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Introduction

Aim: Apply randomized Quasi-Monte Carlo methods, in particular, randomly

shifted lattice rules to optimization models containing high-dimensional integrals.

Example: Option pricing (Wang-Sloan 11)

Consider the pricing of a path-dependent option with payoff g(St1, . . . , Std) where

Stj are the prices of the underlying asset at times tj, j = 1, . . . , d. Suppose the

prices are considered at equally spaced times tj = j Td , where T is the expiration

date, and the asset price follows a geometric Brownian motion

dSt = rStdt + σStdBt ,

where r is the risk-free interest rate, σ the volatility and Bt the standard Brownian

motion (normal with zero mean and E[BtBs] = min{t, s}).

The analytical solution of the (scalar linear) stochastic differential equation is

St = S0 exp
((
r − σ2

2

)
t + σBt

)
.

The value of the option at t = 0 is E[exp(−rT )g(St1, . . . , Std)].



Consider Asian call options based on the geometric or arithmetic average of the

underlying asset. With the strike price K at time T their terminal payoffs are

g(St1, . . . , Std) = max
{

0,

d∏
t=1

S
1
d
tj
−K

}
or = max

{
0, 1

d

d∑
j=1

Stj −K
}
.

If Σ denotes the covariance matrix of the normal random vector (Bt1, . . . , Btd)
>

and A is a matrix satisfying Σ = AA>, the random vector (z1, . . . , zd)
> such

that

(Bt1, . . . , Btd)
> = A(z1, . . . , zd)

>

is standard normal with independent components. For the first case it holds
d∏
t=1

S
1
d
tj

= exp
(
m + σ

T

d∑
k=1

Akzk

)
with Ak =

∑d
j=1 ajk, A = (ajk) and m = logS0 + T (d−1)

2d (r − σ2

2 ). Hence, the

value of the option at t = 0 is

exp(−rT )

∫
Rd

max
{

0, exp
(
m + σ

T

d∑
k=1

Akzk

)
−K

}
ρd(z)dz

with the d-dimensional standard normal density ρd.



Example: (Optimization problem with random constraints)

We consider the linear optimization problem with random constraints

min{c>x : T (ξ)x = h(ξ), x ∈ X},

where X is a polyhedron in Rm, T (ξ) a random matrix and h(ξ) a random vec-

tor. The model is inappropriate to find a deterministic decision !

Idea: Introduce a compensation or recourse variable y ≥ 0, a recourse matrix W ,

a (possibly random) recourse cost vector q(ξ), replace the constraint ”T (ξ)x =

h(ξ)” by ”Wy = h(ξ)−T (ξ)x” and select a random recourse decision y(ξ) with

minimal recourse costs ”q(ξ)>y(ξ)”. Adding the expected recourse costs to the

original cost term c>x leads to the two-stage stochastic optimization model

min{c>x +

∫
Rd

inf{q(ξ)>y : Wy = h(ξ)− T (ξ)x, y ≥ 0}ρd(ξ)dξ : x ∈ X},

where ρd is the density of the underlying random vector ξ on Rd.

Challenge: In both examples the integrands do not belong to the tensor product

Sobolev space (after transformation to [0, 1]d).



Two-stage linear stochastic optimization

We consider the linear two-stage stochastic program

min
{∫

Ξ

f (x, ξ)P (dξ) : x ∈ X
}
,

where f is extended real-valued defined on Rm × Rd given by

f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x), (x, ξ) ∈ X × Ξ,

c ∈ Rm, X ⊆ Rm and Ξ ⊆ Rd are convex polyhedral, W is an (r,m)-matrix, P

is a Borel probability measure on Ξ, and the vectors q(ξ) ∈ Rm, h(ξ) ∈ Rr and

the (r,m)-matrix T (ξ) are affine functions of ξ, Φ is the second-stage optimal

value function

Φ(u, t) = inf{〈u, y〉 : Wy = t, y ≥ 0} ((u, t) ∈ Rm × Rr),

Let posW = W (Rm
+), D ={u ∈ Rm :{z ∈ Rr : W>z ≤ u} 6= ∅}.

Assumptions:
(A1) h(ξ)− T (ξ)x ∈ posW and q(ξ) ∈ D for all (x, ξ) ∈ X × Ξ.

(A2)
∫

Ξ ‖ξ‖
2P (dξ) <∞.



Proposition:
(A1) and (A2) imply that the two-stage stochastic program represents a convex

minimization problem with respect to the first stage decision x with polyhedral

constraints.

