Stability and other Reminiscences

(Rüdiger's early years in stochastic optimization)

W. Römisch
Humboldt-University Berlin
Institute of Mathematics
http://www.math.hu-berlin.de/~romisch

ICSORT 2019, Mülheim an der Ruhr, April 25-27, 2019

MATHEMITIICAL MATHEMATISCHE RESEAROII

Parametric Optimization and Related Topics

edited by
J. Guddat • H.Th. Jongen
B.Kummer. F. Nožička

Band 35

Akademie-Verlag Berlin
zation in.
; Berlin,
inear pro-
ren ion Mathe-

Macmilian
on methods 'sch. Sta-
eme und umsuohe,
dex nichtSer. Opti-
einer
erung,
or two-
r. Study
der pera-
atischer I(1976),
unkte mit edings of en",
is mathe-

ON APPROXIMATIONS AND STABIITTY

 IN STOCHASTIC PROGRAMMING*)Peter Kall**)

ABSTRACT

It has become an accepted approach to attack stochastic programming pron blems by approximating the given probability distribution in various ways. After sketching one of these approaches for recourse problems, the stability problem with respect to the probability measure, involved with those approximations as well as with inexact information in applied problems, is discussed for recourse and chance constrained models.

1. Introducxion

In mathematical programing we are used to deal with problems of the type
$\left.\begin{array}{ll}\text { min } & f(x) \\ \text { s.t. } & g(x) \geq 0 \\ & x \in x,\end{array}\right\}$
where $X \in \mathbb{R}^{n}, f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}^{m}$ are given and various assumptions are imposed on x (e.g. convexity, compactness, polyhedxality) and on f and g, respectively (e.g. continuity, convexity, differentiability, linearity). The crucial hypothesis for dealing with (1.1) is that f and g are given deterministic functions. Since the constraints $g(x) \geq 0$ in (1.1) in applications mean, for instance, production requirements, capacity restrictions etc., in many cases the constraint functions are very likely to be affected by a random parameter ξ. A similar observation can be
*) Part of this work was accomplished at the MRC, University of Wisconsin-Madison and sponsoxed by the National science Foundation under Grant No. DCR-85022. The author greatly appreciates the hospitality and support extended by these institutions.
**) Address: Institut für Operations Research und
Mathematische Methoden der Wirtschaftswissenschaften der universitat zürich
Weinbergstrasse 59
CH-8006 Zurich

STABILITY IN TWO-STAGE STOCHASTIC PROGRAMMING

Stephen M. Robinson

University of Wisconsin-Madison

and

Roger J.-B. Wets

International Institute for Applied Systems Analysis (IIASA) and University of California, Davis

ABSTRACT

We analyze the effect of changes in problem functions and/or distributions in certain two-stage stochastic programming problems with recourse. Under reasonable assumptions the locally optimal value of the perturbed problem will be continuous and the corresponding set of local optimizers will be upper
semicontinuous with respect to the parameters (including the probability distribution in the second stage).

AMS(MOS) Subject Classifications: 90C42, 90C31
Short Title: STABILITY IN TWO-STAGE STOCHASTIC PROGRAMMING
Keywords: Stochastic programming, recourse, stability, sensitivity analysis, weak convergence.

Sponsored by the National Science Foundation under Grants DCR-8502202 and ECS8542328, and the United States Army under Contract No. DAAG29-80-C-0041. An earlier version of this work was presented by invitation at the IIASA Workshop on Numerical Methods for Stochastic Optimization, December 1983.

Two bibles and one research paper

A hore on quavittantive stabilityy resuims in monlinear opitilzamion

Diethard Klatte
Abstract: In this note we analyze the quantitative stability belaviler of the (local optimal value function and of local and
global mimizers in nonilinear optimizaztion problems depending on parameters. Our purpose is to point out which information and conditions are really essential to ensure Hilider or Lip-

1. Introduction

Throughout the paper we consider an abstract optimization problem depending on a parameter $t \in \mathbb{T}$,
$P(t): \quad f(x, t) \longrightarrow \min _{x}$ s.t. $x \in M(t)$,
where \mathbb{T} is a metric space with distance function $d(\cdot, \cdot), M$ is a closed-valued multifunction from T to R^{n}, and $\mathrm{f}: \mathrm{R}^{\mathrm{n}} \times \mathbb{T} \longrightarrow \mathrm{R}$ is a funation continuous on $\mathbb{R}^{n} \times \mathbb{T}$, Given $Q \subset \mathbb{R}^{n}$ we set for $t \in \mathbb{T}$,
$M_{Q}(t):=M(t) \cap \operatorname{cl} Q$,
$\varphi_{Q}(t):=\quad \inf \left\{f(x, t) / x \in M_{Q}(t)\right\}$
(optimal value function w.r. to cl Q)
$\Psi_{Q}(t):=\quad\left\{x \in \mathbb{M}_{Q}(t) / P(x, t)=\varphi_{Q}(t)\right\}$
(optimal set mapping w.r, to cl Q),
Where "c1" stands for closure.
The following notion plays a crucial role in analyzing the tability of local minimizing sets, see the discussions in Robinson /9/ and Klatte /4/. Given $P\left(t^{0}\right)$ for fixed $t=t^{0}$, a nonempty set $X \subset R^{n}$ is called a strict local minimizing set (abbreviated SM set) for $f\left(., t^{0}\right)$ on $M\left(t^{\circ}\right)$ if there is an open get $Q \supset X$ such that $X=\psi_{Q}\left(t^{0}\right)$. In Robinson's terminology /9/ such sets ane called complete local minimizing sets. Typical examples of SIM sets are the following:
i) $X=\psi_{R^{n}}\left(t^{0}\right)$ - the set of global minimizers of $P\left(t^{0}\right)$, if $\mathrm{X}=$ R $_{\mathrm{R}^{2}}$.
(ii) $X=\{z\}$, where z is a strict local minimizer of $\mathrm{P}\left(\mathrm{t}^{\circ}\right)$,

