Stability of optimization problems with stochastic dominance constraints

D. Dentcheva and W. Römisch

Stevens Institute of Technology, Hoboken Humboldt-University Berlin

www.math.hu-berlin.de/~romisch

SIAM Optimization Conference, San Diego, May 19-22, 2014

Introduction and contents

The use of stochastic orderings as a modeling tool has become standard in theory and applications of stochastic optimization. Much of the theory is developed and many successful applications are known.

Research topics:

- Multivariate concepts and analysis,
- scenario generation and approximation schemes,
- analysis of (Quasi-) Monte Carlo approximations,
- numerical methods and decomposition schemes,
- applications.

Contents of the talk:

- (1) Introduction, stochastic dominance, probability metrics
- (2) Quantitative stability results
- (3) Sensitivity of optimal values
- (4) Limit theorem for empirical approximations

Optimization models with stochastic dominance constraints

We consider the convex optimization model

 $\min \{f(x) : x \in D, G(x,\xi) \succeq_{(k)} Y\},\$

where $k \in \mathbb{N}$, $k \ge 2$, D is a nonempty closed convex subset of \mathbb{R}^m , Ξ a closed convex subset of \mathbb{R}^s , $f : \mathbb{R}^m \to \mathbb{R}$ is convex, ξ is a random vector with support Ξ and Y a real random variable on some probability space both having finite moments of order k - 1, and $G : \mathbb{R}^m \times \mathbb{R}^s \to \mathbb{R}$ is continuous, concave with respect to the first argument and satisfies the linear growth condition

 $|G(x,\xi)| \le C(B) \max\{1, \|\xi\|\} \quad (x \in B, \xi \in \Xi)$

for every bounded subset $B \subset \mathbb{R}^m$ and some constant C(B) (depending on B). The random variable Y plays the role of a benchmark outcome.

D. Dentcheva, A. Ruszczyński: Optimization with stochastic dominance constraints, *SIAM J. Optim.* 14 (2003), 548–566.

Stochastic dominance relation $\succeq_{(k)}$

$$X \succeq_{(k)} Y \quad \Leftrightarrow \quad F_X^{(k)}(\eta) \le F_Y^{(k)}(\eta) \quad (\forall \eta \in \mathbb{R})$$

where X and Y are real random variables belonging to $\mathcal{L}_{k-1}(\Omega, \mathcal{F}, \mathbb{P})$ with norm $\|\cdot\|_{k-1}$ for some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. By \mathcal{L}_0 we denote consistently the space of all scalar random variables.

Let P_X denote the probability distribution of X and $F_X^{(1)} = F_X$ its distribution function, i.e.,

$$F_X^{(1)}(\eta) = \mathbb{P}(\{X \le \eta\}) = \int_{-\infty}^{\eta} P_X(d\xi) = \int_{-\infty}^{\eta} dF_X(\xi) \quad (\forall \eta \in \mathbb{R})$$

and

$$F_X^{(k+1)}(\eta) = \int_{-\infty}^{\eta} F_X^{(k)}(\xi) d\xi = \int_{-\infty}^{\eta} \frac{(\eta - \xi)^k}{k!} P_X(d\xi) = \int_{-\infty}^{\eta} \frac{(\eta - \xi)^k}{k!} dF_X(\xi)$$
$$= \frac{1}{k!} \|\max\{0, \eta - X\}\|_k^k \quad (\forall \eta \in \mathbb{R}),$$

where

$$||X||_k = \left(\mathbb{E}(|X|^k)\right)^{\frac{1}{k}} \quad (\forall k \ge 1).$$

A. Müller and D. Stoyan: Comparison Methods for Stochastic Models and Risks, Wiley, Chichester, 2002.

The original problem is equivalent to its split variable formulation $\min\left\{f(x): x \in D, \ G(x,\xi) \ge X, \ F_X^{(k)}(\eta) \le F_Y^{(k)}(\eta), \forall \eta \in \mathbb{R}\right\}$

by introducing a new real random variable X and the constraint

 $G(x,\xi) \ge X$ \mathbb{P} -almost surely.

This formulation motivates the need of two different metrics for handling the two constraints of different nature:

The almost sure constraint $G(x,\xi) \ge X$ (P-a.s.) and the functional constraint $F_X^{(k)}(\cdot) \le F_Y^{(k)}(\cdot)$, respectively.

D. Dentcheva, A. Ruszczyński: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints, *Math. Progr.* 99 (2004), 329–350.

