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Introduction

- Numerical integration belongs to the standard problems of numerical analysis.

- It is often needed as subproblem algorithm for solving more involved problems

(e.g. PDEs).

- A number of problems in physics (e.g. quantum physics) require the com-

putation of high-dimensional integrals.

- Any expectation in stochastic models means computing integrals.

- Computing the risk of decisions, e.g., the numerical evaluation of risk mea-

sures, requires numerical integration (often in high dimensions).

- Many applied stochastic optimization models (with mean-risk objective and/or

risk constraints) in engineering, production, energy or finance contain a

medium- or long-term time horizon and are highly complex. Their solution

process requires repeatedly (very) high-dimensional numerical integration.



Introduction to numerical integration

Classical theory of numerical integration in dimension d = 1:
Quadrature rule ∫ 1

0

f (ξ)dξ ≈
n∑
i=1

wif (ξi),

where ξi ∈ [0, 1] are the quadrature points (knots) and wi ∈ R, i = 1, . . . , n,

the quadrature weights satisfying
∑n

i=1wi = 1.

Quadrature error

en(f ) =

∫ 1

0

f (ξ)dξ −
n∑
i=1

wif (ξi).

Examples:
(Left) rectangle rule with equally-spaced points ξi = i−1

n and weights wi = 1
n,

i = 1, . . . , n, with error en(f ) ≤ ‖f ′‖∞
2n if f ∈ C1;

the trapezoidal rule with en(f ) = O( 1
n2

) if f ∈ C2;

the Simpson rule with en(f ) = O( 1
n4

) if f ∈ C4;

the Gaussian quadrature rules with quadrature points being roots of certain poly-

nomials are exact for all polynomials of degree 2n− 1.



Theorem: It holds

lim
n→∞

en(f ) = 0 for all f ∈ C([0, 1]) iff sup
n∈N

n∑
i=1

|wi| <∞.

The result carries over to [0, 1]d, d > 1, and to more general domains.

How to extend the ideas to higher dimension d > 1 ?

An obvious way is the product rule in [0, 1]d:

Take d one-dimensional quadrature rules with weights uij ∈ R and points

ξij ∈ [0, 1], j = 1, . . . , d and consider∫ 1

0

· · ·
∫ 1

0

f (ξ1, . . . , ξd)dξ1 · · · dξd ≈
m1∑
i1=1

· · ·
md∑
id=1

d∏
j=1

uijf (ξi1, . . . , ξid)

Total number of quadrature points is n =
∏d

j=1mj. For mj = m, j = 1, . . . , d,

the total number is n = md, hence, it grows exponentially.

For example, the product rectangular rule has order O(m−1) = O(n−
1
d).

(”curse of dimensionality”)



Alternative approaches:

(1) Use independent identically distributed random samples ξi, i ∈ N, with com-

mon uniform probability distribution on [0, 1]d (defined on some probability

space) – Monte Carlo method.

(2) Determine a deterministic sequence ξi ∈ [0, 1]d, i ∈ N, such that the se-

quence

1
n

n∑
i=1

δξi , n ∈ N,

of discrete (probability) measures converges to the uniform probability dis-

tribution on [0, 1]d, i.e., to the Lebesgue measure λd on [0, 1]d in a suitable

sense (e.g. uniform convergence of distribution functions) – Quasi-Monte
Carlo method.

(3) Remove a suitably large number of equally spaced product quadrature points

such that the convergence rate is close to that of one-dimensional quadrature

rules (except for some logarithmic terms) – sparse grid method.

Original mathematical background:
(1) - asymptotic statistics, (2) - number theory, (3) - complexity theory.



Transformation of integrals for general probability distributions P

For some function f : Rd → R we consider the integral∫
Rd
f (x)P (dx) .

First step: Transform a multivariate probability distribution P on Rd to a dis-

tribution on Rd with d independent one-dimensional marginal distributions by

using methods related to the class P of distributions with P ∈ P .

Example: If P is normal with zero mean and nonsingular covariance matrix Σ. If A is any

matrix satisfying Σ = AA>, then the distribution P ◦ A has independent marginals.