Weak convergence of probability measures in $\mathcal{P}\left(\mathbb{R}^{d}\right)$:

$$
P_{n} \rightarrow^{w} P \quad \text { iff } \quad \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} f(\xi) P_{n}(d \xi)=\int_{\mathbb{R}^{d}} f(\xi) P(d \xi) \quad\left(\forall f \in C_{b}\left(\mathbb{R}^{d}\right)\right)
$$

Metrization:

Prokhorov metric:

$$
\rho(P, Q)=\inf \left\{\varepsilon>0: P(A) \leq Q\left(A^{\varepsilon}\right)+\varepsilon \text { for all closed } A \subseteq \mathbb{R}^{d}\right\},
$$

where $A^{\varepsilon}=\left\{y \in \mathbb{R}^{d}: d(y, A)<\varepsilon\right\}$ is the open ε-enlargement of A.
Dudley's bounded Lipschitz metric:

$$
\beta(P, Q)=d_{\mathrm{BL}}(P, Q)=\sup _{\|f\|_{\mathrm{BL}} \leq 1}\left|\int_{\mathbb{R}^{d}} f(\xi) P(d \xi)-\int_{\mathbb{R}^{d}} f(\xi) P(d \xi)\right|,
$$

where $\operatorname{BL}\left(\mathbb{R}^{\mathrm{d}}, \mathbb{R}\right)$ is the linear space of real-valued bounded and Lipschitz continuous functions on \mathbb{R}^{d} with norm

$$
\|f\|_{\mathrm{BL}}=\sup _{\xi \in \mathbb{R}^{d}}|f(\xi)|+\sup _{\substack{\xi, \tilde{\xi} \in \mathbb{R}^{d} \\ \xi \neq \tilde{\xi}}} \frac{|f(\xi)-f(\tilde{\xi})|}{\|\xi-\tilde{\xi}\|}
$$

Properties:

- $\frac{2}{3}(\rho(P, Q))^{2} \leq \beta(P, Q) \leq 2 \rho(P, Q), \forall P, Q \in \mathcal{P}\left(\mathbb{R}^{d}\right)$.
- $P_{n} \rightarrow^{w} P$ and \mathcal{F} uniformly bounded and equicontinuous implies

$$
\lim _{n \rightarrow \infty} \sup _{f \in \mathcal{F}}\left|\int_{\mathbb{R}^{d}} f(\xi) P_{n}(d \xi)-\int_{\mathbb{R}^{d}} f(\xi) P(d \xi)\right|=0
$$

- $P_{n} \rightarrow{ }^{w} P$ implies $\lim \sup _{n \rightarrow \infty} P_{n}(A) \leq P(A)$ if $A \subseteq \mathbb{R}^{d}$ is closed. $P_{n} \rightarrow^{w} P$ implies $\lim _{n \rightarrow \infty} P_{n}(A)=P(A)$ if A is closed and $P(\partial A)=0$.

Problems: Continuity properties of the mappings

- $P \mapsto \int_{\mathbb{R}^{d}} f(\xi) P(d \xi)$ if f is locally Lipschitz continuous on \mathbb{R}^{d}.
- $P \mapsto \int_{\mathbb{R}^{d}} \mathbb{1}_{A}(\xi) P(d \xi)=P(A)$ if A belongs to a subclass of all convex subsets of \mathbb{R}^{d}.

We consider the stochastic program

$$
\min \left\{\int_{\Xi} f_{0}(x, \xi) P(d \xi): x \in X\right\}
$$

With $v(P)$ and $S(P)$ denoting its optimal value and solution set it holds

$$
\begin{aligned}
|v(P)-v(Q)| & \leq \sup _{x \in X}\left|\int_{\Xi} f_{0}(x, \xi) P(d \xi)-\int_{\Xi} f_{0}(x, \xi) Q(d \xi)\right| \\
\emptyset \neq S(Q) & \subseteq S(P)+\Psi_{P}^{-1}\left(\sup _{x \in X}\left|\int_{\Xi} f_{0}(x, \xi) P(d \xi)-\int_{\Xi} f_{0}(x, \xi) Q(d \xi)\right|\right)
\end{aligned}
$$

where X is assumed to be compact, Q is a probability distribution approximating P and Ψ_{P} is the growth function of the objective near the solution set, i.e.,

$$
\Psi_{P}(t):=\inf \left\{\int_{\Xi} f_{0}(x, \xi) P(d \xi)-v(P): x \in X, d(x, S(P)) \geq t\right\}
$$

Hence, the distance $d_{\mathcal{F}}$ with $\mathcal{F}:=\left\{f_{0}(x, \cdot): x \in X\right\}$ becomes important

$$
d_{\mathcal{F}}(P, Q):=\sup _{f \in \mathcal{F}}\left|\int_{\Xi} f(\xi) P(d \xi)-\int_{\Xi} f(\xi) Q(d \xi)\right| .
$$

