
Stability of

Stohasti Programming Problems

W. R�omish

Humboldt-Universit�at Berlin

Institut f�ur Mathematik

http://www-iam.mathematik.hu-berlin.de/~romish

Tutorial

9th International Conferene on Stohasti Programming

Berlin (Germany), August 25-31, 2001



Introdution

Consider the stohasti programming model

minf

Z

�

f

0

(�; x)�(d�) : x 2M(�)g (1)

M(�) := fx 2 X :

Z

�

f

j

(�; x)�(d�) � 0; j = 1; :::; dg

where f

j

from �� IR

m

to the extended reals IR

are normal integrands, X is a nonempty losed

subset of IR

m

, � is a losed subset of IR

s

and �

is a Borel probability measure on �.

(Reall that f

j

is a normal integrand if it is Borel measur-

able and f

j

(�; :) is lower semiontinuous for eah � 2 �.)

We denote by P(�) the set of all Borel proba-

bility measures on � and by v(�) and S

"

(�) the

optimal value and the ("-approximate) solution

set (" � 0) of (1), i.e.,

v(�) = inf

x2M(�)

Z

�

f

0

(�; x)�(d�);

S

"

(�) = fx 2M(�) :

Z

�

f

0

(�; x)�(d�) � v(�) + "g;

S(�) = S

0

(�) = arg min

x2M(�)

Z

�

f

0

(�; x)�(d�):



Sine the underlying probability distribution � is

often inompletely known in applied models, the

stability behaviour of the stohasti program

when hanging (perturbing, estimating, approx-

imating) � 2 P(�) is important.

Here, stability refers to (quantitative) ontinu-

ity properties of the optimal value funtion v(:)

and of the set-valued mapping S

"

(:) at �, where

both are regarded as mappings given on er-

tain subset of P(�) equipped with some onver-

gene of probability measures and some prob-

ability metri, respetively.

(The orresponding subset of probability measures is de-

termined suh that ertain moment onditions are satis-

�ed that are related to growth properties of the integrands

f

j

with respet to �.)

Examples:

two-stage stohasti programs,

hane onstrained stohasti programs.
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Weak onvergene in P(�)

�

n

!

w

� i�

Z

�

f(�)�

n

(d�)!

Z

�

f(�)�(d�)

(8f 2 C

b

(�));

i� �

n

(f� � zg)! �(f� � zg)

if �(f� � �g) is ontinuous at z:

Probability metris on P(�)

Monographs: Rahev 91, Rahev/R�ushendorf 98

Metris with �-struture:

d

F

(�; �) = supfj

Z

�

f(�)(�� �)(d�)j : f 2 Fg

where F is an appropriate set of measurable

funtions from � to IR and �, � are probability

measures in some set P

F

on whih d

F

is �nite.

Examples:

(a) F is a lass of loally Lipshitzian funtions on �,

(b) F = f�

B

: B 2 Bg, B is a lass of Borel subsets of �.

It is possible to assoiate ertain anonial sets

F and, hene, anonial metris d

F

to spei�

lasses of stohasti programs.



Example 1:

(two-stage model with simple reourse)

m = s = 1, d = 0, f

0

(�; x) := maxf� � x;0g,

� := IR, X := [�1;1℄ (:= IR),

� := Æ

0

(unit mass at 0),

�

n

:= (1�

1

n

)Æ

0

+

1

n

Æ

n

2

; n 2 IN .

v(�) = 0, S(�) = [0;1℄ (= [0;1)),

v(�

n

) = n�

1

n

(= �1), S(�

n

) = f1g (= ;)

(n 2 IN).

Note: �

n

!

w

�, but �rst order moments do not

onverge !

Example 2:

(linear hane onstrained model)

m = s = d = 1, X := (�1;0℄, � = IR,

f

0

(�; x) := x, f

1

(�; x) :=

3

4

� �

(�1;x℄

(�),

� :=

1

2

Æ

0

+

1

2

Æ

�1

,

�

n

:= (

1

2

+

1

n

)Æ

1

n

+ (

1

2

�

1

n

)Æ

�1

(n 2 IN).

v(�) = 0, S(�) = f0g,

v(�

n

) =1, S(�

n

) = ; (n 2 IN).

Note: �

n

!

w

�, but distribution funtions do

not onverge uniformly !