Properties:

(i) Equivalent characterization of $\succeq_{(2)}$:

 $X \succeq_{(2)} Y \quad \Leftrightarrow \quad \mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)]$

for each nondecreasing concave utility $u:\mathbb{R}\to\mathbb{R}$ such that the expectations are finite.

- (ii) The function $F_X^{(k)} : \mathbb{R} \to \mathbb{R}$ is nondecreasing for $k \ge 1$ and convex for $k \ge 2$.
- (iii) For every $k \in \mathbb{N}$ the SD relation $\succeq_{(k)}$ introduces a partial ordering in $\mathcal{L}_{k-1}(\Omega, \mathcal{F}, \mathbb{P})$ which is not generated by a convex cone if Y is not deterministic.

Extensions: By imposing appropriate assumptions all results remain valid for the following two extended situations:

- (a) finite number of kth order stochastic dominance constraints,
- (b) the objective f is replaced by an expectation function of the form $\mathbb{E}[g(\cdot, \xi)]$ where g is a real-valued function defined on $\mathbb{R}^m \times \mathbb{R}^s$.

The case of discrete distributions:

Let ξ_j , X_j and Y_j the scenarios of ξ , X and Y with probabilities p_j , j = 1, ..., n. Then the second order dominance constraints (i.e. k = 2) in the split variable formulation can be expressed as

$$\sum_{j=1}^{n} p_j [\eta - X_j]_+ \le \sum_{j=1}^{n} p_j [\eta - Y_j]_+ \quad (\forall \eta \in I).$$

The latter condition can be shown to be equivalent to

$$\sum_{j=1}^{n} p_j [Y_k - X_j]_+ \le \sum_{j=1}^{n} p_j [Y_k - Y_j]_+ \quad (\forall k = 1, \dots, n).$$

if $Y_k \in I$, $k = 1, \ldots, n$. Here, $[\cdot]_+ = \max\{0, \cdot\}$.

Hence, the second order dominance constraints may be reformulated as linear constraints for the X_j , j = 1, ..., n, in

$$G(x,\xi_j) \ge X_j \quad (j=1,\ldots,n).$$

D. Dentcheva, A. Ruszczyński: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints, *Math. Progr.* 99 (2004), 329–350.

J. Luedtke: New formulations for optimization under stochastic dominance constraints, *SIAM J. Optim.* 19 (2008), 1433–1450.

Metrics associated to $\succeq_{(k)}$

Rachev metrics on \mathcal{L}_{k-1} :

$$\mathbb{D}_{k,p}(X,Y) := \begin{cases} \left(\int_{\mathbb{R}} \left| F_X^{(k)}(\eta) - F_Y^{(k)}(\eta) \right|^p d\eta \right)^{\frac{1}{p}} , 1 \le p < \infty \\ \sup_{\eta \in \mathbb{R}} \left| F_X^{(k)}(\eta) - F_Y^{(k)}(\eta) \right| , p = \infty \end{cases}$$

Proposition: It holds for any $X, Y \in \mathcal{L}_{k-1}$

$$\mathbb{D}_{k,p}(X,Y) = \zeta_{k,p}(X,Y) := \sup_{f \in \mathcal{D}_{k,p}} \left| \int_{\mathbb{R}} f(x) P_X(dx) - \int_{\mathbb{R}} f(x) P_Y(dx) \right|$$

if $\mathbb{E}(X^i) = \mathbb{E}(Y^i)$, $i = 1, \dots, k-1$.

Here, $\mathcal{D}_{k,p}$ denotes the set of continuous functions $f : \mathbb{R} \to \mathbb{R}$ that have measurable kth order derivatives $f^{(k)}$ on \mathbb{R} such that

$$\int_{\mathbb{R}} |f^{(k)}(x)|^{\frac{p}{p-1}} dx \le 1 \quad (p > 1) \quad \text{or} \quad \operatorname*{ess\,sup}_{x \in \mathbb{R}} |f^{(k)}(x)| \le 1 \quad (p = 1).$$

Note that the condition $\mathbb{E}(X^i) = \mathbb{E}(Y^i)$, $i = 1, \ldots, k - 1$, is implied by the finiteness of $\zeta_{k,p}(X,Y)$, since $\mathcal{D}_{k,p}$ contains all polynomials of degree k - 1. Conversely, if X and Y belong to \mathcal{L}_{k-1} and $\mathbb{E}(X^i) = \mathbb{E}(Y^i)$, $i = 1, \ldots, k - 1$, holds, then the distance $\mathbb{D}_{k,p}(X,Y)$ is finite.