Two-stage stochastic programs:

$$
\min \left\{\langle c, x\rangle+\int_{\Xi} \Phi(q(\xi), h(\xi)-T(\xi) x) P(d \xi): x \in X\right\}
$$

where $c \in \mathbb{R}^{m}, \Xi$ and X are polyhedral subsets of \mathbb{R}^{d} and \mathbb{R}^{m}, respectively, P is a probability measure on Ξ and the $s \times m$-matrix $T(\cdot)$, the vectors $q(\cdot) \in \mathbb{R}^{m}$ and $h(\cdot) \in \mathbb{R}^{s}$ are affine functions of ξ.
The function Φ denotes the parametric infimum function of the linear secondstage program

$$
\Phi(u, t)=\inf \{\langle u, y\rangle: W y=t, y \in Y\},
$$

which is finite and continuous on $\mathcal{D} \times W(Y)$, where \mathcal{D} is the dual feasibility set

$$
\mathcal{D}=\left\{u \in \mathbb{R}^{\bar{m}}:\left\{z \in \mathbb{R}^{s}: W^{\top} z-u \in Y^{\star}\right\} \neq \emptyset\right\}
$$

where W is the $s \times \bar{m}$ recourse matrix, W^{\top} the transposed of W and Y^{\star} the polar cone to the polyhedral cone Y in \mathbb{R}^{m}.
The function Φ is concave-convex polyhedral, hence, locally Lipschitz continuous with linearly growing local Lipschitz moduli on $\mathcal{D} \times W(Y)$ and it holds

$$
d_{\mathcal{F}}(P, Q) \leq C\left(1+\int_{\mathbb{R}^{d}}\|\xi\|^{2 p}(P+Q)(d \xi)\right) \beta(P, Q)^{1-\frac{1}{p}} \quad(p>1)
$$

Faculty of Mathematics and Physics Charles University

International Conference on Stochastic Programming

Abstracts
Instructions for the authors

Prague, September 15 - 19, 1986

新教

ESTIMATES FOR OPTIMAL SOLUTIONS OF APPROXIMATIONS IN STOCHASTIC LINEAR PROGRAMMING WITH RECOURSE
Rüdiger Schultz, Humboldt-Universitat, Sektion Mathematik, DDR-1086 Berlin. PSF 1297

Starting from known quantitative stability results conm cerning optimal values of stochastic programming problems we derive convergence rates for optimal solution points of approximations (e.g. via conditional expectations) in stochastic linear programming with recourse. Special attention is paid to the case of simple recourse.

Distribution sensitivity in stochastic programming

Werner Römisch and Rüdiger Schultz

Sektion Mathemarik, Hamboldt-Universität Berlin, O-I086 Bertin, German
Received 31 December 1987
Revised manuscript received 20 Jume l989

In this paper, stochastic programming problems are viewed as paranetric programs with respect 10 the probabifity distributions of the random coefficients. General results on quantative stability in parameatic optimization are used to study distribution sensitivity of shochastic programs. For recourse and chance constrained models quantitative continuity results for optimal values and optimal solution sets are proved (with respeet to suitable metrics on the space of probability distributions). The results ate useful to study the effect of approximations and of incomplete information in stochastic programming.

AMS 1980 Subjeer Classiffeations: 90C15, 90C31.
Key words: Stochastic programming, quantitative stability, recourse problem, chance constrained prob lem, probability metric.

1. Introduction

In the present paper we study the behaviour of stochastic programming problems with respect to (small) perturbations of the underlying probability distributions Emphasis is placed on quantitative stability results for optimal values and sets of optimal solutions to stochastic programs. To explain our aim, let us consider the following rather general stochastic programming model

$$
\begin{equation*}
\min \left\{\int_{Z} f(z, x) \mu(\mathrm{d} z): x \in \mathbb{R}^{m}, \mu(\{z \in Z: x \in X(z)\}) \geqslant p_{0}\right\} \tag{1.1}
\end{equation*}
$$

where $Z \subset \mathbb{R}^{x}$ is a Borel set, f is a function from $Z \times \mathbb{R}^{\prime \prime \prime}$ to \mathbb{R}, X is a set-valued mapping from Z into $\mathbb{R}^{m \prime}, p_{0} \in[0,1]$ is a prescribed probability level and μ is a probability distribution on Z. Note that stochastic programs with (linear and quadratic) recourse (cf. (3.3) and (3.4)) and programs with probabilistic (or chance) constraints (cf. (5.1)) fit into (1.1).

Motivated by a number of applications, it seems particularly desirable to establish the stability of stochastic programs with respect to perturbations of the underlying distribution μ in the sense of the topology of weak convergence on $\mathscr{P}(Z)$ - the

This researel was presemed in parts at the 4th International Conference on Stochastic Programmin held in Prague in September 1986.

WORKING PAPER

DISTRIBUTION SENSITIVITY FOR A CHANCE CONSTRAINED MODEL OF OPTIMAL LOAD DISPATCH

Werner Römisch
Rüdiger Schultz

November 1989
WP-89-090

棫IISA
International Institute
for Applied Systems Analysis

Distribution Sensitivity for Certain Classes of Chance-Constrained Models with Application to Power Dispatch ${ }^{1,2}$

W. Romisch ${ }^{3}$ and R. Schultz ${ }^{4}$

Communicated by A. V. Fiacco

Abstract

Using results from parametric optimization, we derive for chance-constrained stochastic programs quantitative stability properties for locally optimal values and sets of local minimizers when the underlying probability distribution is subjected to perturbations in a metric space of probability measures. Emphasis is placed on verifiable sufficient conditions for the constraint-set mapping to fulfill a Lipschitz property which is essential for the stability results. Both convex and nonconvex problems are investigated. For a chance-constrained model of power dispatch, where the power demand enters as a random vector with incompletely known probability distribution, we discuss consequences of our general results for the stability of optimal generation costs and optimal generation policies.

