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Introduction

Practical optimization models often contain parameters of stochas-

tic nature (e.g. statistical data available). In many cases it is not

appropriate to replace them by some statistical estimate. Alterna-

tives consist in modeling the random elements by a finite number

of scenarios with given probabilities and incorporating them into

the optimization model. Such stochastic programming models

have the advantages:

• Solutions are robust with respect to changes of the data.

• The risk of decisions can be measured and managed.

• Simulation studies show that solutions of stochastic programs

may be advantageous compared to deterministic ones.
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Modeling

Assumptions: Information on the underlying probability dis-

tribution is available (e.g., statistical data) and the distribution

does not depend on decisions.

Modeling questions: Are recourse actions available if stochas-

ticity influences decisions ? Is the decision process based on re-

cursive observations ?

• No recourse actions available: Chance constraints.

• Recourse actions available, but no recursive observations:

Two-stage stochastic programs (possibly multi-period).

• Recursive observation and decision process:

Multi-stage stochastic programs.

Integer variables should be incorporated if they are model-important.
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Chance constraints

Let us consider the (linear) chance constrained model

min{〈c, x〉 : x ∈ X, P ({ξ ∈ Ξ : T (ξ)x ≥ h(ξ)}) ≥ p},

where c ∈ Rm, X and Ξ are polyhedra in Rm and Rs, respectively,

p ∈ (0, 1), P is a probability measure on Ξ, i.e., P ∈ P(Ξ), and

the right-hand side h(ξ) ∈ Rd and the (d,m)-matrix T (ξ) are

affine functions of ξ.

Challenges:

Although the sets H(x) = {ξ ∈ Ξ : T (ξ)x ≥ h(ξ)} are (convex)

polyhedral subsets of Ξ, the function

x → P (H(x))

is, in general, non-concave and non-differentiable on Rm, hence,

the optimization model is nonconvex. Concavity results are avail-

able for probability distributions satisfying certain concavity prop-

erties (e.g., normal distributions) (Prekopa 95, Henrion-Strugarek 08).
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Two-stage stochastic programs

min

{
〈c, x〉 +

∫
Ξ

Φ(ξ; q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X

}
,

where

Φ(ξ; u, t) := inf{〈u, y〉 : y ∈ Y,W (ξ)y = t}
P := Pξ−1 ∈ P2(Ξ) is the probability distribution of the random

vector ξ, c ∈ Rm, X ⊆ Rm is a bounded polyhedron, q(ξ) ∈ Rm,

Y ∈ Rm is a polyhedral cone, W (ξ) a r × m-matrix, h(ξ) ∈ Rr

and T (ξ) a r×m-matrix. We assume that q(ξ), h(ξ), W (ξ) and

T (ξ) are affine functions of ξ.

Theory and Algorithms: The function Φ : Ξ × X → R is well

understood for fixed recourse (i.e., W (ξ) ≡ W ) (Walkup-Wets 69).

Convexity, optimality and duality results, decomposition meth-

ods, Monte-Carlo type methods, scenario reduction and stability

analysis are well developed.

References: Ruszczyński-Shapiro 03, Kall-Mayer 05.
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Mixed-integer two-stage stochastic programs

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X

}
,

where Φ is given by

Φ(u, t) := inf
{
〈u1, y〉 + 〈u2, ȳ〉 : Wy + W̄ ȳ ≤ t, y ∈ Zm̂, ȳ ∈ Rm̄

}
for all pairs (u, t) ∈ Rm̂+m̄ × Rr, and c ∈ Rm, X is a closed

subset of Rm, Ξ a polyhedron in Rs, W and W̄ are (r, m̂)- and

(r, m̄)-matrices, respectively, q(ξ) ∈ Rm̂+m̄, h(ξ) ∈ Rr, and the

(r, m)-matrix T (ξ) are affine functions of ξ, and P ∈ P2(Ξ).

