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Introduction

Aim: Apply randomized Quasi-Monte Carlo methods, in particular, randomly
shifted lattice rules to optimization models containing high-dimensional integrals.

Example: Option pricing (Wang-Sloan 11)

Consider the pricing of a path-dependent option with payoff (.S, . . ., S;,) where
St; are the prices of the underlying asset at times ¢, j = 1,...,d. Suppose the
prices are considered at equally spaced times ¢; = j%, where T’ is the expiration
date, and the asset price follows a geometric Brownian motion

dSt = Tstdt + O'StdBt -

where r is the risk-free interest rate, o the volatility and B; the standard Brownian
motion (normal with zero mean and E[B;B;] = min{t, s}).
The analytical solution of the (scalar linear) stochastic differential equation is

Sy = Spexp ((r — %Q)t + aBt).

The value of the option at ¢ = 0 is E[exp(—rT")g(Sy,, ..., St,)]-



Consider Asian call options based on the geometric or arithmetic average of the
underlying asset. With the strike price K at time T’ their terminal payoffs are

g(Stys -5 St) —max{ HSd } or —max{O,%ljiStj—K}.

If & denotes the covariance matrix of the normal random vector (By,, ..., B;,)'
and A is a matrix satisfying © = A A", the random vector (z,...,2;)" such
that

(Btla .. .,Btd)—r = A(Zl, o ¢ .,Zd)—r

is standard normal with independent components. For the first case it holds

d d
HS% = exp (m+ = ZAkzk)
t=1

with A = Z;.lzl ajr, A = (ajr) and m = log Sy + G 1>(7" — %2) Hence, the
value of the option at t =0 is

exp(—rT) /Rd max {O, exp (m = = zd: Ak.zk) — K}pd(z)dz
k=1

with the d-dimensional standard normal density py.



Example: (Optimization problem with random constraints)

We consider the linear optimization problem with random constraints
min{c'z : T(&)x = h(§),z € X},

where X is a polyhedron in R™, T'(¢) a random matrix and h(£) a random vec-
tor. The model is inappropriate to find a deterministic decision !

Idea: Introduce a compensation or recourse variable y > 0, a recourse matrix IV,
a (possibly random) recourse cost vector ¢(&), replace the constraint "7T'(§)x =
h(€)" by "Wy = h(§)—T(&)z" and select a random recourse decision y(&) with
minimal recourse costs " q(£) "'y(€)”. Adding the expected recourse costs to the
original cost term ¢' z leads to the two-stage stochastic optimization model

min{cTo -+ [ int{a(€)y: Wy = () ~ T(€)ay 2 0}pul§)d€ s € X,

where p, is the density of the underlying random vector & on RY.

Challenge: In both examples the integrands do not belong to the tensor product
Sobolev space (after transformation to [0, 1]9).



Two-stage linear stochastic optimization

We consider the linear two-stage stochastic program

min { / flz,E)P(dE) = € X},
where f is extended real-valued defined on R™ x R? given by

fl@,&) = (¢, x) + D(q(&), h(§) — T(§x), (z,§) € X X E,
c € R™, X C R™ and = C R? are convex polyhedral, W is an (r, 77)-matrix, P
is a Borel probability measure on =, and the vectors ¢(£) € R™, h(§) € R” and

the (r, m)-matrix T'(&) are affine functions of &, ® is the second-stage optimal
value function

O(u,t) = inf{(u,y) : Wy =t,y >0} ((u,t) € R" x R),
Let posW =W (R"), D={u e R™":{z e R": W'z < u} # 0}
Assumptions:

(A1) (&) —T(&)x € posW and q(&) € D for all (z,£) € X x =
(A2) [ |[E]2P(dE) < oo



Proposition:

(A1) and (A2) imply that the two-stage stochastic program represents a convex
minimization problem with respect to the first stage decision x with polyhedral
constraints.