Key Words. Parametric optimization, chance-constrained stochastic programming, sensitivity analysis, optimal power dispatch.

1. Introduction

To ensure a certain level of reliability for the solutions to optimization problems containing random data, it has become an accepted approach to

[^0]
FIFTH INTERNATIONAL

STOCHASTIC PROGRAMMING

FINAL PROGRAM

Ann Arbor, Michigan, USA
August 13-18, 1989
Sponsors:
The National Science Foundation
IBM Corporation
AT\&T
Operations Research Society of America
The Institute of Management Sciences
Department of Industrial and Operations Engineering and
College of Engineering, The University of Michigan
The Committee for Stochastic Programming. Mathematical Programming Society
R.T. Rockafellar

University of Washington
Most of the computational efforts so far in stochastic programming have revolved around two-stage models, but roblems with more tharely be of increasing interest. Major challenges are to set up the problem structure so as to be menable to computation, and to understand the connecions with the models offered in dynamic programming and tochastic control. This talk will report on joint work in thes directions with Roger Wets

For problems akin to multistage linear or convex pro ramming, duality can be developed in the form of saddle point representations of optimal solutions. Such a representation opens up new numerical approaches for which experiments are now going on. goes backward in time. The most interesting feature is that in order to bridge between stochas tic programming, as conceived until now, and other forms of dynamic stochastic optimization, one needs to introduce bot primal and dual information structures.

The primal information structure expresses limitation on how decisions can be made in the primal problem, while the dual information structure expresses the way prices can costs can be charged and therefore on costs added at time evolve. The underlying idea is thation than is available for making the decision that is necessary in the primal problem at time t, or it may necessarily be based on less. The latte case corresponds to a primal constraint structure involvin conditions on the expected values of certain quantities.

Stability Analysis for Stochastic Programs
W. Römisch and R. Schultz

Humboldt-Universität Berlin
This paper continues our (quantitative) stability analysis r stochastic programs both with (linear) complete recourse and with probabilistic constraints. We study the effect of perturbations of the underlying probability distribution on the optimal value and optimal solution set.

For linear stochastic programs with complete recourse nd random right-hand sides we show that, distribution able assumptions on the data and the original distributan he Hausdorff distance of the solution sets behaves (locally Holder continuous at μ (with exponent $1 / 2$) with respect Examples show that this result becomes wrong when the constraint set is no longer polyhedral and that the exponent $1 / 2$ is optimal. A key part in our approach is to derive condi is optimal. A key parmplete recourse functionals are $\mathrm{C}(1,1)$ and strongly convex. The conditions for strong convexity consist of an interplay between algebraic assumptions on the complete recourse matrix and analytical assumptions sunc density of μ. These conditions are verified for recourse cours tionals with separability structure and
functionals which are non- separable.
functionals which are non- separable several joint probabilistic
For stochastic programs with For stoche we identify a suitable probability metric alph (a so-called discrepancy) on the space of all (Borel) proba
bility measures for which (quantitative) stabinty resuls can be proved. The central result asserts upper semicontinuity of (local) minimizing sets at the (unperturbed) distribution and Lipschitz property of (locally) optimal values an establishrespect to the metric alpha. Emphasis stability. Especially, we g verifiable sufficient conditions for stabiity. Especiall, consider first the case, where μ satisfies a convexity property, ic constraint. Finally we point out that the results apply to number of practical models known from the literature

Parallel Decomposition of Linear Stochastic Control Prob lems

Andrzej Ruszczyński

ydzial Elektroniki, Institut Automatyki, Warsaw, Poland We consider a finite horizon linear stochastic control problem with discrete time, described by the equations

$$
x_{t}=A_{t} x_{t-1}+B_{t} u_{t}+d_{t}, t=1, \ldots, T
$$

where x_{t} denotes the state vector, u_{t} is the control vector and $s_{t}=\left(A_{t}, B_{t}, d_{t}\right), t=1, \ldots, T$, is a sequence of dis cretely distributed random variables. We assume that at eac time instant t we observe s_{t}. The problem is to determin constraints
$\left(u_{t}, x_{t}\right) \in X_{t}, t=1, \ldots, T$,
where X_{t} is a convex polyhedron, and to minimize the functional

$$
E\left\{\sum_{t=1}^{T} c_{t} x_{t}+q_{t} u_{t}\right\} .
$$

To this end we define a tree of subproblems, corresponding to the tree of realizations of the process s_{t}. In each subproblem we minimize in u_{t} a local cost function composed of the coresponding parts of the objective and of an estimate oblems cost-to-go function at the current stage. The subprobed by their predecessors and trial points used as previous states by heir successors.
We show that the subproblems can operate in a parallel and asynchronous mode and that the whole method is finitely convergent under the assumption that the problem is bounde We discuss the use of regularization in the subproblems and its impact on behavior of the method. Finally we show on simple example that ourithm based on nested decomposition.

Convergence of Infima, Especially Stochastic Infime
Gabriella Salinetti and Roger J-B Wets
Universite "La Sapienza" di Roma/University of California Davis

We analyze the convergence of optimal values and solutions a sequence of a sequence of optimization problems

STABILITY ANALYSIS FOR STOCHASTIC PROGRAMS

Werner RÖMISCH and Rüdiger SCHULTZ

Humboldt-Universität Berlin, Sektion Mathematik, P.O. Box 1297, D-1086 Berlin, Germany

For stochastic programs with recourse and with (several joint) probabilistic constraints espectively, we derive quantitative continuity properties of the relevant expectation functionals and constraint set mappings. This leads to qualitative and quantitative stability results for optimal values and optimal solutions with respect to perturbations of the underlying probability distributions. Earlier stability results for stochastic programs with recourse and for those with probabilistic constraints are refined and extended, respeetively. Emphasis is placed on equipping sets of probability measures with metrics that one can handle in specific situations. To illustrate the general stability results we presen possible consequences when estimating the original probability measure via empirical ones.