Lemma: (Walkup-Wets 69, Nožička-Guddat-Hollatz-Bank 74)

Φ is finite, polyhedral and continuous on the (m + r)-dimensional polyhedral

cone D × posW and there exist (r,m)-matrices Cj and (m + r)-dimensional

polyhedral cones Kj, j = 1, ..., `, such that

⋃̀
j=1

Kj = D × posW and intKi ∩ intKj = ∅ , i 6= j,

Φ(u, t) = 〈Cju, t〉, for each (u, t) ∈ Kj, j = 1, ..., `.

The function Φ(u, ·) is convex on posW for each u ∈ D, and Φ(·, t) is concave

on D for each t ∈ posW . The intersection Ki ∩ Kj, i 6= j, is either equal to

{0} or contained in a (m+r−1)-dimensional subspace of Rm+r if the two cones

are adjacent.

Challenge: The integrand f (x, ·) is not in the tensor product Sobolev space.



The ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms are smooth,

but hopefully only some of them relevant.

Let D = {1, . . . , d} and f ∈ L1,ρ(Rd) with ρ(ξ) =
∏d

j=1 ρj(ξj), where

f ∈ Lp,ρ(Rd) iff

∫
Rd
|f (ξ)|pρ(ξ)dξ <∞ (p ≥ 1).

Let the projection Pk, k ∈ D, be defined by

(Pkf )(ξ) :=

∫ ∞
−∞

f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ Rd).

Clearly, Pkf is constant with respect to ξk. For u ⊆ D we write

Puf =
(∏
k∈u

Pk

)
(f ),

where the product means composition, and note that the ordering within the

product is not important because of Fubini’s theorem. The function Puf is

constant with respect to all xk, k ∈ u.



ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = PD(f ) and recursively

fu = P−u(f )−
∑
v⊂u

fv

or (due to Kuo-Sloan-Wasilkowski-Woźniakowski 10)

fu =
∑
v⊆u

(−1)|u|−|v|P−vf = P−u(f ) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u(f )),

where P−u and Pu−v mean integration with respect to ξj, j ∈ D\u and j ∈ u\v,

respectively. The second representation motivates that fu is essentially as smooth

as P−u(f ).

If f belongs to L2,ρ(Rd), its ANOVA terms {fu}u⊆D are orthogonal in L2,ρ(Rd).

We set σ2(f ) = ‖f − Id(f )‖2
L2

and σ2
u(f ) = ‖fu‖2

L2
, and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

σ2
u(f ) .



The dimension distribution and effective dimension of a function

Owen’s superposition (truncation) dimension distribution of f : Probability mea-

sure νS (νT ) defined on the power set of D

νS(s) :=
∑
|u|=s

σ2
u(f )

σ2(f )

(
νT (s) =

∑
max{j:j∈u}=s

σ2
u(f )

σ2(f )

)
(s ∈ D).

Effective superposition (truncation) dimension dS(ε) (dT (ε)) of f is the (1− ε)-

quantile of νS (νT ):

dS(ε) = min
{
s ∈ D :

∑
|u|≤s

σ2
u(f ) ≥ (1− ε)σ2(f )

}
≤ dT (ε)

dT (ε) = min
{
s ∈ D :

∑
u⊆{1,...,s}

σ2
u(f ) ≥ (1− ε)σ2(f )

}
It holds

max
{∥∥∥f − ∑

|u|≤dS(ε)

fu

∥∥∥
2,ρ
,
∥∥∥f − ∑

u⊆{1,...,dT (ε)}

fu

∥∥∥
2,ρ

}
≤
√
εσ(f ).

(Caflisch-Morokoff-Owen 97, Owen 03, Wang-Fang 03)



ANOVA decomposition of two-stage integrands

Assumptions:
(A1), (A2) and

(A3) P has a density of the form ρ(ξ) =
∏d

j=1 ρj(ξj) (ξ ∈ Rd) with continuous

marginal densities ρj, j ∈ D.

Proposition:
(A1) implies that the function f (x, ·), where

fx(ξ) := f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x) (x ∈ X, ξ ∈ Ξ)

is the two-stage integrand, is continuous and piecewise linear-quadratic.

For each x ∈ X , f (x, ·) is linear-quadratic on each polyhedral set

Ξj(x) = {ξ ∈ Ξ : (q(ξ), h(ξ)− T (ξ)x) ∈ Kj} (j = 1, . . . , `).