Theory and Algorithms: The function Φ is well understood (Blair-

Jeroslow 77, Bank et al 82), nonconvex optimization models, structural

analysis (Schultz 93), decomposition methods (surveys: Schultz 03, Sen

05), sampling methods, stability analysis, scenario reduction.
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Multistage stochastic programs

Let {ξt}T
t=1 be a discrete-time stochastic data process defined on

some probability space (Ω,F , P) and with ξ1 deterministic. The

stochastic decision xt at period t is assumed to be measurable with

respect to Ft(ξ) := σ(ξ1, . . . , ξt) (nonanticipativity).

Multistage stochastic programming model:

min

{
E

[
T∑

t=1

〈bt(ξt), xt〉

]∣∣∣∣xt ∈ Xt, xt is Ft(ξ)-measurable, t = 1, .., T

At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, .., T

}
where Xt, t = 1, . . . , T , are polyhedral, the vectors bt(·), ht(·) and

At,1(·) are affine functions of ξt, where ξ varies in a polyhedral set

Ξ.

If the process {ξt}T
t=1 has a finite number of scenarios, they ex-

hibit a scenario tree structure. If the measurability constraint is

missing, the model is two-stage.
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Data process approximation by scenario trees

The process {ξt}T
t=1 is approximated by a process forming a sce-

nario tree being based on a finite set N ⊂ N of nodes.
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Scenario tree with T = 5, N = 22 and 11 leaves

n = 1 root node, n− unique predecessor of node n, path(n) =

{1, . . . , n−, n}, t(n) := |path(n)|, N+(n) set of successors to n,

NT := {n ∈ N : N+(n) = ∅} set of leaves, path(n), n ∈ NT , sce-

nario with (given) probability πn, πn :=
∑

ν∈N+(n) π
ν probability

of node n, ξn realization of ξt(n).
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Tree representation of the optimization model

min

{∑
n∈N

πn〈bt(n)(ξ
n), xn〉

∣∣∣∣xn ∈ Xt(n), n ∈ N
At(n),0x

n + At(n),1x
n− =ht(n)(ξ

n), n ∈ N

}

The node-based optimization model may be solved by

- standard software (e.g., X-PRESS, CPLEX)

- decomposition methods for large scale models (Ruszczyński 03).

Mean-risk objective vs expectation:

The expectation objective may be replaced by convex (multi-

period) risk functionals. If the risk functional is polyhedral, the

linearity structure is maintained.
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Scenario (tree) reduction and generation

Theoretical basis: Stability estimates

Scenario reduction: Developed for (mixed-integer) two-stage

stochastic programs.

Scenario tree generation:

(i) Development of a stochastic model for the data process ξ

(parametric [e.g. time series model], nonparametric [e.g. re-

sampling from statistical data]) and generation of simulation

scenarios;

(ii) Construction of a scenario tree out of the simulation scenarios

by recursive scenario reduction and bundling over time such

that the optimal expected revenue stays within a prescribed

tolerance.

Implementation: GAMS-SCENRED
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 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

Illustration of the forward tree construction for an example including T=5 time periods
starting with a scenario fan containing N=58 scenarios

<Start Animation>

file:E:/anim05/animation.html
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Example: Airline network revenue management

Airline revenue management deals with strategies for controlling

the booking process within a network of flights. Often statistical

data is available for the (passenger) demand. The objective con-

sists in maximizing the expected revenue. The booking process is

controlled by seat protection levels or by (so-called) bid prices.

Aims:

• Stochastic programming model for airline network revenue

management;

• Approximate representation of the multivariate booking de-

mand processes by scenario trees generated from resampled

historical demand scenarios;

• Lagrangian decomposition of the node-based stochastic inte-

ger program; algorithm design and numerical experience.
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Notation
Input data
πn: probability of node n;
stochastic (as scenario tree):
dn

i,j,k: passenger demand;
γn

i,j,k: cancelation rates;
deterministic:
f b

i,j,k,t(n): fares;
f c

i,j,k,t(n): refunds;
Cl,m: capacity;

Variables
bn
i,j,k: bookings;

cn
i,j,k: cancelations;

Bn
i,j,k: cumulative bookings;

Cn
i,j,k: cumulative cancelations;