Keywords: Stochastic programs with recourse, stochastic programs with probabilistic constraints, distribution sensitivity, probability metrics.

1. Introduction

When formulating a stochastic programming model, one tacitly assumes the underlying probability distribution to be given. In practical situations, however, this is rarely the case; moreover, one often has to live with incomplete information and approximations. Furthermore, also under full information about the underlying distributions one is led to approximations, since exact computation of expectations and probabilities typically arising in stochastic programming is beyond the present numerical capabilities for a large class of distributions (e.g. multivariate continuous ones). These circumstances motivate a stability analysis for optimal values and optimal solutions to stochastic programs with respect to perturbations of the underlying probability distributions (cf. [10,17,31,33,43]). In the present paper, we pursue this for two basic problem classes in stochastic programming - for stochastic programs with recourse and for stochastic programs with probabilistic (or chance) constraints. We lay stress on structural properties of expectation functionals and of certain multifunctions defined by probabilities, on implications of these properties with respect to stability, on a proper selection of metrics in spaces of probability measures to guarantee the structural properties, on the one hand, and to be able to compute (or to estimate) distances of probability measures in specific situations, on the other hand.
(0) J.C. Baltzer A.G. Scientific Publishing Company

ABSTRACTS

GAMM/IFIP-WORKSHOP

Stochastic Programming:

Stability, Numerical Methods and
Applications

Gosen near Berlin
Germany
March 23-27, 1992

The Workshop is sponsored
by the Volkswagen-Stiftung,
by the Gesellschaft fur Angewandte
Mathematik und Mechanik (GAMM),
by the IFIP-Working Group 7.7
on Stochastic Optimization,
by the Committee of Stochastic
Programming (COSP) of the
Mathematical Programming Sociery
and by the Humboldt-Universitat Berlin

Strong Convexity and a Regularization Scheme for Two-Stage Stochastic Programs

Rüdiger Schultz
Humboldt-Universität Berlin Fachbereich Mathematik

Abstract:

We investigate the structure of two-stage stochastic programs with linear complete recourse, random right-hand sides and random technology matrix. Emphasis is placed on sufficient conditions to end up with strong convexity of the expected-recourse functional. The latter leads to a good conditioning of the model (the solution set is non-empty and a singleton) and has consequences for the stability behaviour of the optimal solutions when perturbing the underlying probability distribution. The sufficient conditions for strong convexity are developed from structural results for two-stage models with random right-hand side and fixed technology matrix. As a by-product of our analysis we obtain a scheme to regularize (by artificial randomization) stochastic programs with fixed technology matrix.

JOURNAL OF
 COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 56 (1994) 3-22

Strong convexity in stochastic programs with complete recourse*
Rüdiger Schultz
Komad-Zuse-Zentrum fur Informationstectnik Berin, Heilbromerstrasse 10, D-10711, Berlm, Germany
Received 4 November 1992, revised 19 February 1993

ABSTRACTS

SIXTH INTERNATIONAL CONFERENCE
on

STOCHASTIC PROGRAMMING

Italy

TENTATIVE PROGRAM

(AS OF AUGUST 26th)

8:30	Registration (CISM)
	Tutorials (Room D)
9:30-11:00.	PKALL (University of Zürich): A general overview of stochastic programming,
11:30-13:00.	A.PREKOPA (RUTGERS, New Brunswick): Probabilistic constrained programming,
15:00-16:30.	J.BIRGE (University of Michigan, Ann Arbor): Multistage stochastic programming,
17:00-18:30.	A.KING (IBM. Yorktown Heights): Statistical approaches to stochastic progranming,
TUESDAY (SEPTEMBER 154, 1992):	
3:30	Registration (CISM)
10:00-11:15.	Opening session (Room K) G.ANDREATTA, G.SALINETTI and P.SERAFINI: Welcoming Remarks, R.WETS: Opening Lecture.
11:45-12:30.	Tutorial (K) Chair: K. FRAUENDORFER A.A.GAIVORONSKI (Itatel, Milano): Software for stochastic optimization problems.
14:30-16:00.	Algorithms 1 (D) Chair: Y.ERMOLIEV S.M.ROBINSON, B.J.CHUN, B.R.FU, R.SURI (University of Wisconsin. Madison): Bundle-based Methods for Stochastic Optimization, G.INFANGER (Stanford University): Solving Large-Scale Multi-Stage Stochastic Linear Programs, S.D.FLAM (University of Bergen) and R.SCHULTZ (Humboldt University, Berlin): A New Approach to Stochastic Linear Programming.
	Engineering Applications (U) Chair: A.GAIVORONSKI T.CHAKRABARTI (University College of Science, Calcuta): Stochastic Transportation Problem. C.KAO (National Cheng Kung University, Taiwan): Determination of Optimal Shipping Policy under Stochastic Shipping Time, E.MESSINA (State University of Milan), A.A.GAIVORONSKI (Italtel, Milano) and A.SCIOMACHEN (State University of Milan): A Stochastic Optimization Approach for Robot Scheduling.
16:30-18:00.	Approximations 1 (D) Chair: S. SEN JBIRGE and D.HOLMES (University of Michigan, Ann Arbor): The Value of the Approximate Solution in Stochastic Programming, S.E.WRIGHT (IBM, Yorktown Heights): Primal-Dual Aggregation and Disaggregation for Stochastic Linear Programs. R.LEPP (Estonian Academy of Sciences, Tallinn): Approximate solution of Stochastic Programs - The discretization Approach.
	Integer Stochastic Programming . 1 (U) Chair: S.W.WALLACE S.SHIODE (Osaka University) and H.ISHI (Okayama University): Stochastic Bottleneck Spanning Tree problems. R.N.SEN (University of Calcutta): On some Multicommodity Network Flows with Probabilistic Conversions, R.SCHULTZ (Humboldt University, Berlin): Structure and Stability in Stochastic Programs with complete Integer Recourse.
18:00	Reception (CISM)
18:30-19:00.	Cosp Meeting.

