Progress in high-dimensional numerical integration and its application to stochastic optimization

W. Römisch

Humboldt-University Berlin
Department of Mathematics www.math.hu-berlin.de/~romisch

DFG Research Center Matheon
Mathematics for key technologies

Short course, Rutgers University, May 21-23, 2013

Part III: QMC algorithms for solving stochastic optimization problems:

 Challenges and solutions
Contents:

(1) Introduction
(2) Two-stage linear stochastic optimization
(3) The ANOVA decomposition of multivariate functions
(4) Effective dimension of a function
(5) ANOVA decomposition of two-stage integrands
(6) Dimension reduction approaches
(7) Some computational experience
(8) Conclusions
(9) References

Introduction

Aim: Apply randomized Quasi-Monte Carlo methods, in particular, randomly shifted lattice rules to optimization models containing high-dimensional integrals.

Example: Option pricing (Wang-Sloan 11)
Consider the pricing of a path-dependent option with payoff $g\left(S_{t_{1}}, \ldots, S_{t_{d}}\right)$ where $S_{t_{j}}$ are the prices of the underlying asset at times $t_{j}, j=1, \ldots, d$. Suppose the prices are considered at equally spaced times $t_{j}=j \frac{T}{d}$, where T is the expiration date, and the asset price follows a geometric Brownian motion

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d B_{t}
$$

where r is the risk-free interest rate, σ the volatility and B_{t} the standard Brownian motion (normal with zero mean and $\mathbb{E}\left[B_{t} B_{s}\right]=\min \{t, s\}$).
The analytical solution of the (scalar linear) stochastic differential equation is

$$
S_{t}=S_{0} \exp \left(\left(r-\frac{\sigma^{2}}{2}\right) t+\sigma B_{t}\right)
$$

The value of the option at $t=0$ is $\mathbb{E}\left[\exp (-r T) g\left(S_{t_{1}}, \ldots, S_{t_{d}}\right)\right]$.

Consider Asian call options based on the geometric or arithmetic average of the underlying asset. With the strike price K at time T their terminal payoffs are

$$
g\left(S_{t_{1}}, \ldots, S_{t_{d}}\right)=\max \left\{0, \prod_{t=1}^{d} S_{t_{j}}^{\frac{1}{d}}-K\right\} \quad \text { or } \quad=\max \left\{0, \frac{1}{d} \sum_{j=1}^{d} S_{t_{j}}-K\right\}
$$

If Σ denotes the covariance matrix of the normal random vector $\left(B_{t_{1}}, \ldots, B_{t_{d}}\right)^{\top}$ and A is a matrix satisfying $\Sigma=A A^{\top}$, the random vector $\left(z_{1}, \ldots, z_{d}\right)^{\top}$ such that

$$
\left(B_{t_{1}}, \ldots, B_{t_{d}}\right)^{\top}=A\left(z_{1}, \ldots, z_{d}\right)^{\top}
$$

is standard normal with independent components. For the first case it holds

$$
\prod_{t=1}^{d} S_{t_{j}}^{\frac{1}{d}}=\exp \left(m+\frac{\sigma}{T} \sum_{k=1}^{d} A_{k} z_{k}\right)
$$

with $A_{k}=\sum_{j=1}^{d} a_{j k}, A=\left(a_{j k}\right)$ and $m=\log S_{0}+\frac{T(d-1)}{2 d}\left(r-\frac{\sigma^{2}}{2}\right)$. Hence, the value of the option at $t=0$ is

$$
\exp (-r T) \int_{\mathbb{R}^{d}} \max \left\{0, \exp \left(m+\frac{\sigma}{T} \sum_{k=1}^{d} A_{k} z_{k}\right)-K\right\} \rho_{d}(z) d z
$$

with the d-dimensional standard normal density ρ_{d}.

Example: (Optimization problem with random constraints)

We consider the linear optimization problem with random constraints

$$
\min \left\{c^{\top} x: T(\xi) x=h(\xi), x \in X\right\}
$$

where X is a polyhedron in $\mathbb{R}^{m}, T(\xi)$ a random matrix and $h(\xi)$ a random vector. The model is inappropriate to find a deterministic decision!

