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Introduction

A number of stochastic programming models may be traced back to minimizing

an expectation functional on some closed subset of a Euclidean space. A general

form is

(SP) min
{∫

Ξ

f0(x, ξ)P (dξ) : x ∈ X
}

where X is a closed subset of Rm, Ξ a closed subset of Rs, P is a Borel probability

measure on Ξ abbreviated by P ∈ P(Ξ). The function f0 from Rm × Ξ to the

extended reals R = [−∞,∞] is a normal integrand.

For example, typical integrands in linear two-stage stochastic programming models are

f0(x, ξ) =

{
g(x) + Φ(q(ξ), h(x, ξ)) , q(ξ) ∈ D

+∞ , else
,

where X and Ξ are convex polyhedral, g(·) is a linear function, q(·) is affine, D = {q ∈ Rm̄ :
{z ∈ Rr : W>z − q ∈ Y ?} 6= ∅} denotes the convex polyhedral dual feasibility set, h(·, ξ) is
affine for fixed ξ and h(x, ·) is affine for fixed x, and Φ denotes the infimal function of the
linear (second-stage) optimization problem

Φ(q, t) := inf{〈q, y〉 : Wy = t, y ∈ Y }

with (r, m̄) matrix W , convex polyhedral cone Y ⊂ Rm̄ and its polar cone Y ? ⊂ Rm̄.



For general continuous multivariate probability distributions P such stochastic

optimization models are not solvable in general. The computation of the objec-

tive of linear two-stage stochastic programs is #P-hard.

Many approaches for solving such optimization models computationally are based

on discrete approximations of the probability measure P , i.e., on finding a discrete

probability measure Pn in

Pn(Ξ) :=
{ n∑

i=1

piδξi : ξi ∈ Ξ, pi ≥ 0, i = 1, . . . , n,

n∑
i=1

pi = 1
}

for some n ∈ N, which approximates P in a suitable way. Here, δξ denotes the

Dirac measure placing unit mass to ξ and zero elsewhere.

The atoms ξi, i = 1, . . . , n, of Pn are often called scenarios in this context. Of

course, the notion suitable should at least include that the distance of infima and

solution sets

|v(P )− v(Pn)| and sup
x∈S(Pn)

d(x, S(P ))

become reasonably small, where v(P ) and S(P ) denote the infimum and solution

set of (SP).



Stability-based scenario generation

We are interested in the continuous dependence of infima and solution sets on

the underlying probability distribution P in terms of a suitable metric.

To state a corresponding result we introduce the following sets of functions and

of probability distributions (both defined on Ξ)

F = {f0(x, · ) : x ∈ X} ,

PF =
{
Q ∈ P(Ξ) : −∞ <

∫
Ξ

inf
x∈X

f0(x, ξ)Q(dξ), sup
x∈X

∫
Ξ

f0(x, ξ)Q(dξ) < +∞
}

and the (pseudo-) metric on PF

dF(P,Q) = sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ)

∣∣∣∣ (P,Q ∈ PF).

For typical applications, like for linear two-stage models, the sets PF allow a

simple characterization, for example, as subsets of P(Ξ) satisfying certain mo-

ment conditions. The (pseudo) metric dF is called problem-based or minimal

information distance.



Proposition:
Consider (SP) for P ∈ PF , assume that X is compact. Then the estimates

|v(P )− v(Q)| ≤ dF(P,Q)

sup
x∈S(Q)

d(x, S(P )) ≤ ψ−1
P (dF(P,Q))

hold whenever Q ∈ PF , where ψP : R+ → R+ is the growth function

ψP (τ ) = inf
x∈X

{∫
Ξ

f0(x, ξ)P (dξ)− v(P ) : d(x, S(P )) ≥ τ, x ∈ X
}
.

For given n ∈ N the above result suggests to choose discrete approximations from

Pn(Ξ) for solving (SP) such that they solve the best approximation problem

(OSG) min
Pn∈Pn(Ξ)

dF(P, Pn) .

Determining the scenarios of a solution to (OSG) is called optimal scenario gen-

eration.



Monte Carlo and (randomized) Quasi-Monte Carlo

Monte Carlo: Let ξi(·), i ∈ N, denote independent and identically distributed random
vectors in Ξ with common distribution P . Empirical measure:

Pn(·) =
1

n

n∑
i=1

δξi(·) (n ∈ N)

defined on some probability space (Ω,A,P). Best possible mean convergence rate:

E[dF(Pn(·), P )] = O(n−
1
2 ).

under strong assumptions on F .