CONTINUITY AND STABILITY IN TWO-STAGE STOCHASTIC INTEGER PROGRAMMING

Rüdiger Schultz
Humboldt-Universität zu Berlin
Fachbereich Mathematik
PSF 1297, D-1086 Berlin

ABSTRACT: For two-stage stochastic programs where the optimization problem in the second stage is a mixed-integer linear program continuity of the expectation of second-stage costs jointly in the first-stage strategy and the integrating probability measure is derived. Then, regarding the two-stage stochastic program as a parametric program with the underlying probability measure as parameter, continuity of the locally optimal value and upper semicontinuity of the corresponding set of local solutions are established.

1 Introduction

In this paper, we will analyse parameter dependent two-stage stochastic optimization problems of the type
$P(\mu) \quad \min \{f(x)+Q(x, \mu): x \in C\}$,
where

$$
\begin{equation*}
Q(x, \mu)=\int_{\mathbf{R}^{s}} \Phi(z-A x) \mu(d z) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(b)=\min \left\{q^{T} y+q^{\prime T} y^{\prime}: W y+W^{\prime} y^{\prime}=b, y^{\prime} \geq 0, y \geq 0, y \in \mathbf{Z}^{s}\right\} \tag{1.2}
\end{equation*}
$$

Here we assume that f is a continuous real-valued function on $\mathbf{R}^{m}, C \subset \mathbf{R}^{m}$ non-empty, closed, $z \in \mathbf{R}^{s}, A \in L\left(\mathbf{R}^{m}, \mathbf{R}^{s}\right), q \in \mathbf{R}^{s}, q^{\prime} \in \mathbf{R}^{s^{\prime}}, W \in L\left(\mathbf{R}^{b}, \mathbf{R}^{s}\right)$, $W^{\prime} \in L\left(\mathbf{R}^{s^{\prime}}, \mathbf{R}^{s}\right), b \in \mathbf{R}^{s}$. By \mathbf{Z}^{3} we denote the subset of vectors in $\mathbf{R}^{\boldsymbol{b}}$ having only integral components. Throughout, we assume that W and W^{\prime} are rational

1. Allgemeine Angaben

Neuantrag auf Gewährung einer Sachbeihilfe
1.1 Antragsteller

Römisch, Werner, Dr. sc. nat Hochschul-Dozent 28.12.47, deutsch

Schuitz, Rüdiger, Dr. rer. nat. Wissenschaft/icher Assistent 28.04.59, deutsch

Dienstadresse: Humboldt-Universität Berlin Fachbereich Mathematik
PF 1297
0-1086 Berlin

Tel.: 20932360
Privatadresse:
Lea-Grundig-Straße 20
O-1142 Berlin
Delbrückstraße 22
0-1136 Berlin
Tel.: 5252443
1.2 Thema

Approximation und Stabilität stochastischer Optimierungsprobieme
1.3 Kennwort

Stochastische Optimierung
1.4 Fachgebiet und Arbeitsrichtung

Angewandte Mathematik; stochastische Optimierung, parametrische und nichtglatte Optimierung, stochastische dynamische optimierung und Steverung, numerische Analysis.
1.5 Voraussichtliche Gesamtdauer

5 Jahre
1.6 Antragszeitraum

2 Jahre
1.7 Gewünschter Beginn der Förderung

1. 9. 1992

MATHEMATICAL PROGRAMMING

Mathematical Programming 70 (1995) 73-89

On structure and stability in stochastic programs with random technology matrix and complete integer recourse ${ }^{1}$

Rüdiger Schultz*, ${ }^{*}$
Konrad-Zuse-Zentum für Informationstechnik Berlin, Heilbromer Strasse 10, D-10711 Berlin, Germany Received February 1993; revised manuscript received 22 June 1994

January 22-23, 1994
Berlin

Scientific Program and
 Abstracts.

Organizers: W. Römisch and R. Schultz

Titles of talks

Artstein, Z.:	Limit laws for variable decisions in stochastic programming
Dempster, M. A. H.:	Hierarchical models for telecommunications network planning
Dupaćová, J.:	Analysis of the mean value solution and the worst case analysis under relaxed convexity assumptions
Flåm, S.:	Learning to play Nash equilibrium
Frauendorfer, K.:	Computational issues for analyzing barycentric scenario trees
Henrion. R.	Topological characterization of the approximate subdifferential in the finitedimensional case
Higle, J.	Inexact subgradient methods with applications in stochastic programming
Kañkova, V .	A note on sensitivity analysis for stochastic programming problems
Lepp, R.	Discrete approximation of SLP problems with recourse - the case of unbounded domains
Marti, K.	Differentiation of probability functions
Norkin, V. I.:	The comparison of stochastic integer programming methods on a recourse allocation stochastic problem
Pflug, G.:	Minimum distance tests for convex hypotheses
Rockafellar, R. T.:	Cost-to-go in multistage stochastic programming
Römisch, W.:	Differentiability of solution sets in two-stage stochastic programming
Ruszczynski, A.:	Strategic pricing in markets with a conformity effect
Schultz, R.:	Algebraic prerequisites for stochastic integer programming
Sen, S.:	Epigraphical nesting and convergence of a stochastic decomposition algorithm for multi-stage stochastic programs
Stougie, L.:	On the convex hull of the simple integer recourse objective function
van der Vlerk, M. H.:	Solving stochastic integer programs with complete recourse
Vogel, S.:	Continuous convergence and epi-convergence of random functions - sufficient conditions