Second step: Let Fk : R → [0, 1] denote the marginal distribution functions

and ρk, k = 1, . . . , d, the marginal densities of a probability distribution P with

independent marginals. Then by ξk = Fk(xk), dξk = ρk(xk)dxk, k = 1, . . . , d,∫
Rd
f (x)P (dx) =

∫
Rd
f (x)

d∏
k=1

ρk(xk)dx =

∫
[0,1]d

f (F−1
1 (ξ1), . . . , F−1

d (ξd))dξ1 · · · dξd



Monte Carlo sampling

Monte Carlo methods are based on drawing independent identically distributed

(iid) Ξ-valued random samples ξ1(·), . . . , ξn(·), . . . (defined on some probability

space (Ω,A,P)) from an underlying probability distribution P such that

Qn,d(ω)(f ) = 1
n

n∑
i=1

f (ξi(ω)),

i.e., Qn,d(·) is a random functional, and it holds by the law of large numbers

lim
n→∞

Qn,d(ω)(f ) =

∫
[0,1]d

f (ξ)dξ = Id(f ) = E[f ] P-almost surely

for every real continuous and bounded function f on Ξ.

If P has a finite moment of order r ≥ 1, the error estimate

E

[∣∣∣∣∣ 1
n

n∑
i=1

f (ξi(ω))− E[f ]

∣∣∣∣∣
r]

= 1
nrE

[∣∣∣∣∣
n∑
i=1

(f (ξi(ω))− E[f ])

∣∣∣∣∣
r]
≤ E [(f − E[f ])r]

nr−1

is valid.



Hence, the mean square convergence rate is

‖Qn,d(·)(f )− Id(f )‖L2 ≤ σ(f )n−
1
2 ,

where σ2(f ) = E
(
(f − E(f ))2

)
is the variance of f . Note that even equality

holds without any assumption on f except σ(f ) <∞.

Moreover, it holds

E[Qn,d(ω)(f )] = 1
n

n∑
i=1

E[f (ξi(ω))] = Id(f )

Var[Qn,d(ω)(f )] =
σ2(f )

n

lim
n→∞

P
(
|Id(f )−Qn,d(·)(f )| ≤ c

σ(f )√
n

)
=

1√
2π

∫ c

−c
exp
(
− t2

2

)
dt

and an unbiased estimator for Var[Qn,d(ω)(f )] is given by

1

n(n− 1)

( n∑
i=1

f 2(ξi)− n[Qn,d(·)(f )]2
)
.



Advantages:

(i) MC sampling works for (almost) all integrands and is unbiased.

(ii) The machinery of probability theory is available.

(iii) The convergence rate O(n−
1
2) does not depend on the dimension d.

Deficiencies: (Niederreiter 92)

(i) There exist ’only’ probabilistic error bounds.

(ii) Possible regularity of the integrand does not improve the rate.

(iii) Generating (independent) random samples is difficult.

(iv) MC methods are in practice (distressingly) slow.

Practically, iid samples are approximately obtained by so-called pseudo random

number generators as uniform samples in [0, 1]d.

Survey: P. L’Ecuyer: Uniform random number generation, AOR 53 (1994).

Classical linear congruential generators:

Its parameters are a large M ∈ N (modulus), a multiplier a ∈ N with 1 ≤ a < M

and gcd(a,M) = 1, and c ∈ ZM = {0, 1, . . . ,M − 1}.



Starting with y0 ∈ ZM a sequence is generated by

yn ≡ ayn−1 + c mod M (n ∈ N)

and the linear congruential pseudo random numbers are

ξn =
yn
M
∈ [0, 1).

The period M − 1 is chosen as a large prime number, e.g., M = 232.

Linear congruential pseudo random numbers fall mainly into planes (Marsaglia 68)!

Use only pseudo random number generators having passed a series of statistical

tests, e.g., uniformity test, serial correlation test, monkey tests etc.

CAT-test: There are 263 = 17576 possible 3-letter words. With a = 69069, c = 0, M = 232 one gets CAT
after n=13561, then after 18263, and the third after 14872 calls. Other generators are even unable to produce
CAT after 106 calls (Marsaglia-Zaman 93).

Warning:
For linear congruential generators never use more than M

4 or even M
10 calls.

Excellent pseudo random number generator: Mersenne Twister.
It has the astronomical period 219937 − 1 and provides 623-dimensional equidis-

tribution up to 32-bit accuracy (Matsumoto-Nishimura 98).



Quasi-Monte Carlo methods

The basic idea of Quasi-Monte Carlo (QMC) methods is to replace random sam-

ples in Monte Carlo methods by deterministic points that are (in some way)

uniformly distributed in [0, 1]d. So, we consider the approximate computation of

Id(f ) =

∫
[0,1]d

f (ξ)dξ

by a QMC algorithm

Qn,d(f ) = 1
n

n∑
i=1

f (ξi)

with (non-random) points ξi, i = 1, . . . , n, from [0, 1]d.