Idea: Introduce a compensation or recourse variable $y \geq 0$, a recourse matrix W, a (possibly random) recourse cost vector $q(\xi)$, replace the constraint " $T(\xi) x=$ $h(\xi)$ " by " $W y=h(\xi)-T(\xi) x$ " and select a random recourse decision $y(\xi)$ with minimal recourse costs " $q(\xi)^{\top} y(\xi)$ ". Adding the expected recourse costs to the original cost term $c^{\top} x$ leads to the two-stage stochastic optimization model

$$
\min \left\{c^{\top} x+\int_{\mathbb{R}^{d}} \inf \left\{q(\xi)^{\top} y: W y=h(\xi)-T(\xi) x, y \geq 0\right\} \rho_{d}(\xi) d \xi: x \in X\right\}
$$

where ρ_{d} is the density of the underlying random vector ξ on \mathbb{R}^{d}.

Challenge: In both examples the integrands do not belong to the tensor product Sobolev space (after transformation to $[0,1]^{d}$).

Two-stage linear stochastic optimization

We consider the linear two-stage stochastic program

$$
\min \left\{\int_{\Xi} f(x, \xi) P(d \xi): x \in X\right\}
$$

where f is extended real-valued defined on $\mathbb{R}^{m} \times \mathbb{R}^{d}$ given by

$$
f(x, \xi)=\langle c, x\rangle+\Phi(q(\xi), h(\xi)-T(\xi) x),(x, \xi) \in X \times \Xi
$$

$c \in \mathbb{R}^{m}, X \subseteq \mathbb{R}^{m}$ and $\Xi \subseteq \mathbb{R}^{d}$ are convex polyhedral, W is an (r, \bar{m})-matrix, P is a Borel probability measure on Ξ, and the vectors $q(\xi) \in \mathbb{R}^{\bar{m}}, h(\xi) \in \mathbb{R}^{r}$ and the (r, m)-matrix $T(\xi)$ are affine functions of ξ, Φ is the second-stage optimal value function

$$
\Phi(u, t)=\inf \{\langle u, y\rangle: W y=t, y \geq 0\} \quad\left((u, t) \in \mathbb{R}^{\bar{m}} \times \mathbb{R}^{r}\right),
$$

Let $\operatorname{pos} W=W\left(\mathbb{R}_{+}^{\bar{m}}\right), \mathcal{D}=\left\{u \in \mathbb{R}^{\bar{m}}:\left\{z \in \mathbb{R}^{r}: W^{\top} z \leq u\right\} \neq \emptyset\right\}$.

Assumptions:

(A1) $h(\xi)-T(\xi) x \in \operatorname{pos} W$ and $q(\xi) \in \mathcal{D}$ for all $(x, \xi) \in X \times \Xi$.
(A2) $\int_{\Xi}\|\xi\|^{2} P(d \xi)<\infty$.

Proposition:

(A1) and (A2) imply that the two-stage stochastic program represents a convex minimization problem with respect to the first stage decision x with polyhedral constraints.

Lemma: (Walkup-Wets 69, Nožička-Guddat-Hollatz-Bank 74)
Φ is finite, polyhedral and continuous on the $(\bar{m}+r)$-dimensional polyhedral cone $\mathcal{D} \times \operatorname{pos} W$ and there exist (r, \bar{m})-matrices C_{j} and $(\bar{m}+r)$-dimensional polyhedral cones $\mathcal{K}_{j}, j=1, \ldots, \ell$, such that

$$
\begin{aligned}
& \bigcup_{j=1} \mathcal{K}_{j}=\mathcal{D} \times \operatorname{pos} W \quad \text { and } \quad \text { int } \mathcal{K}_{i} \cap \operatorname{int} \mathcal{K}_{j}=\emptyset, i \neq j, \\
& \Phi(u, t)=\left\langle C_{j} u, t\right\rangle, \text { for each } \quad(u, t) \in \mathcal{K}_{j}, j=1, \ldots, \ell
\end{aligned}
$$

The function $\Phi(u, \cdot)$ is convex on pos W for each $u \in \mathcal{D}$, and $\Phi(\cdot, t)$ is concave on \mathcal{D} for each $t \in \operatorname{pos} W$. The intersection $\mathcal{K}_{i} \cap \mathcal{K}_{j}, i \neq j$, is either equal to $\{0\}$ or contained in a $(\bar{m}+r-1)$-dimensional subspace of $\mathbb{R}^{\bar{m}+r}$ if the two cones are adjacent.