Quasi-Monte Carlo: The basic idea of Quasi-Monte Carlo (QMC) methods is to use deter-
ministic points ξi, i = 1, . . . , n, that are (in some way) uniformly distributed in [0, 1]s and to
consider the approximate computation of

Is(f) =

∫
[0,1]s

f(ξ)dξ by Qn,s(f) =
1

n

n∑
i=1

f(ξi).

There exist randomized points ξi(·) ∈ [0, 1]s, i = 1, . . . , n, such that

(E[|Qn,s(·)(f)− Is(f)|2])
1
2 ≤ C(δ)n−1+δ (δ ∈ (0, 0.5])

if the integrand f is sufficiently smooth.



Problem-based scenario generation for linear two-stage models

We consider linear two-stage stochastic programs as introduced earlier and impose

the following conditions:

(A0) X is a bounded polyhedron and Ξ is convex polyhedral.

(A1) h(x, ξ) ∈ W (Y ) and q(ξ) ∈ D are satisfied for every pair (x, ξ) ∈ X×Ξ.

(A2) P has a second order absolute moment.

Then the infima v(P ) and v(Pn) are attained and the estimate

|v(P )− v(Pn)| ≤ sup
x∈X

∣∣∣∣∫
Ξ

f0(x, ξ)P (dξ)−
∫

Ξ

f0(x, ξ)Pn(dξ)

∣∣∣∣ = dF(P, Pn)

= sup
x∈X

∣∣∣∣∫
Ξ

Φ(q(ξ), h(x, ξ))P (dξ)−
∫

Ξ

Φ(q(ξ), h(x, ξ))Pn(dξ)

∣∣∣∣
holds due to the Proposition for every Pn ∈ Pn(Ξ).

Optimal scenario generation problem (OSG):

Determine P ∗n ∈ Pn(Ξ) such that it solves the best approximation problem

min
(ξ1,...,ξn)∈Ξn

pi≥0,
∑n
i=1 pi=1

sup
x∈X

∣∣∣∣∣
∫

Ξ

Φ(q(ξ), h(x, ξ))P (dξ)−
n∑
i=1

piΦ(q(ξi), h(x, ξi))

∣∣∣∣∣.



The class of functions {Φ(q(·), h(x, ·)) : x ∈ X} from Ξ to R enjoys specific

properties. All functions are finite, continuous and piecewise linear-quadratic on

Ξ. They are linear-quadratic on each convex polyhedral set

Ξj(x) = {ξ ∈ Ξ : (q(ξ), h(x, ξ)) ∈ Kj} (j = 1, . . . , `),

where the convex polyhedral cones Kj, j = 1, . . . , `, represent a decomposition

of the domain dom Φ of Φ, which is itself a convex polyhedral cone in Rm̄+r.

Theorem 1: Assume (A0)–(A2).

Then (OSG) is equivalent to the generalized semi-infinite program (GSIP)

min
t≥0,(ξ1,...,ξn)∈Ξn

pi≥0,
∑n
i=1 pi=1

t
∣∣∣∣∣∣
∑n

i=1 pi〈h(x, ξi), zi〉 ≤ t + FP (x)

FP (x) ≤ t +
∑n

i=1 pi〈q(ξi), yi〉
∀(x, y, z) ∈M(ξ1, . . . , ξn)

,
where the set M =M(ξ1, . . . , ξn) and the function FP : X → R are given by

M = {(x, y, z) ∈ X × Y n × Rrn : Wyi = h(x, ξi),W>zi − q(ξi) ∈ Y ∗, ∀i},

FP (x) =

∫
Ξ

Φ(q(ξ), h(x, ξ))P (dξ).

The latter is the convex expected recourse function of the two-stage model.

If the function h is affine, the feasible set of (GSIP) is closed.



Generalized semi-infinite programming

Generalized semi-infinite optimization problems are of the form

min{f (x) : x ∈M} with M = {x ∈ Rn : gi(x, y) ≤ 0, y ∈ Y (x), i ∈ I},

where

Y (x) = {y ∈ Rm : hj(x, y) ≤ 0, j ∈ J}
and all functions f , gi, i ∈ I , hj, j ∈ J , are real-valued and continuous and I

and J are finite index sets. Moreover, the set-valued mapping Y : Rn ⇒ Rm is

assumed to be (Berge) upper semicontinuous.

