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Introduction

- Numerical integration belongs to the standard problems of numerical analysis.

- It is often needed as subproblem algorithm for solving more involved problems
(e.g. PDEs).

- A number of problems in physics (e.g. quantum physics) require the com-
putation of high-dimensional integrals.

- Any expectation in stochastic models means computing integrals.

- Computing the risk of decisions, e.g., the numerical evaluation of risk mea-
sures, requires numerical integration (often in high dimensions).

- Many applied stochastic optimization models (with mean-risk objective and/or
risk constraints) in engineering, production, energy or finance contain a
medium- or long-term time horizon and are highly complex. Their solution
process requires repeatedly (very) high-dimensional numerical integration.



Introduction to numerical integration

Classical theory of numerical integration in dimension d = 1:
Quadrature rule

/O fE)de ~ Y wif(€),

where £ € [0, 1] are the quadrature points (knots) and w; € R, ¢ = 1,...,n,
the quadrature weights satisfying >\, w; = 1.
Quadrature error

enlf) = /O fE)de — 3 wif (€,

Examples:

(Left) rectangle rule with equally-spaced points &' = % and weights w; = %
i=1,...,n, with error ¢,(f) < % if feCl;

the trapezoidal rule with e, (f) = O(#) if feC?

the Simpson rule with e,(f) = O(=) if f € C*%;

the Gaussian quadrature rules with quadrature points being roots of certain poly-
nomials are exact for all polynomials of degree 2n — 1.



Theorem: [t holds

lim e,(f) =0 forall f e C([0,1]) iff supz lw;| < 0.

n—00
neN il

The result carries over to [0,1]%, d > 1, and to more general domains.
How to extend the ideas to higher dimension d > 1 7

An obvious way is the product rule in [0, 1]%
Take d one-dimensional quadrature rules with weights u;; € R and points

¢ e0,1], j=1,...,d and consider

mg d

1 1 mi
/0 /o f(fl,---,fd)dfr“dfd%y:my:Huz'jf(f“a---,fid)

i1=1  ig=1j=1

Total number of quadrature points is n = H?:1 m;. Form;=m, j=1,...,d,
the total number is n = m< hence, it grows exponentially.

1
For example, the product rectangular rule has order O(m 1) = O(n"4).

(" curse of dimensionality”)



Alternative approaches:

(1) Use independent identically distributed random samples ¢, i € N, with com-
mon uniform probability distribution on [0, 1] (defined on some probability
space) — Monte Carlo method.

(2) Determine a deterministic sequence &' € [0,1], i € N, such that the se-

quence
n
1Y 6a, neN,
=1

of discrete (probability) measures converges to the uniform probability dis-
tribution on [0, 1], i.e., to the Lebesgue measure A% on [0, 1]¢ in a suitable
sense (e.g. uniform convergence of distribution functions) — Quasi-Monte
Carlo method.

(3) Remove a suitably large number of equally spaced product quadrature points
such that the convergence rate is close to that of one-dimensional quadrature
rules (except for some logarithmic terms) — sparse grid method.

Original mathematical background:
(1) - asymptotic statistics, (2) - number theory, (3) - complexity theory.



Transformation of integrals for general probability distributions P

For some function f : R — R we consider the integral
fz)P(dz).
Rd

First step: Transform a multivariate probability distribution P on R? to a dis-
tribution on R? with d independent one-dimensional marginal distributions by
using methods related to the class P of distributions with P € P.

Example: If P is normal with zero mean and nonsingular covariance matrix X. If A is any

matrix satisfying ¥ = A AT, then the distribution P o A has independent marginals.

Second step: Let £} : R — [0, 1] denote the marginal distribution functions

and pi, k=1,...,d, the marginal densities of a probability distribution PP with
independent marginals. Then by &, = Fy.(xy), d&x = pr(xp)dzy, k=1,...,d,
d
f(x)P(dz) = | f(o) || pelze)de = [ FOIFTHE), - Fy(&a))dér - - - déq
R R4 1 [0,1]¢



Monte Carlo sampling

Monte Carlo methods are based on drawing independent identically distributed
(iid) =-valued random samples £!(-), ..., £"(), ... (defined on some probability
space (2, A, IP)) from an underlying probability distribution P such that

Qua(w)(f) = 1 Z (€' (w
i.e., Qn.q(-) is a random functional, and it holds by the law of large numbers

lim Qpq(w)(f) = f(&)de = 1,(f) =E[f] P-almost surely

for every real continuous and bounded function f on =.
If P has a finite moment of order » > 1, the error estimate

r

D fEw) —Elf]

is valid.




Hence, the mean square convergence rate is

1Qua()(f) = La( )|z, < o(f)n2,

where o?(f) = E ((f — E(f))?) is the variance of f. Note that even equality
holds without any assumption on f except o(f) < oo.

Moreover, it holds

[Qn a\W —

S |=

Z La(f)

:1

S

Var[@nd( ) )]
i P(14() - Qua)(7)] < 2 2) = / oxp (= 2)at

n—oo

and an unbiased estimator for Var|[Q, s(w)(f)] is given by

L (3£ ~ nlQua ).

n(n —



Advantages:

(i) MC sampling works for (almost) all integrands and is unbiased.