Proposition:

There exists $c_k > 0$ (only depending on k) such that

$$\zeta_{k,\infty}(X,Y) \le \zeta_{1,\infty}(X,Y) \le c_k \zeta_{k,\infty}(X,Y)^{\frac{1}{k}} \quad (\forall X,Y \in \mathcal{L}_{k-1}).$$

 $\zeta_{1,\infty}$ is the Kolmogorov metric and $\zeta_{1,1}$ the first order Fourier-Mourier or Wasserstein metric.

S. T. Rachev: Probability Metrics and the Stability of Stochastic Models, Wiley, 1991.

Structure and stability

We consider the kth order SD constrained optimization model

$$\min\left\{f(x): x \in D, \ F_{G(x,\xi)}^{(k)}(\eta) \le F_Y^{(k)}(\eta), \ \forall \eta \in \mathbb{R}\right\}$$

as semi-infinite program.

Relaxation: Replace \mathbb{R} by some compact inverval I = [a, b].

Proposition:

Under the general convexity assumptions the feasible set

$$\mathcal{X}(\xi,Y) = \left\{ x \in D : F_{G(x,\xi)}^{(k)}(\eta) \le F_Y^{(k)}(\eta), \, \forall \eta \in I \right\}$$

is closed and convex in \mathbb{R}^m .

Uniform dominance condition of kth order (kudc) at (ξ, Y) : There exists $\bar{x} \in D$ such that

$$\min_{\eta \in I} \left(F_Y^{(k)}(\eta) - F_{G(\bar{x},\xi)}^{(k)}(\eta) \right) > 0 \,.$$

Metrics on $\mathcal{L}_{k-1}^s imes \mathcal{L}_{k-1}$:

$$d_k((\xi, Y), (\tilde{\xi}, \tilde{Y})) = \ell_{k-1}(\xi, \tilde{\xi}) + \mathbb{D}_{k,\infty}(Y, \tilde{Y}),$$

where $k \in \mathbb{N}$, $k \ge 2$ is the degree of the SD constraint, $\mathbb{D}_{k,\infty}$ is the kth order Rachev metric, and ℓ_{k-1} is the L_{k-1} -minimal or (k-1)th order Wasserstein distance defined by

$$\ell_{k-1}(\xi,\tilde{\xi}) := \inf\left\{\int_{\Xi\times\Xi} \|x-\tilde{x}\|^{k-1}\eta(dx,d\tilde{x})\right\}^{\frac{1}{k-1}},$$

where the infimum is taken w.r.t. all probability measures η on $\Xi \times \Xi$ with marginal P_{ξ} and $P_{\tilde{\xi}}$, respectively.

Proposition:

Let D be compact and assume that the function G satisfies

 $|G(x,u) - G(x,\tilde{u})| \le L_G ||u - \tilde{u}||$

for all $x \in D$, $u, \tilde{u} \in \Xi$ and some constant $L_G > 0$. Assume that the kth order uniform dominance condition is satisfied at (ξ, Y) .

Then there exist constants L(k) > 0 and $\delta > 0$ such that

 $d_{\mathrm{H}}(\mathcal{X}(\xi, Y), \mathcal{X}(\tilde{\xi}, \tilde{Y})) \leq L(k) \, d_k((\xi, Y), (\tilde{\xi}, \tilde{Y})),$

whenever the pair $(\tilde{\xi}, \tilde{Y})$ is chosen such that $d_k((\xi, Y), (\tilde{\xi}, \tilde{Y})) < \delta$.

 $(d_{\rm H} \text{ denotes the Pompeiu-Hausdorff distance on compact subsets of <math>\mathbb{R}^m$.)

Note that L(k) gets smaller with increasing $k \in \mathbb{N}$ if $\|\xi\|_{k-1}$ grows at most exponentially with k. Hence, higher order stochastic dominance constraints may have improved stability properties. Let $v(\xi, Y)$ denote the optimal value and $S(\xi, Y)$ the solution set of $\min \{f(x) : x \in D, x \in \mathcal{X}(\xi, Y)\}.$

We consider the growth function

 $\psi_{(\xi,Y)}(\tau) := \inf \left\{ f(x) - v(\xi,Y) : d(x,S(\xi,Y)) \ge \tau, \, x \in \mathcal{X}(\xi,Y) \right\}$

and

$$\Psi_{(\xi,Y)}(\theta) := \theta + \psi_{(\xi,Y)}^{-1}(2\theta) \quad (\theta \in \mathbb{R}_+),$$

where we set $\psi_{(\xi,Y)}^{-1}(t) = \sup\{\tau \in \mathbb{R}_+ : \psi_{(\xi,Y)}(\tau) \le t\}.$

Note that $\Psi_{(\xi,Y)}$ is increasing, lower semicontinuous and vanishes at $\theta = 0$.