Proposition: (Stein 03)

M is closed if, in addition, the set-valued mapping Y is lower semicontinuous.

Proposition: (Still 01)

Assume that gi, i ∈ I , are convex in (x, y) on Rn+m and that for all x, x̃ in Rn

and 0 < α < 1 holds that

Y (αx + (1− α)x̃) ⊆ αY (x) + (1− α)Y (x̃).

Then the feasible set M is convex.



Convexity of problem-based scenario generation for two-stage models

Theorem 2:
Assume (A0)–(A2), let the function h be affine, the weights pi, i = 1, . . . , n, be

fixed and either h or q be random.

Then the set-valued mappingM : Ξn ⇒ Rm×Y n×Rrn has convex polyhedral

graph and is Hausdorff Lipschitz continuous. In particular, the feasible set of

the (GSIP) is closed and convex. Furthermore, if the infimum of the (GSIP) is

positive, then the optimal value behaves Lipschitz continuous with respect to

changes of the function FP in terms of the supremum-norm on X .

We note that FP (x) can only be calculated approximately even if the probability

measure P is completely known. For example, this could be done by Monte Carlo

or Quasi-Monte Carlo methods with a large sample size N > n, i.e.

FP (x) ≈ 1

N

N∑
j=1

Φ(q(ξ̂j), h(x, ξ̂j)),

where ξ̂j ∈ Ξ, j = 1, . . . , N .



Problem-based scenario generation via semi-infinite optimization

In some cases the problem (GSIP) can be transformed into a semi-infinite program

inspired by the recent paper (Schwientek-Seidel-Küfer 21).

Let only costs q(·) be random, Y = Rm̄
+ and the transformation

t : Ξ×Z → Rr t(ξ, z) = z + (W+)>(q(ξ)− q̄)

be given, where Z = {z ∈ Rr : W>z ≤ q̄} and the (m̄, r)-matrix W+ denotes

the Moore-Penrose inverse of W .

Theorem 3: Assume (A0) and (A2).

Let h(x) ∈ W (Rm̄
+) for all x ∈ X and q̄, q(ξ) ∈ W>(Rr) for all ξ ∈ Ξ.

Then (GSIP) is equivalent to the semi-infinite program

min
t≥0

(ξ1,...,ξn)∈Ξn

pi≥0,
∑n
i=1 pi=1

t
∣∣∣∣∣∣∣∣∣∣

n∑
i=1

pi〈h(x), zi + (W+)>(q(ξi)− q̄)〉 ≤ t + FP (x)

FP (x) ≤ t +
n∑
i=1

pi〈q(ξi), yi〉

∀(x, y, z) ∈ X × Y(x)n ×Zn

,
where Y(x) = {y ∈ Rm̄

+ : Wy = h(x)} for each x ∈ X . If the weights pi,

i = 1, . . . , n, are fixed, the semi-infinite program is linear.



Problem-based scenario reduction for two-stage model

Let ξi, i = 1, . . . , N , be a large set of scenarios with probabilities pi, i =

1, . . . , N , that define a discrete probability measure

P =

N∑
i=1

piδξi.

For prescribed n ∈ N, n < N , we intend to determine an index set J ⊂
{1, . . . , N} of cardinality |J | = n and new weights π̄j, j ∈ J , such that

P ∗J =
∑
j∈J

π̄jδξj

is a probability measure and solves the optimal scenario reduction problem (OSR)

min

sup
x∈X

∣∣∣∣∣∣
∑
j∈J

πjϕj(x)−
N∑
i=1

piϕi(x)

∣∣∣∣∣∣ : J ⊂ {1, . . . , N}, |J | = n, π ∈ Sn(J)

,
where the functions ϕi(x) = Φ(q(ξi), h(x, ξi)), i = 1, . . . , N , are convex polyhe-

dral on X and Sn(J) = {π : πj ≥ 0,
∑

j∈J πj = 1}. Problem (OSR) represents

a mixed-integer semi-infinite program.