Challenge: The integrand $f(x, \cdot)$ is not in the tensor product Sobolev space.

The ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms are smooth, but hopefully only some of them relevant.

Let $D=\{1, \ldots, d\}$ and $f \in L_{1, \rho}\left(\mathbb{R}^{d}\right)$ with $\rho(\xi)=\prod_{j=1}^{d} \rho_{j}\left(\xi_{j}\right)$, where

$$
f \in L_{p, \rho}\left(\mathbb{R}^{d}\right) \quad \text { iff } \quad \int_{\mathbb{R}^{d}}|f(\xi)|^{p} \rho(\xi) d \xi<\infty \quad(p \geq 1)
$$

Let the projection $P_{k}, k \in D$, be defined by

$$
\left(P_{k} f\right)(\xi):=\int_{-\infty}^{\infty} f\left(\xi_{1}, \ldots, \xi_{k-1}, s, \xi_{k+1}, \ldots, \xi_{d}\right) \rho_{k}(s) d s \quad\left(\xi \in \mathbb{R}^{d}\right)
$$

Clearly, $P_{k} f$ is constant with respect to ξ_{k}. For $u \subseteq D$ we write

$$
P_{u} f=\left(\prod_{k \in u} P_{k}\right)(f),
$$

where the product means composition, and note that the ordering within the product is not important because of Fubini's theorem. The function $P_{u} f$ is constant with respect to all $x_{k}, k \in u$.

ANOVA-decomposition of f :

$$
f=\sum_{u \subseteq D} f_{u},
$$

where $f_{\emptyset}=I_{d}(f)=P_{D}(f)$ and recursively

$$
f_{u}=P_{-u}(f)-\sum_{v \subset u} f_{v}
$$

or (due to Kuo-Sloan-Wasilkowski-Woźniakowski 10)

$$
f_{u}=\sum_{v \subseteq u}(-1)^{|u|-|v|} P_{-v} f=P_{-u}(f)+\sum_{v \subset u}(-1)^{|u|-|v|} P_{u-v}\left(P_{-u}(f)\right),
$$

where P_{-u} and P_{u-v} mean integration with respect to $\xi_{j}, j \in D \backslash u$ and $j \in u \backslash v$, respectively. The second representation motivates that f_{u} is essentially as smooth as $P_{-u}(f)$.

If f belongs to $L_{2, \rho}\left(\mathbb{R}^{d}\right)$, its ANOVA terms $\left\{f_{u}\right\}_{u \subseteq D}$ are orthogonal in $L_{2, \rho}\left(\mathbb{R}^{d}\right)$.
We set $\sigma^{2}(f)=\left\|f-I_{d}(f)\right\|_{L_{2}}^{2}$ and $\sigma_{u}^{2}(f)=\left\|f_{u}\right\|_{L_{2}}^{2}$, and have

$$
\sigma^{2}(f)=\|f\|_{L_{2}}^{2}-\left(I_{d}(f)\right)^{2}=\sum_{\emptyset \neq u \subseteq D} \sigma_{u}^{2}(f) .
$$

The dimension distribution and effective dimension of a function

Owen's superposition (truncation) dimension distribution of f : Probability measure $\nu_{S}\left(\nu_{T}\right)$ defined on the power set of D

$$
\nu_{S}(s):=\sum_{|u|=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)} \quad\left(\nu_{T}(s)=\sum_{\max \{j: j \in u\}=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)}\right) \quad(s \in D) .
$$

