy,L2(Z,v)) < (£)" for any discrete
v € P(=Z) with finite support,

(i) Npj(e, Fon Lo(Z, 1)) < ()T

Then the following rates of convergence

ko), v (un(-))) = O((logn)2n"2)

k( sup  d(z,S(1)),0) = O(W((logn)2n~2))
r€Sy (pn(-))

are valid, where W is as in Theorem 1.

Examples:
The class Fpnr = {xp : P polyhedron with at most k
faces} satisfies (i) of Theorem 6.

The class Fis := {fo(:,x) : fo is defined as for two-stage
models satisfying (Al), x € XN clU} satisfies the property

N[](nga Flts Lp(Ea ,LL)) < Cg_ma

foreach O0<e <1, p>1, some C > 0 depending only on
m and the diameter of XNl and some K, > 0 depending
on the 2p-th order moment of wu.

Hence, (ii) is satisfied if [_||¢]|*u(d¢) < co and Theorem 6
applies if = is bounded.