Quantitative Stability

Let U be some nonempty subset of IR

m

, and

F

U

:= ff

j

(:; x) : x 2 X \ lU ; j = 0; : : : ; dg;

P

F ;U

:= f� 2 P(�) :

Z

�

inf

x2X

kxk�r

f

j

(�; x)�(d�) > �1 ;8r > 0 ;

sup

x2X\ lU

j

Z

�

f

j

(�; x)�(d�)j <1 ; j = 0; : : : ; dg;

and the probability (pseudo-) metri on P

F ;U

:

d

F ;U

(�; �) = sup

x2X\ lU

max

j=0;:::;d

j

Z

�

f

j

(�; x)(�� �)(d�)j :

Lemma:

The funtions (x; �) 7!

R

�

f

j

(�; x)�(d�) are lower semion-

tinuous on X � P

F ;U

.

Loalized onepts for optimal values and solution sets:

v

U

(�) = inff

Z

�

f

0

(�; x)�(d�) : x 2M(�) \ lUg;

S

U

(�) = fx 2M(�) \ lU :

Z

�

f

0

(�; x)�(d�) = v

U

(�)g:

A nonempty set S � IR

m

is alled a omplete loal mini-

mizing (CLM) set of (1) with respet to U if U � IR

m

is

open and S = S

U

(�) � U. Clearly, sets of global minimiz-

ers are CLM sets and it holds S

U

(�) = S(�) if S(�) � U.



Theorem 1: (Rahev/R�omish 00)

Assume that S(�) is nonempty and U � IR

m

is

an open bounded neighbourhood of S(�), and

that � 2 P

F ;U

.

If d � 1, let the funtion x 7!

R

�

f

0

(�; x)�(d�)

be Lipshitz ontinuous on X\ lU, and, let the

funtion (x; y) 7! d(x;M

y

(�)) be loally Lipshitz

ontinuous at eah (�x;0), �x 2 S(�).

Then there exist onstants L; Æ > 0 suh that

jv(�)� v

U

(�)j � Ld

F ;U

(�; �)

; 6= S

U

(�) � S(�) +	(Ld

F ;U

(�; �))IB

holds for all � 2 P

F ;U

and that

S

U

(�) is a CLM set w.r.t. U whenever � 2 P

F ;U

and d

F ;U

(�; �) < Æ.

Here 	(�) := �+  

�1

(�) and

 (�) := minf

R

�

f

0

(�; x)�(d�)�v(�) : d(x; S(�)) �

�; x 2 M(�) \ lUg (�; � 2 IR

+

), and M

y

(�) :=

fx 2 X :

R

�

f

j

(�; x)�(d�) � y

j

; j = 1; :::; dg.

The funtion  is the growth or onditioning funtion of

(1) on U.  and 	 are lower semiontinuous on IR

+

;  is

nondereasing and 	 is inreasing, both vanish at 0 and

 

�1

(t) := supf� 2 IR

+

:  (�) � tg.

(Proof by appealing to stability results of Klatte 87, 94 and

Rokafellar/Wets 97.)



Theorem 1 shows that d

F ;U

plays the role of a

minimal probability metri for (1) implying quan-

titative stability.

Furthermore, notie that Theorem 1 remains

valid when bounding d

F ;U

from above by an-

other distane and when reduing the set P

F ;U

to a subset on whih this distane is de�ned and

�nite.

Suh a distane is alled a anonial probabil-

ity metri d

a

assoiated with (1), if it has the

struture d

F

generated by some lass F = F

a

of funtions from � to IR suh that F

a

ontains

the funtions Cf

j

(�; x) for eah x 2 X \ lU, j =

0; : : : ; d and some normalizing onstant C > 0,

and that the funtions in F

a

have the same an-

alytial properties as f

j

(�; x), j = 0; : : : ; d.



Typial analytial properties de�ning anonial

lasses F

a

, whih are relevant in stohasti pro-

gramming, are pieewise Lipshitz ontinuity pro-

perties.

Example: (Fortet-Mourier metris)

Let p � 1, �

0

2 � and onsider the following lass of

ontinuous funtions from � to IR

F

p

:= ff : jf(�)� f(

~

�)j �

maxf1; k� � �

0

k

p�1

; k

~

� � �

0

k

p�1

gk� �

~

�k;8�;

~

� 2 �g

and the orresponding probability metri generated by F

p

and de�ned on P

p

(�):

�

p

(�; �) := d

F

p

(�; �) = sup

f2F

p

j

Z

�

f(�)(�� �)(d�)j

P

p

(�) := f� 2 P(�) :

Z

�

k�k

p

�(d�) <1g



Convex ase and d := 0:

Assume that f

0

(�; �) is onvex on IR

m

8� 2 �.