Effective superposition (truncation) dimension $d_{S}(\varepsilon)\left(d_{T}(\varepsilon)\right)$ of f is the $(1-\varepsilon)$ quantile of $\nu_{S}\left(\nu_{T}\right)$:

$$
\begin{aligned}
& d_{S}(\varepsilon)=\min \left\{s \in D: \sum_{|u| \leq s} \sigma_{u}^{2}(f) \geq(1-\varepsilon) \sigma^{2}(f)\right\} \leq d_{T}(\varepsilon) \\
& d_{T}(\varepsilon)=\min \left\{s \in D: \sum_{u \subseteq\{1, \ldots, s\}} \sigma_{u}^{2}(f) \geq(1-\varepsilon) \sigma^{2}(f)\right\}
\end{aligned}
$$

It holds

$$
\max \left\{\left\|f-\sum_{|u| \leq d_{S}(\varepsilon)} f_{u}\right\|_{2, \rho},\left\|f-\sum_{u \subseteq\left\{1, \ldots, d_{T}(\varepsilon)\right\}} f_{u}\right\|_{2, \rho}\right\} \leq \sqrt{\varepsilon} \sigma(f) .
$$

(Caflisch-Morokoff-Owen 97, Owen 03, Wang-Fang 03)

ANOVA decomposition of two-stage integrands

Assumptions:
(A1), (A2) and
(A3) P has a density of the form $\rho(\xi)=\prod_{j=1}^{d} \rho_{j}\left(\xi_{j}\right)\left(\xi \in \mathbb{R}^{d}\right)$ with continuous marginal densities $\rho_{j}, j \in D$.

Proposition:

(A1) implies that the function $f(x, \cdot)$, where

$$
f_{x}(\xi):=f(x, \xi)=\langle c, x\rangle+\Phi(q(\xi), h(\xi)-T(\xi) x) \quad(x \in X, \xi \in \Xi)
$$

is the two-stage integrand, is continuous and piecewise linear-quadratic.
For each $x \in X, f(x, \cdot)$ is linear-quadratic on each polyhedral set

$$
\Xi_{j}(x)=\left\{\xi \in \Xi:(q(\xi), h(\xi)-T(\xi) x) \in \mathcal{K}_{j}\right\} \quad(j=1, \ldots, \ell) .
$$

It holds int $\Xi_{j}(x) \neq \emptyset$, int $\Xi_{j}(x) \cap \operatorname{int} \Xi_{i}(x)=\emptyset, i \neq j$, and the sets $\Xi_{j}(x)$, $j=1, \ldots, \ell$, decompose Ξ. Furthermore, the intersection of two adjacent sets $\Xi_{i}(x)$ and $\Xi_{j}(x), i \neq j$, is contained in some $(d-1)$-dimensional affine subspace.

To compute projections $P_{k} f$ for $k \in D$, let $\xi_{i} \in \mathbb{R}, i=1, \ldots, d, i \neq k$, be given. We set $\xi^{k}=\left(\xi_{1}, \ldots, \xi_{k-1}, \xi_{k+1}, \ldots, \xi_{d}\right)$ and

$$
\xi_{k}(s)=\left(\xi_{1}, \ldots, \xi_{k-1}, s, \xi_{k+1}, \ldots, \xi_{d}\right) \in \mathbb{R}^{d} \quad(s \in \mathbb{R}) .
$$

We fix $x \in X$ and consider the one-dimensional affine subspace $\left\{\xi_{k}(s): s \in \mathbb{R}\right\}$:

Example with $d=2=p$, where the polyhedral sets are cones
It meets the nontrivial intersections of two adjacent polyhedral sets $\Xi_{i}(x)$ and $\Xi_{j}(x), i \neq j$, at finitely many points $s_{i}, i=1, \ldots, p$ if all $(d-1)$-dimensional subspaces containing the intersections do not parallel the k th coordinate axis.

The $s_{i}=s_{i}\left(\xi^{k}\right), i=1, \ldots, p$, are affine functions of ξ^{k}. It holds

$$
s_{i}=-\sum_{l=1, l \neq k}^{p} \frac{g_{i l}}{g_{i k}} \xi_{l}+a_{i} \quad(i=1, \ldots, p)
$$

for some $a_{i} \in \mathbb{R}$ and $g_{i} \in \mathbb{R}^{d}$ belonging to an intersection of polyhedral sets.