Main stability result

Theorem:

Let D be compact and assume that the function G satisfies

$$|G(x,u) - G(x,\tilde{u})| \le L_G ||u - \tilde{u}||$$

for all $x \in D$, $u, \tilde{u} \in \Xi$ and some constant $L_G > 0$. Assume that the kth order uniform dominance condition is satisfied at (ξ, Y) .

Then there exist positive constants L(k) and δ such that

 $\begin{aligned} |v(\xi,Y) - v(\tilde{\xi},\tilde{Y})| &\leq L(k) \, d_k((\xi,Y), (\tilde{\xi},\tilde{Y})) \\ \sup_{x \in S(\tilde{\xi},\tilde{Y})} d(x,S(\xi,Y)) &\leq \Psi_{(\xi,Y)}(L(k) \, d_k((\xi,Y), (\tilde{\xi},\tilde{Y}))) \end{aligned}$

whenever $d_k((\xi, Y), (\tilde{\xi}, \tilde{Y})) < \delta$.

(Klatte 94, Rockafelar-Wets 98)

Dual multipliers and utilities

Let $\mathcal{Y} = C(I)$ and \mathcal{Y}^* its dual which is isometrically isomorph to the space $\mathbf{rca}(I)$ of regular countably additive measures μ on I having finite total variation $|\mu|(I)$. The dual pairing is given by

$$\langle \mu, y \rangle = \int_I y(\eta) \mu(d\eta) \quad (\forall y \in \mathcal{Y}, \, \mu \in \mathbf{rca}(I))$$

We consider the closed convex cone

$$K = \{ y \in \mathcal{Y} : y(\eta) \ge 0, \, \forall \eta \in I \}$$

and its polar cone K^-

$$K^{-} = \{ \mu \in \mathbf{rca}(I) : \langle \mu, y \rangle \le 0, \forall y \in K \}$$

The semi-infinite constraint may be written as

$$\mathcal{G}_k(x; P_{\xi}, P_Y) := F_Y^{(k)} - F_{G(x,\xi)}^{(k)} \in K$$

and the semi-infinite program is

 $\min\left\{f(x): x \in D, \, \mathcal{G}_k(x; P_{\xi}, P_Y) \in K\right\}.$

Lemma: (Dentcheva-Ruszczyński 03)

Let $k \ge 2$, I = [a, b], $\mu \in -K^-$. There exists $u \in \mathcal{U}_{k-1}$ such that $\langle \mu, F_X^{(k)} \rangle = \int_I F_X^{(k)}(\eta) \mu(d\eta) = -\mathbb{E}[u(X)]$

holds for every $X \in \mathcal{L}_{k-1}$. Here, \mathcal{U}_{k-1} denotes the set of all $u \in C^{k-2}(\mathbb{R})$ such that its (k-1)th derivative exists almost everywhere and there is a nonnegative, non-increasing, left-continuous, bounded function $\varphi : I \to \mathbb{R}$ such that

$$\begin{split} & u^{(k-1)}(t) &= (-1)^k \varphi(t) & , \ \mu\text{-a.e.} \ t \in [a,b], \\ & u^{(k-1)}(t) &= (-1)^k \varphi(a) & , \ t < a, \\ & u(t) &= 0 & , \ t \geq b, \\ & u^{(i)}(b) &= 0 & , \ i = 1, \dots, k-2, \end{split}$$

where the symbol $u^{(i)}$ denotes the *i*th derivative of u. In particular, the utilities $u \in \mathcal{U}_{k-1}$ are nondecreasing and concave on \mathbb{R} .