It holds int Ξj(x) 6= ∅, int Ξj(x) ∩ int Ξi(x) = ∅, i 6= j, and the sets Ξj(x),

j = 1, . . . , `, decompose Ξ. Furthermore, the intersection of two adjacent sets

Ξi(x) and Ξj(x), i 6= j, is contained in some (d−1)-dimensional affine subspace.

(Griebel-Kuo-Sloan 13)



To compute projections Pkf for k ∈ D, let ξi ∈ R, i = 1, . . . , d, i 6= k, be

given. We set ξk = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd) and

ξk(s) = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd) ∈ Rd (s ∈ R).

We fix x ∈ X and consider the one-dimensional affine subspace {ξk(s) : s ∈ R}:

@
@

@
@
@

@
@
@

@
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�
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0

ξ1(s) q q
s1 s2

Example with d = 2 = p, where the polyhedral sets are cones

It meets the nontrivial intersections of two adjacent polyhedral sets Ξi(x) and

Ξj(x), i 6= j, at finitely many points si, i = 1, . . . , p if all (d − 1)-dimensional

subspaces containing the intersections do not parallel the kth coordinate axis.



The si = si(ξ
k), i = 1, . . . , p, are affine functions of ξk. It holds

si = −
p∑

l=1,l 6=k

gil
gik
ξl + ai (i = 1, . . . , p)

for some ai ∈ R and gi ∈ Rd belonging to an intersection of polyhedral sets.

Proposition:
Let k ∈ D, x ∈ X . Assume (A1)–(A3) and that all (d − 1)-dimensional affine

subspaces containing nontrivial intersections of adjacent sets Ξi(x) and Ξj(x) do

not parallel the kth coordinate axis.

Then the kth projection Pkf has the explicit representation

Pkf (ξk) =

p+1∑
i=1

2∑
j=0

pij(ξ
k;x)

∫ si

si−1

sjρk(s)ds,

where s0 = −∞, sp+1 = +∞ and pij(·;x) are polynomials in ξk of degree 2− j,

j = 0, 1, 2, with coefficients depending on x, and is continuously differentiable.

Pkf is infinitely differentiable if the marginal density ρk belongs to C∞(R).



Theorem:
Let x ∈ X , assume (A1)–(A3) and that the following geometric condition (GC)

be satisfied: All (d− 1)-dimensional affine subspaces containing nontrivial inter-

sections of adjacent sets Ξi(x) and Ξj(x) do not parallel any coordinate axis.

Then the ANOVA approximation

fd−1 :=
∑
|u|≤d−1

fu i.e. f = fd−1 + fD

of f is infinitely differentiable if all densities ρk, k ∈ D, belong to C∞b (R).

Here, the subscript b means that all derivatives of functions belonging to that space are

bounded on R.



Example: Let m̄ = 3, d = 2, P denote the two-dimensional standard normal

distribution, h(ξ) = ξ, q and W be given such that (A1) is satisfied and the dual

feasible set is

{z ∈ R2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z2 ≤ 0}.
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Dual feasible set, its vertices vj and the normal cones Kj to its vertices

The function Φ and the integrand are of the form

Φ(t) = max
i=1,2,3

〈vi, t〉 = max{t1,−t1, t2} = max{|t1|, t2}

f (ξ) = 〈c, x〉 + Φ(ξ − Tx) = 〈c, x〉 + max{|ξ1− [Tx]1|, ξ2 − [Tx]2}

and the convex polyhedral sets are Ξj(x) = Tx +Kj, j = 1, 2, 3.

The ANOVA projection P1f is in C∞, but P2f is not differentiable.



QMC quadrature error estimates

If the assumptions of the theorem are satisfied, the two-stage integrand f = fx
(for fixed x ∈ X) allows the representation f = fd−1 + fD with fd−1 belonging

to Fd. This implies∣∣∣ ∫
[0,1]d

f (ξ)dξ − 1
n

n∑
j=1

f (ξj)
∣∣∣ ≤ e(Qn,d)‖fd−1‖γ +

∣∣∣ ∫
[0,1]d

fD(ξ)dξ − 1
n

n∑
j=1

fD(ξj)
∣∣∣

≤ e(Qn,d)‖fd−1‖γ + ‖fD‖L2 +
(

1
n

n∑
j=1

|fD(ξj)|2
)1

2

where ‖ · ‖γ is the weighted tensor product Sobolev space norm.

As fD is (Lipschitz) continuous and if the ξj, j = 1, . . . , n, are properly selected,

the last term in the above estimate may be assumed to be bounded by 2‖fD‖L2.