Proposition:

Let $k \in D, x \in X$. Assume (A1)-(A3) and that all $(d-1)$-dimensional affine subspaces containing nontrivial intersections of adjacent sets $\Xi_{i}(x)$ and $\Xi_{j}(x)$ do not parallel the k th coordinate axis.
Then the k th projection $P_{k} f$ has the explicit representation

$$
P_{k} f\left(\xi^{k}\right)=\sum_{i=1}^{p+1} \sum_{j=0}^{2} p_{i j}\left(\xi^{k} ; x\right) \int_{s_{i-1}}^{s_{i}} s^{j} \rho_{k}(s) d s,
$$

where $s_{0}=-\infty, s_{p+1}=+\infty$ and $p_{i j}(\cdot ; x)$ are polynomials in ξ^{k} of degree $2-j$, $j=0,1,2$, with coefficients depending on x, and is continuously differentiable. $P_{k} f$ is infinitely differentiable if the marginal density ρ_{k} belongs to $C^{\infty}(\mathbb{R})$.

Theorem:

Let $x \in X$, assume (A1)-(A3) and that the following geometric condition (GC) be satisfied: All $(d-1)$-dimensional affine subspaces containing nontrivial intersections of adjacent sets $\Xi_{i}(x)$ and $\Xi_{j}(x)$ do not parallel any coordinate axis. Then the ANOVA approximation

$$
f_{d-1}:=\sum_{|u| \leq d-1} f_{u} \quad \text { i.e. } \quad f=f_{d-1}+f_{D}
$$

of f is infinitely differentiable if all densities $\rho_{k}, k \in D$, belong to $C_{b}^{\infty}(\mathbb{R})$.
Here, the subscript b means that all derivatives of functions belonging to that space are bounded on \mathbb{R}.

Example: Let $\bar{m}=3, d=2, P$ denote the two-dimensional standard normal distribution, $h(\xi)=\xi, q$ and W be given such that (A1) is satisfied and the dual feasible set is

$$
\left\{z \in \mathbb{R}^{2}:-z_{1}+z_{2} \leq 1, z_{1}+z_{2} \leq 1,-z_{2} \leq 0\right\}
$$

Dual feasible set, its vertices v^{j} and the normal cones \mathcal{K}_{j} to its vertices
The function Φ and the integrand are of the form

$$
\begin{aligned}
& \Phi(t)=\max _{i=1,2,3}\left\langle v^{i}, t\right\rangle=\max \left\{t_{1},-t_{1}, t_{2}\right\}=\max \left\{\left|t_{1}\right|, t_{2}\right\} \\
& f(\xi)=\langle c, x\rangle+\Phi(\xi-T x)=\langle c, x\rangle+\max \left\{\left|\xi_{1}-[T x]_{1}\right|, \xi_{2}-[T x]_{2}\right\}
\end{aligned}
$$

and the convex polyhedral sets are $\Xi_{j}(x)=T x+\mathcal{K}_{j}, j=1,2,3$.
The ANOVA projection $P_{1} f$ is in C^{∞}, but $P_{2} f$ is not differentiable.

QMC quadrature error estimates

If the assumptions of the theorem are satisfied, the two-stage integrand $f=f_{x}$ (for fixed $x \in X$) allows the representation $f=f_{d-1}+f_{D}$ with f_{d-1} belonging to \mathbb{F}_{d}. This implies

$$
\begin{aligned}
\left|\int_{[0,1]^{d}} f(\xi) d \xi-\frac{1}{n} \sum_{j=1}^{n} f\left(\xi^{j}\right)\right| & \leq e\left(Q_{n, d}\right)\left\|f_{d-1}\right\|_{\gamma}+\left|\int_{[0,1]^{d}} f_{D}(\xi) d \xi-\frac{1}{n} \sum_{j=1}^{n} f_{D}\left(\xi^{j}\right)\right| \\
& \leq e\left(Q_{n, d}\right)\left\|f_{d-1}\right\|_{\gamma}+\left\|f_{D}\right\|_{L_{2}}+\left(\frac{1}{n} \sum_{j=1}^{n}\left|f_{D}\left(\xi^{j}\right)\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

where $\|\cdot\|_{\gamma}$ is the weighted tensor product Sobolev space norm.
As f_{D} is (Lipschitz) continuous and if the $\xi^{j}, j=1, \ldots, n$, are properly selected, the last term in the above estimate may be assumed to be bounded by $2\left\|f_{D}\right\|_{L_{2}}$.