Mixed-integer two-stage stochastic programs:

$$
\min \left\{\langle c, x\rangle+\int_{\mathbb{R}^{d}} \Phi(q(\xi), h(\xi)-T(\xi) x) P(d \xi): x \in X\right\}
$$

where Φ denotes the parametric infimal function of the second-stage program

$$
\Phi(u, t):=\inf \left\{\left\langle u_{1}, y_{1}\right\rangle+\left\langle u_{2}, y_{2}\right\rangle: W_{1} y_{1}+W_{2} y_{2} \leq t, y_{1} \in \mathbb{R}^{m_{1}}, y_{2} \in \mathbb{Z}^{m_{2}}\right\}
$$

for all $(u, t) \in \mathbb{R}^{m_{1}+m_{2}} \times \mathbb{R}^{s}$, and $c \in \mathbb{R}^{m}$, a closed subset X of $\mathbb{R}^{m},\left(s, m_{1}\right)$ and $\left(s, m_{2}\right)$ matrices W_{1} and W_{2}, affine functions $T(\xi) \in \mathbb{R}^{s \times m}, q(\xi) \in \mathbb{R}^{m_{1}+m_{2}}, h(\xi) \in \mathbb{R}^{s}$, and a probability measure P on \mathbb{R}^{d}. We introduce

$$
\begin{aligned}
\mathcal{T} & =\left\{t \in \mathbb{R}^{r}: \exists\left(y_{1}, y_{2}\right) \in \mathbb{R}^{m_{1}} \times \mathbb{Z}^{m_{2}} \text { such that } W_{1} y_{1}+W_{2} y_{2} \leq t\right\} \\
\mathcal{U} & =\left\{u=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{m_{1}+m_{2}}: \exists v \in \mathbb{R}_{-}^{r} \text { such that } W_{1}^{\top} v=u_{1}, W_{2}^{\top} v=u_{2}\right\}
\end{aligned}
$$

the primal and dual feasible right-side sets and assume:
(B1) The matrices W_{1} and W_{2} have only rational elements.
(B2) The cardinality of the set

$$
\bigcup_{t \in \mathcal{T}}\left\{y_{2} \in \mathbb{Z}^{m_{2}}: \exists y_{1} \in \mathbb{R}^{m_{1}} \text { such that } W_{1} y_{1}+W_{2} y_{2} \leq t\right\}
$$

is finite, i.e., the number of integer decisions is finite.

Proposition:

Assume (B1) and (B2). The function Φ is finite and lower semicontinuous on $\mathcal{U} \times \mathcal{T}$ and there exists a finite decomposition of $\mathcal{U} \times \mathcal{T}$ consisting of Borel sets $U_{\nu} \times B_{\nu}, \nu \in \mathcal{N}$, such that their closure is convex polyhedral and Φ is bilinear in (u, t) on each $U_{\nu} \times B_{\nu}$. Φ may have kinks and discontinuities at the boundaries of $U_{\nu} \times B_{\nu}$.

Example: (Schultz-Stougie-van der Vlerk 98)

$$
\begin{aligned}
& m=d=s=2, m_{1}=0, m_{2}=4, c=(0,0), X=[0,5]^{2} \\
& h(\xi)=\xi, q(\xi) \equiv q=(-16,-19,-23,-28), y_{i} \in\{0,1\}, i=1,2,3,4 \\
& P \sim \mathcal{U}(5,10,15\} \text { (discrete) }
\end{aligned}
$$

Second stage problem: MILP with 1764 binary variables and 882 constraints.

$$
T=\left(\begin{array}{cc}
\frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right) \quad W=\left(\begin{array}{cccc}
2 & 3 & 4 & 5 \\
6 & 1 & 3 & 2
\end{array}\right)
$$

RATES OF CONVERGENCE IN STOCHASTIC PROGRAMS WITH COMPLETE INTEGER RECOURSE

RÜDIGER SCHULTZ ${ }^{\dagger}$

Abstract. The stability of stochastic programs with mixed-integer recourse and random righthand sides under perturbations of the integrating probability measure is considered from a quantitative viewpoint. Objective-function values of perturbed stochastic programs are related to each other Borel sets in a Euclidean space. This leads to Holder continuity of local optimal values. In the context of estimation via empirical measures the general results imply qualitative and quantitative statements on the asymptotic convergence of local optimal values and optimal solutions.