Hence, if the effective superposition dimension satisfies dS(ε) ≤ d − 1, i.e.,

‖fD‖L2 ≤
√
εσ(f ) holds for some small ε > 0, the first term e(Qn,d)‖fd−1‖γ

dominates and the convergence rate of e(Qn,d) becomes most important.



Challenge: How important is the geometric condition (GC) ?

Partial answer: If P is normal with nonsingular covariance matrix, (GC) is

satisfied for almost all covariance matrices. Namely, it holds

Proposition: Let x ∈ X , (A1), (A2) be satisfied, dom Φ = Rr and P be

a normal distribution with nonsingular covariance matrix Σ. Then the infinite

differentiability of the ANOVA approximation fd−1 of f is a generic property,

i.e., it holds in a residual set (countable intersection of open dense subsets)

in the metric space of orthogonal (d, d)-matrices Q (endowed with the norm

topology) appearing in the spectral decomposition Σ = Q>DQ of Σ (with a

diagonal matrix D containing the eigenvalues of Σ).

Challenge: For which two-stage stochastic programs is ‖fD‖L2,ρ small, i.e., the

effective superposition dimension dS(ε) of f is less than d−1 or even much less?

Partial answer: In case of a (log)normal probability distribution P the effective

dimension depends on the choice of the matrix A in the decomposition Σ = AA>

of thenonsingular covariance matrix Σ.



Dimension reduction in case of (log)normal distributions

Let P be the normal distribution with mean µ and nonsingular covariance matrix

Σ. Let A be a matrix satisfying Σ = AA>. Then η defined by ξ = Aη + µ is

standard normal.

A universal principle is principal component analysis (PCA). Here, one uses

A = (
√
λ1u1, . . . ,

√
λdud), where λ1 ≥ · · · ≥ λd > 0 are the eigenvalues

of Σ in decreasing order and the corresponding orthonormal eigenvectors ui,

i = 1, . . . , d. Wang-Fang 03, Wang-Sloan 05 report an enormous reduction of the effec-

tive truncation dimension in financial models if PCA is used.

A problem-dependent principle may be based on the following equivalence prin-

ciple (Papageorgiou 02, Wang-Sloan 11).

Proposition: Let A be a fixed d×d matrix such that AA> = Σ. Then it holds

Σ = BB> if and only if B is of the form B = AQ with some orthogonal d× d
matrix Q.

Idea: Determine Q for given A such that the effective truncation dimension is

minimized (Wang-Sloan 11).



Some computational experience

We considered a two-stage production planning problem for maximizing the ex-

pected revenue while satisfying a fixed demand in a time horizon with d = T =

100 time periods and stochastic prices for the second-stage decisions. It is as-

sumed that the probability distribution of the prices ξ is log-normal. The model

is of the form

max
{ T∑

t=1

(
c>t xt +

∫
RT
qt(ξ)>ytP (dξ)

)
: Wy + V x = h, y ≥ 0, x ∈ X

}
The use of PCA for decomposing the covariance matrix has led to effective trun-

cation dimension dT (0.01) = 2. As QMC methods we used a randomly scram-

bled Sobol sequence (SSobol)(Owen, Hickernell) with n = 27, 29, 211 and a randomly

shifted lattice rule (Sloan-Kuo-Joe) with n = 127, 509, 2039, weights γj = 1
j3

and for

MC the Mersenne-Twister. 10 runs were performed for the error estimates and

30 runs for plotting relative errors.

Average rate of convergence for QMC: O(n−0.9) and O(n−0.8).
Instead of n = 27 SSobol samples one would need n = 104 MC samples to achieve a similar accuracy as SSobol.



log10 of the relative errors of MC, SLA (randomly shifted lattice rule) and SSOB (scrambled Sobol’ points)



Conclusions

• Our analysis provides a theoretical basis for applying QMC methods accom-

panied by dimension reduction techniques to two-stage stochastic programs.

• The analysis also applies to sparse grid quadrature techniques.

• The results are extendable and will be extended to mixed-integer two-stage

models, to multi-stage situations, and to other models in stochastic opti-

mization.

Second-stage optimal value function of an integer program (van der Vlerk)
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H. Heitsch, H. Leövey and W. Römisch, Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic
programs?, Stochastic Programming E-Print Series 5-2012 (www.speps.org) and submitted.

T. Homem-de-Mello: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling,
SIAM Journal on Optimization 19 (2008), 524-551.

F. Y. Kuo: Component-by-component constructions achieve the optimal rate of convergence in weighted Ko-
robov and Sobolev spaces, Journal of Complexity 19 (2003), 301-320.
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