The uniform distribution property of point sets may be defined in terms of the

so-called star-discrepancy of ξ1, . . . , ξn

D∗n(ξ1, . . . , ξn) := sup
ξ∈[0,1]d

|disc(ξ)|, disc(ξ) :=

d∏
i=1

ξi − 1
n

n∑
i=1

1l[0,ξ)(ξ
i) .

(uniform distance of the uniform distribution function and the sample distribution function)



A sequence (ξi)i∈N is called uniformly distributed in [0, 1]d if

D∗n(ξ1, . . . , ξn)→ 0 for n→∞

How fast can D∗n(ξ1, . . . , ξn) converge to zero as n→∞?

A classical result due to Roth 54 provides the lower bound

D∗n(ξ1, . . . , ξn) ≥ Bd
(log n)

d−1
2

n

for some constant Bd and all sequences (ξi) in [0, 1]d.

Later it becomes clear that there exist sequences (ξi) in [0, 1]d such that

D∗n(ξ1, . . . , ξn) = O(n−1(log n)d−1).

Are there standard constructions for determining such sequences?



Classical convergence results:

Theorem: (Proinov 88)

If the real function f is continuous on [0, 1]d, then there exists C > 0 such that

|Qn,d(f )− Id(f )| ≤ Cωf

(
D∗n(ξ1, . . . , ξn)

1
d

)
,

where ωf(δ) = sup{|f (ξ)− f (ξ̃)| : ‖ξ − ξ̃)‖ ≤ δ, ξ, ξ̃ ∈ [0, 1]d} is the modulus

of continuity of f .

Theorem: (Koksma-Hlawka 61)

If f is of bounded variation VHK(f ) in the sense of Hardy and Krause, it holds

|Id(f )−Qn,d(f )| ≤ VHK(f )D∗n(ξ1, . . . , ξn) .

for any n ∈ N and any ξ1, . . . , ξn ∈ [0, 1]d.

Note that VHK(f ) <∞ is more restrictive than one might think at first moment.

For example, one needs the existence of the mixed derivative ∂df
∂ξ1···∂ξd

∈ L2.



First general QMC construction: Digital nets (Sobol 69, Niederreiter 87)

Elementary subintervals E in base b:

E =

d∏
j=1

[
aj

bdj
,
aj + 1

bdj

)
,

where ai, di ∈ Z+, 0 ≤ ai < bdi, i = 1, . . . , d.

Let m, t ∈ Z+, m > t. A set of bm points in [0, 1)d is a (t,m, d)-net in base b if

every elementary subinterval E in base b with λd(E) = bt−m contains bt points.

Illustration of a (0, 4, 2)-net with b = 2 s s s s
s s s ss s s s

s s s s

1

0 1

A sequence (ξi) in [0, 1)d is a (t, d)-sequence in base b if, for all integers k ∈ Z+

and m > t, the set

{ξi : kbm ≤ i < (k + 1)bm}
is a (t,m, d)-net in base b.



Theorem: (Niederreiter 92)

For fixed d > 4 and b ∈ N, b ≥ 2, there exists a constant A(b, d) such that the

star-discrepancy of a (t,m, d)-net {ξ1, . . . , ξn} in base b with m > 0 satisfies

D∗n(ξ1, . . . , ξn) ≤ A(b, d )bt
(log n)d−1

n
+ O

(bt(log n)d−2

n

)
.

Special cases: Sobol’, Faure, Niederreiter and Niederreiter-Xing sequences.

Second general QMC construction: Lattices (Korobov 59, Sloan-Joe 94)

(Rank-1) lattice rules: Let g ∈ Zd and consider the lattice points{
ξi =

{
i
ng
}

: i = 1, . . . , n
}
,

where {z} is defined as componentwise fractional part of z ∈ R+, i.e.,

{z} = z − bzc ∈ [0, 1).

The generator g ∈ Zd is chosen such that the (rank-1) lattice rule has good

convergence properties. Such lattice rules may achieve better convergence rates

O(n−k+δ), k ∈ N, for integrands in Ck.





Recent development: Randomized lattice rules.

Randomly shifted lattice points:

If 4 is a sample from the uniform distribution in [0, 1]d, put

Qn,d(f ) = 1
n

n∑
i=1

f
(
{i−1

n g +4}
)
.

Theorem:
Let n be prime, f ∈ Fd =W (1,...,1)

2,γ,mix([0, 1]d) (with γj > 0 denoting the weight of

component j in the norm of Fd).

Then g ∈ Zd can be constructed componentwise such that for any δ ∈ (0, 1
2]

there exists a constant C(δ) > 0 such that the mean worst-case quadrature error

attains the optimal convergence rate

ê(Qn,d) ≤ C(δ)n−1+δ ,

where the constant C(δ) increases when δ decreases, but it does not depend
on the dimension d if the sequence (γj) satisfies the condition

∞∑
j=1

γ
1

2(1−δ)
j <∞ (e.g. γj = 1

j2
).