P n
i,j,k: protection level;

zP,n
i,j,k, zd,n

i,j,k: slack variables;
z̃n
i,j,k: auxiliary integer variables;

Indices
t = 0, . . . , T : data collection points;
i = 1, . . . , I: origin-destination-itin.;
j = 1, . . . , J : fare classes;
k = 1, . . . , K: points of sale;
l = 1, . . . , L: legs;
Il: index set of itineraries;
m = 1, . . . ,M(l): compartments;
Jm(l): index set of fare classes;
n = 0, . . . , N : nodes;
t(n): time of node n;
n−: preceding node of node n;

Time horizon and data collection points (dcp):
Day of Departure

Booking Interval

Booking Horizon

0 T DCPs1 ...
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Airline network revenue management model (node

representation)

Objective

max
(Pn

i,j,k)

{
N∑

n=0
πn

I∑
i=1

J∑
j=1

K∑
k=1

[
f b

i,j,k,t(n)b
n
i,j,k − f c

i,j,k,t(n)c
n
i,j,k

]}
Constraints
Cumulative bookings

B0
i,j,k := B̄0

i,j,k; C0
i,j,k := C̄0

i,j,k; Bn
i,j,k := B

n−
i,j,k + bn

i,j,k

Cumulative cancelations
Cn

i,j,k = bγn
i,j,kB

n
i,j,k + 0.5c

Cancelations
cn
i,j,k = Cn

i,j,k − C
n−
i,j,k

Passenger demands and protection levels
bn
i,j,k ≤ dn

i,j,k; bn
i,j,k ≤ P

n−
i,j,k −B

n−
i,j,k + Cn

i,j,k (disjunctive constraints)

Leg capacity limits∑
i∈Il

∑
j∈Jm(l)

K∑
k=1

P n
i,j,k ≤ Cl,m (n ∈ NT−1)

Integrality and nonnegativity constraints
Bn

i,j,k, C
n
i,j,k, P

n
i,j,k ∈ Z; bn

i,j,k ≥ 0; cn
i,j,k ≥ 0
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Airline network revenue management model (final)

Objective

max
(Pn

i,j,k)

{
N∑

n=0
πn

I∑
i=1

J∑
j=1

K∑
k=1

[
f b

i,j,k,t(n)b
n
i,j,k − f c

i,j,k,t(n)c
n
i,j,k

]}
Constraints
Cumulative bookings

B0
i,j,k := B̄0

i,j,k; C0
i,j,k := C̄0

i,j,k; Bn
i,j,k := B

n−
i,j,k + bn

i,j,k

Cumulative cancelations
Cn

i,j,k = bγn
i,j,kB

n
i,j,k + 0.5c

Cancelations
cn
i,j,k = Cn

i,j,k − C
n−
i,j,k

Passenger demands
bn
i,j,k + zb,n

i,j,k = dn
i,j,k

Protection levels
Bn

i,j,k − Cn
i,j,k + zP,n

i,j,k = P
n−
i,j,k

Number of bookings (disjunctive constraints) (κ > 0, adequately large)
0 ≤ zb,n

i,j,k ≤ (1− z̃n
i,j,k)d

n
i,j,k 0 ≤ zP,n

i,j,k ≤ z̃n
i,j,kκ z̃n

i,j,k ∈ {0, 1}
Leg capacity limits∑

i∈Il

∑
j∈Jm(l)

K∑
k=1

P n
i,j,k ≤ Cl,m (n ∈ NT−1)

Integrality and nonnegativity constraints
Bn

i,j,k, C
n
i,j,k, P

n
i,j,k ∈ Z; bn

i,j,k ≥ 0; cn
i,j,k ≥ 0
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Comments:

• large scale structured integer linear program

• solvable by a standard solver (e.g. CPLEX) in reasonable

time for smaller networks when neglecting integer constraints

• Dimensions: (S number of scenarios)