Theorem 2:

Assume that S(�) is nonempty and U � IR

m

is

an open bounded neighbourhood of S(�), and

that � 2 P

F ;U

.

Then there exist onstants L; �" > 0 suh that

jv(�)� v(�)j � d

F ;U

(�; �) and

; 6= S(�) � S(�) +	(d

F ;U

(�; �))IB

whenever � 2 P

F ;U

with d

F ;U

(�; �) < �" , and that

it holds for any " 2 (0; �")

D

H

(S

"

(�); S

"

(�)) �

L

"

d

F ;U

(�; �)

whenever � 2 P

F ;U

; d

F ;U

(�; �) < ".

Here 	(�) := �+  

�1

(2�); � � 0 ,  is the on-

ditioning funtion of Theorem 1 and D

H

is the

Hausdor� distane of nonempty losed subsets

of IR

m

.

Proof using a perturbation result by Rokafellar/Wets 97.



Linear two-stage stohasti programs

We onsider the linear two-stage stohasti program with

�xed reourse

minfx+

Z

�

q(�)y(�)�(d�) : Wy(�) = h(�)� T(�)x;

y(�) � 0; x 2 Xg

where  2 IR

m

, X � IR

m

is a polyhedron, � is a polyhedron

in IR

s

, W is an (r;m)-matrix, � 2 P(�), and q(�) 2 IR

m

,

h(�) 2 IR

r

and the (r;m)-matrix T(�) depend aÆne linearly

on � 2 �.

Denoting by �(q(�); h(�)�T(�)x) the value of the optimal

seond stage deision, the above problem may be rewrit-

ten equivalently as a minimization problem with respet

to the �rst stage deision x.

De�ning the integrand f

0

: �� IR

m

! IR by

f

0

(�; x) =

8

<

:

x+�(q(�); h(�)� T(�)x);

h(�)� T(�)x 2 posW ; q(�) 2 D;

+1 ; otherwise;

posW := fWy : y 2 IR

m

+

g;

D := fu 2 IR

m

: fz 2 IR

r

:W

0

z � ug 6= ;g

�(u; t) := inffuy :Wy = t; y � 0g ((u; t) 2 IR

m

� IR

r

);

the equivalent minimization problem takes the form

minf

Z

�

f

0

(�; x)�(d�) : x 2 Xg: (2)



Assumptions:

(A1) There holds h(�) � T(�)x 2 posW and

q(�) 2 D for eah pair (�; x) 2 � �X (relatively

omplete reourse and dual feasibility).

(A2) � 2 P(�) has a �nite seond order mo-

ment.

Theorem 3:

Let (A1) and (A2) be satis�ed and let S(�) be

nonempty and U be an open, bounded neigh-

bourhood of S(�).

Then there exist onstants L; �" > 0 suh that

jv(�)� v(�)j � L�

2

(�; �)

; 6= S(�) � S(�) +	(L�

2

(�; �))IB

whenever � 2 P

2

(�) and �

2

(�; �) < �", where 	

is de�ned as in Theorem 2.

Furthermore, it holds for any " 2 (0; �")

D

H

(S

"

(�); S

"

(�)) �

L

"

�

2

(�; �)

whenever � 2 P

2

(�); �

2

(�; �) < ".



Chane onstrained stohasti programs

minfx : x 2 X; �(f� 2 � : T(�)x � h(�)g) � pg

where  2 IR

m

, X is a polyhedron in IR

m

, � a polyhedron

in IR

s

, p 2 (0;1), � 2 P(�), and h(�) 2 IR

r

and the (r;m)-

matrix T(�) depend aÆne linearly on � 2 �.

We set d = 1, f

0

(�; x) = x, f

1

(x; �) = p� �

H(x)

(�), where

H(x) = f� 2 � : T(�)x � h(�)g, and obtain

P

F ;U

(�) = P(�) ;

d

F ; U

(�; �) = sup

x2X\l U

j�(H(x))� �(H(x))j (�; � 2 P(�))

The sets H(x) are polyhedra with a uniformly bounded

number of faes. Canonial metri:

d

ph;k

(�; �) := supfj�(P)� �(P)j : P polyhedron

with at most k faesg

Theorem 4:

Let S(�) be nonempty and U � IR

m

be an open

bounded neighbourhood of S(�), and � 2 P(�).

Let the funtion (x; y) 7! d(x;M

y

(�)) be loally

Lipshitz ontinuous at eah (�x;0), �x 2 S(�).