Hence, if the effective superposition dimension satisfies $d_{S}(\varepsilon) \leq d-1$, i.e., $\left\|f_{D}\right\|_{L_{2}} \leq \sqrt{\varepsilon} \sigma(f)$ holds for some small $\varepsilon>0$, the first term $e\left(Q_{n, d}\right)\left\|f_{d-1}\right\|_{\gamma}$ dominates and the convergence rate of $e\left(Q_{n, d}\right)$ becomes most important.

Challenge: How important is the geometric condition (GC) ?
Partial answer: If P is normal with nonsingular covariance matrix, (GC) is satisfied for almost all covariance matrices. Namely, it holds

Proposition: Let $x \in X$, (A1), (A2) be satisfied, $\operatorname{dom} \Phi=\mathbb{R}^{r}$ and P be a normal distribution with nonsingular covariance matrix Σ. Then the infinite differentiability of the ANOVA approximation f_{d-1} of f is a generic property, i.e., it holds in a residual set (countable intersection of open dense subsets) in the metric space of orthogonal (d, d)-matrices Q (endowed with the norm topology) appearing in the spectral decomposition $\Sigma=Q^{\top} D Q$ of Σ (with a diagonal matrix D containing the eigenvalues of Σ).

Challenge: For which two-stage stochastic programs is $\left\|f_{D}\right\|_{L_{2, \rho}}$ small, i.e., the effective superposition dimension $d_{S}(\varepsilon)$ of f is less than $d-1$ or even much less?

Partial answer: In case of a (log)normal probability distribution P the effective dimension depends on the choice of the matrix A in the decomposition $\Sigma=A A^{\top}$ of thenonsingular covariance matrix Σ.

Dimension reduction in case of (log)normal distributions

Let P be the normal distribution with mean μ and nonsingular covariance matrix Σ. Let A be a matrix satisfying $\Sigma=A A^{\top}$. Then η defined by $\xi=A \eta+\mu$ is standard normal.
A universal principle is principal component analysis (PCA). Here, one uses $A=\left(\sqrt{\lambda_{1}} u_{1}, \ldots, \sqrt{\lambda_{d}} u_{d}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{d}>0$ are the eigenvalues of Σ in decreasing order and the corresponding orthonormal eigenvectors u_{i}, $i=1, \ldots, d$. Wang-Fang 03, Wang-Sloan 05 report an enormous reduction of the effective truncation dimension in financial models if PCA is used.

A problem-dependent principle may be based on the following equivalence principle (Papageorgiou 02, Wang-Sloan 11).

Proposition: Let A be a fixed $d \times d$ matrix such that $A A^{\top}=\Sigma$. Then it holds $\Sigma=B B^{\top}$ if and only if B is of the form $B=A Q$ with some orthogonal $d \times d$ matrix Q.

Idea: Determine Q for given A such that the effective truncation dimension is minimized (Wang-Sloan 11).

Some computational experience

We considered a two-stage production planning problem for maximizing the expected revenue while satisfying a fixed demand in a time horizon with $d=T=$ 100 time periods and stochastic prices for the second-stage decisions. It is assumed that the probability distribution of the prices ξ is log-normal. The model is of the form

$$
\max \left\{\sum_{t=1}^{T}\left(c_{t}^{\top} x_{t}+\int_{\mathbb{R}^{T}} q_{t}(\xi)^{\top} y_{t} P(d \xi)\right): W y+V x=h, y \geq 0, x \in X\right\}
$$

The use of PCA for decomposing the covariance matrix has led to effective truncation dimension $d_{T}(0.01)=2$. As QMC methods we used a randomly scrambled Sobol sequence (SSobol)(Owen, Hickernell) with $n=2^{7}, 2^{9}, 2^{11}$ and a randomly shifted lattice rule (Sloan-Kuo-Joe) with $n=127,509,2039$, weights $\gamma_{j}=\frac{1}{j^{3}}$ and for MC the Mersenne-Twister. 10 runs were performed for the error estimates and 30 runs for plotting relative errors.