Lemma: (Walkup-Wets 69, NoZitka-Guddat-Hollatz-Bank 74)

® is finite, polyhedral and continuous on the (72 + r)-dimensional polyhedral
cone D x pos W and there exist (r,7)-matrices C; and (T2 + r)-dimensional
polyhedral cones K;, 7 =1, ..., ¢, such that

(
UICj = DxposW and int/C;NintK; =10, i # j,

j=1
d(u,t) = (Cju,t), foreach (u,t) €k, j=1,..,¢

The function ®(u, -) is convex on pos W for each u € D, and ®(-,t) is concave
on D for each ¢t € posW. The intersection KC; N K;, ¢ # j, is either equal to
{0} or contained in a (T + 7 — 1)-dimensional subspace of R if the two cones
are adjacent.

Challenge: The integrand f(z,-) is not in the tensor product Sobolev space.



The ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms are smooth,
but hopefully only some of them relevant.

Let D ={1,...,d} and f € Ly ,(R?) with p(¢) = H;.Z:l pi(&;), where

)
[ € Ly, RY if /\f WPo(E)de < 00 (p = 1).

Let the projection Py, k € D, be defined by

(Pof)(€) = / FErs s Gt 8 Ertse o E)pr(s)ds (€ € RY).

Clearly, Py f is constant with respect to &.. For u C D we write
Puf = (Hpk) (f)
keu

where the product means composition, and note that the ordering within the
product is not important because of Fubini's theorem. The function P,f is
constant with respect to all x, k € wu.



ANOVA-decomposition of f:

F=> fu,

uCD

where fy = I;(f) = Pp(f) and recursively

- £

vCu

or (due to Kuo-Sloan-Wasilkowski-Wozniakowski 10)

fo=S=)MP = PL(f) + ST(=)MR, (P (F)),

vCu vCU

where P_, and P,_, mean integration with respect to &;, 7 € D\u and j € u\v,
respectively. The second representation motivates that f, is essentially as smooth

as P_,(f).
If f belongs to Ly ,(R?), its ANOVA terms { f, }.cp are orthogonal in Ly ,(R?).

Wwﬂﬂﬁkﬂf—M)ﬁawa%):WM%mﬁMw

o*(f) = IfIIz, - =) o

0AuCD



The dimension distribution and effective dimension of a function

Owen'’s superposition (truncation) dimension distribution of f: Probability mea-
sure vg (vr) defined on the power set of D

vs(s) :—Zgggg (VT(S): 3 7./ >) (s € D).

lu|=s max{j:jeu}t=s

Effective superposition (truncation) dimension dg(e) (dr(e)) of f is the (1 —¢)-
quantile of vg (v7):

lu|<s
dr(e) = mings € D Z ag(f) (1—-¢) 2(f)}
uC{l,...,s}
It holds
ws{li- S A - X ], )<y
lu|<dg(e) uC{1,....dp(e ’

(Caflisch-Morokoff-Owen 97, Owen 03, Wang-Fang 03)



ANOVA decomposition of two-stage integrands

Assumptions:

(A1), (A2) and

(A3) P has a density of the form p(&) = H?ﬂ p;(&;) (€ € R?Y) with continuous
marginal densities p;, j € D.

Proposition:
(A1) implies that the function f(x,-), where

fo(€) = f(z,8) = (¢, z) + P(q(£), h(§) = T(§)z) (v € X,£€E)

is the two-stage integrand, is continuous and piecewise linear-quadratic.
For each x € X, f(x,-) is linear-quadratic on each polyhedral set

Zj(x) =1£ € Z: (q(6), h(&) = T(€)z) e Ky} (G =1,...,0).
It holds int=;(x) # 0, int=;(z) N int=;(xz) = 0, i # j, and the sets =;(z),
g =1,...,¢, decompose =. Furthermore, the intersection of two adjacent sets
=i(z) and Z;(x), i # j, is contained in some (d — 1)-dimensional affine subspace.