Key words. stochastic integer programming, parametric integer programming, Holder continuity, stability, variational distance of probability measures, Vapnik-Cervonenkis class, law of the iterated logarithm

AMS subject classifications. $90 \mathrm{C} 15,90 \mathrm{C} 11,90 \mathrm{C} 31$

1. Introduction. Consider the following two-stage stochastic integer program

$$
\begin{equation*}
\min \{f(x)+Q(x, \mu): x \in C\} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(x, \mu)=\int_{\mathrm{m} s} \Phi(z-A x) \mu(\mathrm{d} z) \tag{2}
\end{equation*}
$$

and
(3) $\Phi(b)=\min \left\{q^{T} y+q^{\prime T} y^{\prime} ; W y+W^{\prime} y^{\prime}=b, y^{\prime} \geq 0, y \geq 0, y^{\prime} \in \mathbb{R}^{s^{\prime}}, y \in \mathbb{Z}^{\bar{s}}\right\}$

Generally, we assume that $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is continuous; $C \subset \mathbb{R}^{m}$ nonempty, closed; $q \in \mathbb{R}^{s} ; q^{\prime} \in \mathbb{R}^{s} ;$ that $W \in L\left(\mathbb{R}^{s}, \mathbb{R}^{s}\right), W^{\prime} \in L\left(\mathbb{R}^{s^{s}}, \mathbb{R}^{s}\right)$ are matrices with rational entries; and that μ belongs to $\mathcal{P}\left(\mathbb{R}^{s}\right)$, the set of all Borel probability measures on \mathbb{R}^{s}. Throughout, \mathbb{Z} denotes the set of integers.

The model (1) arises from a minimization problem with uncertain constraint parameters whose realizations are not known when having to fix the (first-stage) decision variable x. Infeasibilities b occurring after the realization of the uncertain parameters can be compensated at cost $\Phi(b)$ by the second-stage optimization procedure (3). Altogether, (1) aims at finding a first-stage decision x such that the sum of the firststage costs $f(x)$ and the expected compensation (or recourse) costs $Q(x, \mu)$ become minimal. Of course, for the latter to be weil defined one needs (at least) a probability distribution of the uncertain parameters.

The above model essentially differs from traditional two-stage stochastic programs (cf. [12], [40]) by the integrality constraints in the second stage. Whereas integrality in the first stage can be dealt with by fairly conventional means [41], its presence in the second stage is much more cumbersome since the integrand Φ in (2) is discontinuous. However, there are several examples in the literature showing that integrality of

[^1]
Abschlußbericht

$1992-1994$

DFG-Projekt "Stochastische Optimierung"
(Kennzeichen Ro 1006/1-1)

7th INTERNATIONAL CONFERENCE ON
 STOCHASTIC PROGRAMMING

June 26-29, 1995
Nahariya, ISRAEL

PROGRAMME
16:00-17:30 Session E1 - Algorithmic Analysis
(Carmel)
Chair: T. Szántai (Technical University of Budapest, Hungary)

16:00-16:30	O. Fiedler (Freie Universität Berlin, Germany)
	ON A DUAL METHOD FOR A SPECIALLY STRUCTURED LINEAR PROGRAMMING PROBLEM
16:30-17:00	D. Dentcheva (Humboldt-Universität Berlin, Germany)
	DIFFERENTIAL STABILITY OF TWO-STAGE STOCHASTIC PROG
17:00-17:30	T. Szántai (Technical University of Budapest, Hungary)
	BOOLE-BONFERRONI TYPE BOUNDS FOR SYSTEM-FAILURE
Session E2-Algorithmic Analysis	
Chair: Hercules Vladimirou (University of Cyprus)	
16:00-16:30	A.I. Kibzun (Moscow Aviation Institute, Russia)
	CONTINUITY, CONVEXITY, AND DIFFERENTIABILITY OF THE QUANTILE FUNCTION
16:30-17:00	R. Schultz (Konrad-Zuse-Zentrum Berlin, Germany)
	STRONG CONVEXITY IN TWO-STAGE LINEAR STOCHASTIC
	PROGRAMS WITH PARTIALLY RANDOM RIGHT-HAND SIDE
17:00-17:30	H. Vladimirou (University of Cyprus, Cyprus)
	INVESTIGATING RECOURSE ROBUSTNESS IN STOCHASTIC

Seston

16:00-16:30 A.I. Kibzun (Moscow Aviation Institute, Russia)
CONTINUITY, CONVEXITY, AND DIFFERENTIABILITY OF THE
QUANTILE FUNCTION
16:30-17:00 R. Schultz (Konrad-Zuse-Zentrum Berlin, Germany)
STRONG CONVEXITY IN TWO-STAGE LINEAR STOCHASTIC
PROGRAMS WITH PARTIALLY RANDOM RIGHT-HAND SIDE
17:30-18:30 Meeting of the Committee on Stochastic Programming

Happy birthday, Rüdiger !

[^0]: 'The authors thank P. Kleinmann (formerty with the Humboldt-Universität, Berlin, Gemany) for his active cooperation in designing the power dispatch model and J. Mayer (MTA SZTAKI, Budapest, Hungary) for his insight into energy optimization. Further thanks are due to the referees for their constructive criticism.
 ${ }^{2}$ This research was developed in the course of a contract sudy between the International Institute for Applied Systems Analysis, Laxenlurg, Austria and the Humboldt-Universität Berlin, Germany.
 ${ }^{3}$ Associate Professor, Humboldt-Universität, Sektion Mathematik, Berlin, Germany
 ${ }^{4}$ Research Assistant, Humboldt-Universität, Scktion Mathematik, Berlin, Germany,

[^1]: * Received by the editors July 25, 1994; accepted for publication (in xevised form) June 9, 1995. This research was supported by the Schwerpunktprogramm "Anwendungsbezogene Optimierung und Steuerung" of the Deutsche Forschungsgemeinschaft. Parts of the paper were written while the auther Steuerung of the Deutsche Forschungsgemeinschat. Parts of the paper were written whin
 was an assistant at the Department of Mathematics at Humboldt University, Berlin.
 was an assistant at the Department of Mathematics at Humboldt University, Berlin.
 \dagger Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustrasse 7, D-141.95 Berlin, Germany (schultz $@ z i b . d e$)