(i) The machinery of probability theory is available.

(iii) The convergence rate O(n*%) does not depend on the dimension d.

Deficiencies: (Niederreiter 92)

(i) There exist 'only’ probabilistic error bounds.

(i) Possible regularity of the integrand does not improve the rate.
(iii) Generating (independent) random samples is difficult.
(

iv) MC methods are in practice (distressingly) slow.

Practically, iid samples are approximately obtained by so-called pseudo random
number generators as uniform samples in [0, 1]%.

Survey: P. L'Ecuyer: Uniform random number generation, AOR 53 (1994).

Classical linear congruential generators:
lts parameters are a large M € N (modulus), a multipliera € Nwith 1 < a < M
and gcd(a, M) =1, and c € Zy ={0,1,..., M — 1}.



Starting with yy € Z); a sequence is generated by
Yo = ayp_1+c mod M  (n€N)

and the linear congruential pseudo random numbers are

n Yn
=—¢c|0,1).

The period M — 1 is chosen as a large prime number, e.g., M = 2%.
Linear congruential pseudo random numbers fall mainly into planes (Marsaglia 68)!

Use only pseudo random number generators having passed a series of statistical
tests, e.g., uniformity test, serial correlation test, monkey tests etc.

CAT-test: There are 263 = 17576 possible 3-letter words. With a = 69069, ¢ = 0, M = 232 one gets CAT
after n=13561, then after 18263, and the third after 14872 calls. Other generators are even unable to produce
CAT after 10° calls (Marsaglia-Zaman 93).

Warning:

For linear congruential generators never use more than % or even % calls.

Excellent pseudo random number generator: Mersenne Twister.
It has the astronomical period 2'%93" — 1 and provides 623-dimensional equidis-
tribution up to 32-bit accuracy (Matsumoto-Nishimura 98).



Quasi-Monte Carlo methods

The basic idea of Quasi-Monte Carlo (QMC) methods is to replace random sam-
ples in Monte Carlo methods by deterministic points that are (in some way)
uniformly distributed in [0, 1]?. So, we consider the approximate computation of

Ii(f) = f(€)dg
[0,1)¢
by a QMC algorithm

Quilf) =12 £(€)

with (non-random) points &, i = 1,...,n, from [0, 1]%.

The uniform distribution property of point sets may be defined in terms of the
so-called star-discrepancy of &%, ..., &"

d n
Dyl .., €% = sup [disc(©)], disc(€) = [[& =1 Toe(&).
1=1 1=1

¢efo,1)4

(uniform distance of the uniform distribution function and the sample distribution function)



A sequence (£%);cy is called uniformly distributed in [0, 1]7 i

DX .. €M) =0 for n— o0

How fast can D (¢!, ... £") converge to zero as n — oco?

A classical result due to Roth 54 provides the lower bound

(logn)7
n

D;(€',...,€") > By

for some constant B, and all sequences (£°) in [0, 1]%.

Later it becomes clear that there exist sequences (£) in [0, 1]? such that
D€L, € = O(n (logn)* ).

Are there standard constructions for determining such sequences?



Classical convergence results:

Theorem: (Proinov 88)
If the real function f is continuous on [0, 1], then there exists C' > 0 such that

Qualf) = L(F)| < Cuwy(Di(E",..€97),

where w(8) = sup{|f(&) — f(E)] : [|E = &) < 6, &,€ €0,1]7} is the modulus
of continuity of f.

Theorem: (Koksma-Hlawka 61)
If f is of bounded variation Vi (f) in the sense of Hardy and Krause, it holds

1a(f) = Qua(f)] < Vi (f)Dy(E, ..., &)
for any n € N and any &', ...,€" € [0,1]%

Note that Viik(f) < oo is more restrictive than one might think at first moment.

d
For example, one needs the existence of the mixed derivative % € L.



First general QMC construction: Digital nets (Sobol 69, Niederreiter 87)
Elementary subintervals £ in base b:

d a; CLj—|-1
LLVpdi” pdj )7
7=1

where a;,d; € Z,,0 < a; <b%i,i=1,...,d.

E —

Let m,t € Z,, m > t. A set of b points in [0,1)? is a (¢, m, d)-net in base b if
every elementary subinterval E in base b with AX?(E) = b/~ contains b’ points.

lllustration of a (0,4, 2)-net with b = 2

| P —

Ole 1
A sequence (£%) in [0,1)? is a (¢, d)-sequence in base b if, for all integers k € Z,
and m > t, the set

(€ kb <i< (k+1)b"}

is a (t,m, d)-net in base b.