Then there exist onstants L > 0, Æ > 0 and

k 2 IN suh that

jv(�)� v

U

(�)j � Ld

ph;k

(�; �)

; 6= S

U

(�) � S(�) +	(Ld

ph;k

(�; �))IB

and S

U

(�) is a CLM set w.r.t. U whenever � 2

P(�) and d

ph;k

(�; �) < Æ.

Here, 	 is de�ned as in Theorem 1.



Empirial Approximations

Let �

1

; �

2

; :::; �

n

; ::: be i.i.d. random vetors in

IR

s

(on (
;A; IP)) with ommon probability dis-

tribution � 2 P

F ;U

. We onsider the empirial

measures �

n

(:) =

1

n

n

P

i=1

Æ

�

i

(:)

(n 2 IN) and the

empirial approximations of (1)

minf

1

n

n

X

i=1

f

0

(�

i

(�); x) : x 2 X ;

1

n

n

X

i=1

f

j

(�

i

(�); x) � 0; j = 1; : : : ; dg:

Then v

U

(�

n

(�)) and S

U

(�

n

(�)) are measurable.

A lass F is alled permissible if the mappings

d

F

(�; �

n

(:)) from 
 to IR are measurable.

F is alled a �-Glivenko-Cantelli lass if

IP � lim

n!1

d

F

(�; �

n

(�)) = 0.

Ky Fan metri in X (IR):

�(X ;Y) := inff� � 0 : IP(jX � Yj > �) � �g.



Theorem 5:

Let the assumptions of Theorem 1 be satis�ed and F

U

be

permissible for �. Then it holds eah n 2 IN

�(v(�); v

U

(�

n

(�))) � maxf1; Lg�(d

F ;U

(�

n

(�); �);0)

�( sup

x2S

U

(�

n

(�))

d(x; S(�));0) � 	(�(d

F ;U

(�

n

(�); �);0)) ;

where L > 0 and 	 are as in Theorem 1.

Moreover, for IP -almost all ! 2 
 the set S

U

(�

n

(!)) is a

CLM set of (1) w.r.t. U for suÆiently large n 2 IN .

Whether (a rate of) onvergene of (d

F

(�

n

(�); �)) is avail-

able, depends on the size of the lass F measured in terms

of overing or braketing numbers.

Let F be a subset of the normed spae L

p

(�; �) (for some

p � 1) equipped with the usual norm k � k

p

. The overing

number N(";F ; L

p

(�; �)) is the minimal number of open

balls fg 2 L

p

(�; �) : kg � fk

p

< "g needed to over F.

Given two funtions f

1

and f

2

from L

p

(�; �), the set

[f

1

; f

2

℄ := ff 2 L

p

(�; �) : f

1

(�) � f(�) � f

2

(�) for �-

almost all � 2 �g is alled an "-braket if kf

1

� f

2

k

p

< ".

Then the braketing number N

[ ℄

(";F ; L

p

(�; �)) is the min-

imal number of "-brakets needed to over F.

A lass F � L

1

(�; �) is a �-Glivenko-Cantelli lass if

N

[ ℄

(";F ; L

1

(�; �)) <1 for eah " > 0.



Theorem 6:

Let the assumptions of Theorem 1 be satis�ed

and F

U

be uniformly bounded and permissible

for �. Assume that either of the following on-

ditions holds for some onstants r � 1, R � 1

and " 2 (0;1):

(i) N(";F

U

; L

2

(�; �)) � (

R

"

)

r

for any disrete

� 2 P(�) with �nite support ,

(ii) N

[ ℄

(";F

U

; L

2

(�; �)) � (

R

"

)

r

.

Then the following rates of onvergene

�(v(�); v

U

(�

n

(�))) = O((logn)

1

2

n

�

1

2

)

�( sup

x2S

U

(�

n

(�))

d(x; S(�));0) = O(	((logn)

1

2

n

�

1

2

))

are valid, where 	 is as in Theorem 1.

Examples:

The lass F

ph;k

:= f�

P

: P polyhedron with at most k

faesg satis�es (i) of Theorem 6.

The lass F

lts

:= ff

0

(�; x) : f

0

is de�ned as for two-stage

models satisfying (A1), x 2 X\ lUg satis�es the property

N

[ ℄

("K

p

;F

lts

; L

p

(�; �)) � C"

�m

;

for eah 0 < " < 1, p � 1, some C > 0 depending only on

m and the diameter of X\ lU and some K

p

> 0 depending

on the 2p-th order moment of �.

Hene, (ii) is satis�ed if

R

�

k�k

4

�(d�) <1 and Theorem 6

applies if � is bounded.