Problem (OSR) decomposes into finding the optimal index set J of remaining

scenarios and into determining the optimal weights πj, j ∈ J , given J . The

outer combinatorial optimization problem

min {D(J, P ) : J ⊂ {1, . . . , N}, |J | = n},

determines the index set J and can be reformulated as 0-1 program. The objective

function D(J, P ) denotes the infimum of the inner program

min
π∈Sn(J)

sup
x∈X

∣∣∣∣∣∣
∑
j∈J

πjϕj(x)−
N∑
i=1

piϕi(x)

∣∣∣∣∣∣.
Any evaluation of the objective in the 0-1 program requires the solution of the

inner program, which represents a best approximation problem and is of the form

min
t≥0,π∈Sn

t
∣∣∣∣∣∣∣
∑

j∈J πj〈h(x, ξj), zj〉 ≤ t +
∑N

i=1 pi〈q(ξi), yi〉∑N
i=1 pi〈h(x, ξi), zi〉 ≤ t +

∑
j∈J πj〈q(ξj), yj〉

∀(x, y, z) ∈M(ξ1, . . . , ξN)

,
where the set M(ξ1, . . . , ξN) is defined as before but with n replaced by N . It

represents a linear semi-infinite program with only n + 1 variables, but with a

polyhedral index set of dimension m + (m̄ + r)N .



Conclusions

� Quantitative stability results motivate the best approximation of the under-

lying probability distribution by discrete measures from Pn(Ξ) in terms of

the minimal information metric dF .

� Problem-based scenario generation for two-stage models is reformulated as

a (convex) generalized semi-infinite optimization problem.

� In important specific cases problem-based scenario generation allows a trans-

formation into a (linear) semi-infinite optimization model with n(s+ 1) vari-

ables and a (m + (m̄ + r)n)-dimensional polyhedral index set.

� Problem-based optimal scenario reduction requires solving a combinatorial

program, where in each step a linear semi-infinite program with n+1 variables

and a polyhedral index set of dimension m + (m̄ + r)N has to be solved.

The combinatorial program represents an n-median problem which is known

to be NP-hard but for which good heuristics exist.
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Example: The newsboy problem

A newsboy must place a daily order for a number x of copies of a newspaper.

He has to pay r dollars for each copy and sells a copy at c dollars, where

0 < r < c. The daily demand ξ is a real random variable with (discrete)

probability distribution P ∈ P(N), Ξ = R, and the remaining copies y(ξ) =

max{0, x − ξ} have to be removed. The newsboy might wish that decision x

maximizes his expected profit or, equivalently, minimizes his expected costs, i.e.,

f0(x, ξ) = (r − c)x + cmax{0, x− ξ} ((x, ξ) ∈ R× R).

The model may be reformulated as a linear two-stage stochastic program with

the optimal value function Φ(t) = max{0,−t}, h(x, ξ) = ξ − x, dual feasible

set [0, c] and ∫
R
f0(x, ξ)dP (ξ) = rx− cx

∑
k∈N
k≥x

πk −
∑
k∈N
k<x

πkk ,

where πk is the probability of demand k ∈ N. The unique (integer) solution is

the minimal k ∈ N such that
∑∞

i=k πi ≥ r
c .



The corresponding optimal scenario generation problem (OSG) is of the form

min
t≥0,(ξ1,...,ξn)∈Rn

t
∣∣∣∣∣∣∣∣∣

1
n

∑n
i=1(ξi − x)zi ≤ t + FP (x)

FP (x) ≤ t + c
n

∑n
i=1 y2i

∀(x, y, z) ∈ R+ × R2n
+ × Rn :

y2i − y1i = ξi − x, 0 ≤ zi ≤ c, i = 1, . . . , n

,
where

FP (x) =

∞∑
k=1

πk c max{0, x− k} .

If ξi − x ≥ 0 one has y2i = ξi − x, y1i = 0, else in case ξi − x ≤ 0, one has

y2i = 0, y1i = −(ξi − x). Hence, (OSG) is equivalent with

min
t≥0,(ξ1,...,ξn)∈Rn

t
∣∣∣∣∣∣
c
n

∑n
i=1 max{0, x− ξi} ≤ t + FP (x)

FP (x) ≤ t + c
n

∑n
i=1 max{0, x− ξi}

∀x ∈ R+

.
and

min
(ξ1,...,ξn)∈Rn

sup
x∈R+

∣∣∣FP (x)− c

n

n∑
i=1

max{0, x− ξi}
∣∣∣ .