Theorem: (Niederreiter 92)
For fixed d > 4 and b € N, b > 2, there exists a constant A(b, d) such that the

star-discrepancy of a (t,m, d)-net {&!,...,£"} in base b with m > 0 satisfies
] d—1 bt ] d—2
DHEL &) < Alb, d)p 8™ +O( (log ) )
n n

Special cases: Sobol’, Faure, Niederreiter and Niederreiter-Xing sequences.
Second general QMC construction: Lattices (Korobov 59, Sloan-Joe 94)

(Rank-1) lattice rules: Let g € Z¢ and consider the lattice points

{fi: {%g} :izl,...,n},
where {z} is defined as componentwise fractional part of z € R, i.e.,

{z}=2—|z2] €[0,1).

The generator ¢ € Z% is chosen such that the (rank-1) lattice rule has good

convergence properties. Such lattice rules may achieve better convergence rates
O(n=%%), k € N, for integrands in C*.



v2

Fig. 5.3 Four different point sets with n = 64: random (top left), rectangular grid (top
right), Korobov lattice (bottom left), and Sobol’ (bottom right).



Recent development: Randomized lattice rules.

Randomly shifted lattice points:
If A\ is a sample from the uniform distribution in [0, 1], put

Qualf) = %éf({%g +A)).

Theorem:
Let n be prime, f € F; = W(l""’l)([O, 1]%) (with ~; > 0 denoting the weight of

2,7y, mix
component j in the norm of [Fy).

Then g € Z can be constructed componentwise such that for any 6§ € (0, %]
there exists a constant C'(d) > 0 such that the mean worst-case quadrature error
attains the optimal convergence rate

é(Qna) < C(&N10

where the constant () increases when ¢ decreases, but it does not depend
on the dimension d if the sequence (v;) satisfies the condition

£o 1
Y 3t <o (e =)
j=1

(Sloan/Wozniakowski 98, Sloan/Kuo/Joe 02, Kuo 03)



Quadrature rules with sparse grids
Again we consider the unit cube [0, 1]? in R?. Let a sequence of nested grids in
0, 1] be given, i.e.,

= ={&,....&,} =T 01 (€N),

for example, the dyadic grid

E@':{%:j:m,...,?} (i € N).

Then the point set in [0, 1]? suggested by Smolyak (Smolyak 63) is
H(q,d):= |J EZ'x---xEZ4 (qeN)
2?21 1j=q

and called a sparse grid in [0, 1]%. Let n = n(q, d) denote the number of points in
[0,1]%. In case of dyadic grids in [0, 1] the set H (g, d) consists of all d-dimensional
dyadic grids with product of mesh sizes given by %
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The corresponding tensor product quadrature rule for n > d on [0, 1]¢ (with the
Lebesgue measure \%) is of the form

d
CRRVLID SR Gt D SRS SEHNE) | 1

q—d+1<]i|<q ji=1  jg=1 =1
where |i| = 27 L, n (q,d) is the number of quadrature knots and the co-
efficients a (j =1,...,my, 1 = 1,...,d) are weights of d one-dimensional

quadrature rules

my

/f e~ Q=3 dED (1=1,...,d)

The weights are denoted by wy, k = 1,...,n(q, d), and with a bijective mapping
(" k=1,...,n(qd }H{ S hoooas :jlzl,...,mil,q—dJrlg\i[ﬁq}
the tensor product quadrature rule Qn(%d)’d(f) may be rewritten as

n(q,d)

Qn(q,d),d(f) — Z wkf<€k> .

k=1



Even if the one-dimensional weights are positive, some of the weights w; may
become negative. Hence, an interpretation as discrete probability measure is no
longer possible.

Example: Consider the classical Clenshaw-Curtis rule Q" with m; = 1,
m; =2"14+1,i=2,....d, & =0 and

= (1= eos ) (=1, i i =2, d)

mi—l
and the weights CLé-, j =1,...,m;, be defined such that Q" is exact for all uni-
variate polynomials of degree at most m;, © = 1, ..., d (Novak-Ritter 96).

Proposition: [|Q,,y.4).4ll« < callogn(g, d))** for some ¢; > 0 and fixed d.

Theorem: (Bungartz-Griebel 04)
If f belongs to F; = W(r""’r)([(), 1]%), it holds

2, mix

d—1)(r+1)

Qe — 3w e < Cual AL
’ k=1

[0,1]



Conclusions

e High-dimensional numerical integration is a task met in a number of practical
applications.

e Classical numerical integration fails for higher dimensions due to the curse
of dimensionality.

e Alternatives are Monte Carlo, Quasi-Monte Carlo and sparse grid techniques.

e Monte Carlo methods are general, its convergence rate does not depend upon
the dimension, but the convergence is slow.

e Classical Quasi-Monte Carlo methods converge faster than Monte Carlo
schemes, but the convergence rate becomes effective only for n > e

e Recently developed randomized lattice rules lift the curse of dimension-
ality and converge significantly faster than Monte Carlo.

e Sparse grid methods converge fast for (very) smooth functions.



Part Il: Quasi-Monte Carlo methods and their recent developments
Wednesday, May 22, 2 pm.

Part I1l: QMC algorithms for solving stochastic optimization problems:
Challenges and solutions
Thursday, May 23, 2 pm.
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