Average rate of convergence for QMC: $O\left(n^{-0.9}\right)$ and $O\left(n^{-0.8}\right)$. Instead of $n=2^{7}$ SSobol samples one would need $n=10^{4} \mathrm{MC}$ samples to achieve a similar accuracy as SSobol.

$\log _{10}$ of the relative errors of MC, SLA (randomly shifted lattice rule) and SSOB (scrambled Sobol' points)

Conclusions

- Our analysis provides a theoretical basis for applying QMC methods accompanied by dimension reduction techniques to two-stage stochastic programs.
- The analysis also applies to sparse grid quadrature techniques.
- The results are extendable and will be extended to mixed-integer two-stage models, to multi-stage situations, and to other models in stochastic optimization.

References

R. E. Caflisch, W. Morokoff and A. Owen: Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, Journal of Computational Finance 1 (1997), 27-46.
J. Dick, F. Pillichshammer: Digital Nets and Sequences, Cambridge University Press, Cambridge 2010.
J. Dick, F. Y. Kuo, I. H. Sloan: High-dimensional integration - the Quasi-Monte Carlo way, Acta Numerica (2014), 1-153.
M. Griebel, F. Y. Kuo and I. H. Sloan: The smoothing effect of integration in \mathbb{R}^{d} and the ANOVA decomposition, Mathematics of Computation 82 (2013), 383-400.
H. Heitsch, H. Leövey and W. Römisch, Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?, Stochastic Programming E-Print Series 5-2012 (www.speps.org) and submitted.
T. Homem-de-Mello: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling, SIAM Journal on Optimization 19 (2008), 524-551.
F. Y. Kuo: Component-by-component constructions achieve the optimal rate of convergence in weighted Korobov and Sobolev spaces, Journal of Complexity 19 (2003), 301-320.
F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski: On decomposition of multivariate functions, Mathematics of Computation 79 (2010), 953-966.
F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, B. J. Waterhouse: Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands, Journal of Complexity 26 (2010), 135-160.
A. B. Owen: Randomly permuted (t, m, s)-nets and (t, s)-sequences, in: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Lecture Notes in Statistics, Vol. 106, Springer, New York, 1995, 299-317.
A. B. Owen: The dimension distribution and quadrature test functions, Statistica Sinica 13 (2003), 1-17.
A. B. Owen: Multidimensional variation for Quasi-Monte Carlo, in J. Fan, G. Li (Eds.), International Conference on Statistics, World Scientific Publ., 2005, 49-74.
T. Pennanen, M. Koivu: Epi-convergent discretizations of stochastic programs via integration quadratures, $\mathrm{Nu}-$ merische Mathematik 100 (2005), 141-163.
I. H. Sloan and H. Woźniakowski: When are Quasi Monte Carlo algorithms efficient for high-dimensional integration, Journal of Complexity 14 (1998), 1-33.
I. H. Sloan, F. Y. Kuo and S. Joe: Constructing randomly shifted lattice rules in weighted Sobolev spaces, SIAM Journal Numerical Analysis 40 (2002), 1650-1665.
X. Wang and K.-T. Fang: The effective dimension and Quasi-Monte Carlo integration, Journal of Complexity 19 (2003), 101-124.
X. Wang and I. H. Sloan: Why are high-dimensional finance problems often of low effective dimension, SIAM Journal Scientific Computing 27 (2005), 159-183.
X. Wang and I. H. Sloan: Low discrepancy sequences in high dimensions: How well are their projections distributed ? Journal of Computational and Applied Mathematics 213 (2008), 366-386.
X. Wang and I. H. Sloan, Quasi-Monte Carlo methods in financial engineering: An equivalence principle and dimension reduction. Operations Research 59 (2011), 80-95.