– 4IJKN continuous variables,

– IJK(N + 1− S) + 2IJKN integer variables,

– IJKN binary variables

– 7IJK(N − 1) +
∑

n∈NT−1

∑L
l=1 M(l) constraints

• Protection levels (P n
i,j,k)n∈N have the same tree structure as

the input data

• The (deterministic) protection levels of the first stage may be

taken as a basis for the computer reservation system

• At the next dcp a new scenario tree has to be generated and

the problem is resolved etc.
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Lagrangian decomposition

Idea: Dualization of leg capacity limits

Lagrangian function Λ:

Λ(λ, P ) :=
N∑

n=0

πn
I∑

i=1

J∑
j=1

K∑
k=1

(
f b,n

i,j,kb
n
i,j,k − f c,n

i,j,kc
n
i,j,k

)

+
∑

n∈NT−1

πn
L∑

l=1

M(l)∑
m=1

λn
l,m

∑
i∈Il

∑
j∈Jm(l)

K∑
k=1

Cl,m − P n
i,j,k


=

I∑
i=1

J∑
j=1

K∑
k=1

(
N∑

n=0

πn
(
f b,n

i,j,kb
n
i,j,k − f c,n

i,j,kc
n
i,j,k

)

−
∑

n∈NT−1

πn
∑
l∈Li

M(l)∑
m=1

δj,l,mλn
l,mP n

i,j,k

+
∑

n∈NT−1

πn
L∑

l=1

M(l)∑
m=1

λn
l,mCl,m

=
I∑

i=1

J∑
j=1

K∑
k=1

Λi,j,k(λ, Pi,j,k) +
∑

n∈NT−1

πn
L∑

l=1

M(l)∑
m=1

λn
l,mCl,m

where Li = {l : i ∈ Il} and δj,l,m =

{
1 j ∈ Jm(l)
0 otherwise
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Dual function D:

D(λ) = sup
P

Λ(λ, P )

=
I∑

i=1

J∑
j=1

K∑
k=1

sup
Pi,j,k

Λi,j,k(λ, Pi,j,k) +
∑

n∈NT−1

πn
L∑

l=1

M(l)∑
m=1

λn
l,mCl,m

The function D is convex nondifferentiable and decomposable.

Dual problem:
inf
λ

D(λ)

The relative duality gap is small (theory by Bertsekas 82).

Subgradients:

[∂D(λ)]nl,m = πn

Cl,m −
∑
i∈Il

∑
j∈Jm(l)

K∑
k=1

P n
i,j,k


The Lagrange multipliers λn

l,m, n ∈ Nt, may be interpreted as bid prices at
t for leg l and compartment m. However, they are presently only available
for n ∈ NT−1.
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Dual solution algorithm

• Solution of the dual problem by a bundle subgradient method

(e.g. proximal bundle method by Kiwiel or Helmberg)

• Solution of the subproblems by dynamic programming on sce-

nario trees.

• Primal-proximal heuristic to determine a good primal feasible

solution (e.g. by Daniilidis and Lemaréchal).
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A realistic mid-size airline network example

0 10 20 30 40 50
0

5

10

15

20

25

ODI-Leg-Matrix Scenario tree

RM problem dimensions
#ODIs 54
#ODI-Fareclass-POS 489
#Legs 27
#Leg-Compartments 54
#DCPs 23

Tree and Size
#Scenarios 98
#Nodes 1.441
#Variables 3.473.367
#Constraints 2.774.445
#Coupling Constr. 5.238
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Numerical results

Bundle methods
Dual value 179349.78
Dimension 5238
max bundle size 10
#Iterations 46
#DP 22494
time 09:05:55.36
time in DP 1:23.39

Lagrange heuristic
Primal value 179134.76
Duality gap 0.001
time 5:33.87
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Conclusions and future work

We presented an approach to airline network revenue manage-

ment using a scenario tree-based dynamic stochastic optimization

model. The approach

• starts from a finite number of demand scenarios and their

probabilities,

• requires no assumptions on the demand distributions except

their decision-independence.

Stochastic programming approaches lead to solutions that are

more robust with respect to perturbations of input data. How-

ever, the models have higher complexity.

Future work:

• Implementation refinements of the decomposition scheme

(URL: www.math.hu-berlin.de/~romisch, Email: romisch@math.hu-berlin.de)
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