(Griebel-Kuo-Sloan 13)



To compute projections Pf for k € D, let & € R, @ = 1,...,d, 1 # k, be
given' We set gk - (517 s 7€k—17 gk‘—{—l) s 7€d) and

Eu(s) = (&1, ..., &1, 5, &ns1, ..., &) €ERT (s €R).

We fix x € X and consider the one-dimensional affine subspace {{;(s) : s € R}:

=3(x)

€1(s)

S1 S92

EQ($> El(CE)

Example with d = 2 = p, where the polyhedral sets are cones

It meets the nontrivial intersections of two adjacent polyhedral sets =;(z) and
=;(z), i # j, at finitely many points s;, ¢ = 1,...,p if all (d — 1)-dimensional
subspaces containing the intersections do not parallel the kth coordinate axis.



The s; = 5,(€%), i = 1,..., p, are affine functions of £*. It holds

P
S; — — gll€l+al (’[,:1,,]9)

=12k I

for some a; € R and g; € R? belonging to an intersection of polyhedral sets.

Proposition:

Let k € D, x € X. Assume (Al)—(A3) and that all (d — 1)-dimensional affine
subspaces containing nontrivial intersections of adjacent sets =;(x) and =;(x) do
not parallel the kth coordinate axis.

Then the kth projection P, f has the explicit representation

p+1
Pkf Z pr ; L / Sjﬂk(‘S)dSa
i=1 j=0 Si—1
where sy = —00, $,41 = +00 and p;;(+; ¥) are polynomials in £* of degree 2 — j,

jJ = 0,1,2, with coefficients depending on z, and is continuously differentiable.
Py f is infinitely differentiable if the marginal density p; belongs to C*°(R).



Theorem:

Let x € X, assume (A1)—(A3) and that the following geometric condition (GC)
be satisfied: All (d — 1)-dimensional affine subspaces containing nontrivial inter-
sections of adjacent sets =;(x) and =;(x) do not parallel any coordinate axis.

Then the ANOVA approximation
Ja-1:= Z Ju le. f=faa+ o
lu|<d—1

of f is infinitely differentiable if all densities py, k € D, belong to C;°(R).
Here, the subscript b means that all derivatives of functions belonging to that space are
bounded on R.



Example: Let m = 3, d = 2, P denote the two-dimensional standard normal
distribution, k(&) = &£, ¢ and W be given such that (A1) is satisfied and the dual

feasible set is

{ZERQZ—Zl—I—ZQSl,Zl—l—ZQS1,—22§O}.

ICa Ky

Dual feasible set, its vertices v/ and the normal cones KC; to its vertices

The function ® and the integrand are of the form

O(t) = Z_r_r11a2><3<vi, t) = max{ty, —t1, to} = max{|t1|, {2}

f(&) = (e, x) + ®(§ — Tz) = (¢, z) + max{|[§, — [Twh, & — [Tz]2}

and the convex polyhedral sets are =;(x) =Tx + K;, j = 1,2, 3.
The ANOVA projection P; f is in C°°, but P, f is not differentiable.



QMC quadrature error estimates

If the assumptions of the theorem are satisfied, the two-stage integrand f = f,
(for fixed x € X)) allows the representation f = f;_1 + fp with f;_; belonging
to IF;. This implies

n

e~} S HE)| < c@ualdiall +| [ fol€hde L 3% 1ol
5 J=

) [0,1]¢ j=1

D=

< el@ualllfatlly + oz, + (32 170(€)F)
J:
where || - || is the weighted tensor product Sobolev space norm.

As fp is (Lipschitz) continuous and if the £/, j = 1,...,n, are properly selected,
the last term in the above estimate may be assumed to be bounded by 2|| fp|| L,

Hence, if the effective superposition dimension satisfies dg(c) < d — 1, i.e,,
| follz, < v/ea(f) holds for some small ¢ > 0, the first term e(Q,.q)|| fi-1ll-
dominates and the convergence rate of e((),, ;) becomes most important.