(Sloan/Wožniakowski 98, Sloan/Kuo/Joe 02, Kuo 03)



Quadrature rules with sparse grids

Again we consider the unit cube [0, 1]d in Rd. Let a sequence of nested grids in

[0, 1] be given, i.e.,

Ξi = {ξi1, . . . , ξimi
} ⊂ Ξi+1 ⊂ [0, 1] (i ∈ N),

for example, the dyadic grid

Ξi =
{ j

2i
: j = 0, 1, . . . , 2i

}
(i ∈ N).

Then the point set in [0, 1]d suggested by Smolyak (Smolyak 63) is

H(q, d) :=
⋃

∑d
j=1 ij=q

Ξi1 × · · · × Ξid (q ∈ N)

and called a sparse grid in [0, 1]d. Let n = n(q, d) denote the number of points in

[0, 1]d. In case of dyadic grids in [0, 1] the set H(q, d) consists of all d-dimensional

dyadic grids with product of mesh sizes given by 1
2q .





The corresponding tensor product quadrature rule for n ≥ d on [0, 1]d (with the

Lebesgue measure λd) is of the form

Qn(q,d),d(f ) =
∑

q−d+1≤|i|≤q

(−1)q−|i|
(
d− 1

q − |i|

) mi1∑
j1=1

· · ·
mid∑
jd=1

f (ξi1j1, . . . , ξ
id
jd

)

d∏
l=1

a
il
jl
,

where |i| =
∑d

l=1 il, n(q, d) is the number of quadrature knots and the co-

efficients a
il
j (j = 1, . . . ,ml, l = 1, . . . , d) are weights of d one-dimensional

quadrature rules∫ 1

0

f (ξ)dξ ≈ Ql(f ) =

ml∑
j=1

a
il
j f (ξ

il
j ) (l = 1, . . . , d).

The weights are denoted by wk, k = 1, . . . , n(q, d), and with a bijective mapping

{ξk : k = 1, . . . , n(q, d)} ↔
{

(ξi1j1, . . . , ξ
id
jd

) : jl = 1, . . . ,mil, q−d+1 ≤ |i| ≤ q
}

the tensor product quadrature rule Qn(q,d),d(f ) may be rewritten as

Qn(q,d),d(f ) =

n(q,d)∑
k=1

wkf (ξk) .



Even if the one-dimensional weights are positive, some of the weights wk may

become negative. Hence, an interpretation as discrete probability measure is no

longer possible.

Example: Consider the classical Clenshaw-Curtis rule Qi with m1 = 1,

mi = 2i−1 + 1, i = 2, . . . , d, ξ1
1 = 0 and

ξij = 1
2

(
1− cos π(j−1)

mi−1

)
(j = 1, . . . ,mi, i = 2, . . . , d)

and the weights aij, j = 1, . . . ,mi, be defined such that Qi is exact for all uni-

variate polynomials of degree at most mi, i = 1, . . . , d (Novak-Ritter 96).

Proposition: ‖Qn(q,d),d‖∞ ≤ cd(log n(q, d))d−1 for some cd > 0 and fixed d.

Theorem: (Bungartz-Griebel 04)

If f belongs to Fd =W (r,...,r)
2,mix ([0, 1]d), it holds∣∣∣∣∣

∫
[0,1]d

f (ξ)dξ −
n∑
k=1

wkf (ξk)

∣∣∣∣∣ ≤ Cr,d‖f‖d
(log n)(d−1)(r+1)

nr
.



Conclusions

• High-dimensional numerical integration is a task met in a number of practical

applications.

• Classical numerical integration fails for higher dimensions due to the curse

of dimensionality.

• Alternatives are Monte Carlo, Quasi-Monte Carlo and sparse grid techniques.

• Monte Carlo methods are general, its convergence rate does not depend upon

the dimension, but the convergence is slow.

• Classical Quasi-Monte Carlo methods converge faster than Monte Carlo

schemes, but the convergence rate becomes effective only for n ≥ ed.

• Recently developed randomized lattice rules lift the curse of dimension-
ality and converge significantly faster than Monte Carlo.

• Sparse grid methods converge fast for (very) smooth functions.



Part II: Quasi-Monte Carlo methods and their recent developments

Wednesday, May 22, 2 pm.

Part III: QMC algorithms for solving stochastic optimization problems:

Challenges and solutions

Thursday, May 23, 2 pm.
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