Challenge: How important is the geometric condition (GC) ?

Partial answer: If P is normal with nonsingular covariance matrix, (GC) is
satisfied for almost all covariance matrices. Namely, it holds

Proposition: Let z € X, (Al), (A2) be satisfied, dom® = R" and P be
a normal distribution with nonsingular covariance matrix >. Then the infinite
differentiability of the ANOVA approximation f; 1 of f is a generic property,
i.e., it holds in a residual set (countable intersection of open dense subsets)
in the metric space of orthogonal (d,d)-matrices () (endowed with the norm
topology) appearing in the spectral decomposition 3 = Q"D Q of X (with a
diagonal matrix D containing the eigenvalues of ).

Challenge: For which two-stage stochastic programs is || fp||1, , small, i.e., the
effective superposition dimension dg(e) of f is less than d — 1 or even much less?

Partial answer: In case of a (log)normal probability distribution P the effective
dimension depends on the choice of the matrix A in the decomposition X = A A"
of thenonsingular covariance matrix ..



Dimension reduction in case of (log)normal distributions

Let P be the normal distribution with mean 1 and nonsingular covariance matrix
». Let A be a matrix satisfying ¥ = A A". Then 1 defined by £ = An + v is
standard normal.

A universal principle is principal component analysis (PCA). Here, one uses
A = (VA ...,V Aqug), where A\ > -+ > X; > 0 are the eigenvalues
of X in decreasing order and the corresponding orthonormal eigenvectors u;,
? =1,...,d. Wang-Fang 03, Wang-Sloan 05 report an enormous reduction of the effec-
tive truncation dimension in financial models if PCA is used.

A problem-dependent principle may be based on the following equivalence prin-
ciple (Papageorgiou 02, Wang-Sloan 11).

Proposition: Let A be a fixed d x d matrix such that A A" = ¥. Then it holds
> = B B' if and only if B is of the form B = A () with some orthogonal d x d
matrix ().

Idea: Determine () for given A such that the effective truncation dimension is
minimized (Wang-Sloan 11).



Some computational experience

We considered a two-stage production planning problem for maximizing the ex-
pected revenue while satisfying a fixed demand in a time horizon with d =T =
100 time periods and stochastic prices for the second-stage decisions. It is as-
sumed that the probability distribution of the prices £ is log-normal. The model
is of the form

e {3 (e [

Qt(f)TytP(df)) - Wy+Vae=hy>0,z¢€ X}
t=1 R

The use of PCA for decomposing the covariance matrix has led to effective trun-
cation dimension dr(0.01) = 2. As QMC methods we used a randomly scram-
bled Sobol sequence (SSobol)(Owen, Hickemell) with i = 27, 27 211 and a randomly
shifted lattice rule (Sloan-Kuo-Joe) with m = 127,509, 2039, weights v; = ]%) and for
MC the Mersenne-Twister. 10 runs were performed for the error estimates and
30 runs for plotting relative errors.

Average rate of convergence for QMC: O(n~"?) and O(n~"%).

Instead of n = 27 SSobol samples one would need n = 10* MC samples to achieve a similar accuracy as SSobol.



M-

Log,,(ERRORS)
T
|___
-
N

+

MC 125 MC 512 MC 2045 Lat1ar GLA 508 GLA 2039 §50B 126 550B 512 5506 2048

log,, of the relative errors of MC, SLA (randomly shifted lattice rule) and SSOB (scrambled Sobol" points)



Conclusions
e Our analysis provides a theoretical basis for applying QMC methods accom-
panied by dimension reduction techniques to two-stage stochastic programs.
e The analysis also applies to sparse grid quadrature techniques.

e The results are extendable and will be extended to mixed-integer two-stage
models, to multi-stage situations, and to other models in stochastic opti-
mization.

Second-stage optimal value function of an integer program (van der Vlerk)
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