Proof: The function $u \in \mathcal{U}_{k-1}$ is defined by putting u(t) = 0, $t \ge b$, $u^{(k-1)}(t) = (-1)^k \mu([t,b])$, μ -a.e. $t \le b$, $u^{(i)}(b) = 0$, $= 1, \ldots, k-2$. One obtains by repeated integration by parts for any $X \in \mathcal{L}_{k-1}$

$$\langle \mu, F_X^{(k)} \rangle = (-1)^k \int_{-\infty}^b F_X^{(k)}(\eta) du^{(k-1)}(t) = -\int_{-\infty}^b u(t) dF_X(t) = -\mathbb{E}[u(X)]$$

Optimality and duality

Define the Lagrange-like function $\mathfrak{L}: \mathbb{R}^m \times \mathcal{U}_{k-1} \to \mathbb{R}$ as

$$\mathfrak{L}(x,u;P_{\xi},P_Y):=f(x)-\int_{\Xi}u(G(x,z))P_{\xi}(dz)+\int_{\mathbb{R}}u(t)P_Y(dt).$$

Theorem: (Dentcheva-Ruszczyński)

Let $k \ge 2$ and assume the kth order uniform dominance condition at (ξ, Y) . A feasible \hat{u} is optimal if and only if a function $\hat{u} \in \mathcal{U}_{k-1}$ exists such that

$$\mathfrak{L}(\hat{x}, \hat{u}; P_{\xi}, P_{Y}) = \min_{x \in D} \mathfrak{L}(x, \hat{u}, P_{\xi}, P_{Y})$$
$$\int_{\Xi} \hat{u}(G(\bar{x}, z)) P_{\xi}(dz) = \int_{\mathbb{R}} \hat{u}(t) P_{Y}(dt).$$

Furthermore, the dual problem is

$$\max_{u \in \mathcal{U}_{k-1}} \left[\inf_{x \in D} \left[f(x) - \mathbb{E} \left[u(G(x;\xi)) \right] + \mathbb{E} \left[u(Y) \right] \right] \right]$$

or

$$\max_{\mu \in -K^{-}} \left[\inf_{x \in D} \left[f(x) - \langle \mu, \mathcal{G}_k(x; P_{\xi}, P_Y) \rangle \right] \right]$$

and primal and dual optimal values coincide.

Sensitivity of the optimal value function

Let the infimal function $v: C(D) \to \mathbb{R}$ be given by

 $v(g) = \inf_{x \in D} g(x).$

If D is compact, v is finite and concave on C(D), and Lipschitz continuous with respect to the supremum norm $\|\cdot\|_{\infty}$ on C(D). Hence, it is Hadamard directionally differentiable on C(D) and

$$v'(g; d) = \min \{ d(x) : x \in \arg\min_{x \in D} g(x) \} \quad (g, d \in C(D)).$$

Let \mathcal{U}_{k-1}^* denote the solution set of the dual problem. Any $\bar{u} \in \mathcal{U}_{k-1}^*$ is called shadow utility. For some shadow utility \bar{u} and $g_{\bar{u}} = \mathfrak{L}(\cdot, \bar{u}; P_{\xi}, P_Y)$, the duality theorem implies $v(g_{\bar{u}}) = v(P_{\xi}, P_Y)$.

Corollary: Let D be compact and the assumptions of the duality theorem be satisfied. Then the optimal value function $v(P_{\xi}, P_Y)$ is Hadamard directionally differentiable on C(D) and the directional derivative into direction $d \in C(D)$ is

$$v'(g_{\bar{u}};d) = v'(P_{\xi}, P_Y;d)) = \min\left\{d(x) : x \in S(P_{\xi}, P_Y)\right\}.$$

Limit theorems for empirical approximations

Let (ξ_n, Y_n) , $n \in \mathbb{N}$, be a sequence of i.i.d. (independent, and identically distributed) random vectors on some probability space. Let $P_{\xi}^{(n)}$ and $P_Y^{(n)}$ denote the corresponding empirical measures and $P_n = P_{\xi}^{(n)} \times P_Y^{(n)}$.

Empirical approximation:

$$\min\left\{f(x): x \in D, \sum_{i=1}^{n} \left[\eta - G(x,\xi_i)\right]_{+}^{k-1} \le \sum_{i=1}^{n} \left[\eta - Y_i\right]_{+}^{k-1}, \eta \in I\right\}$$

Optimal value:

$$\begin{aligned} v(P_{\xi}, P_Y) &= \inf_{x \in D} \mathfrak{L}(x, \bar{u}; P_{\xi}, P_Y) \\ &= \inf_{x \in D} \mathbb{E} \big[f(x) + \bar{u}(G(x, \xi)) - \bar{u}(Y) \big] \\ &= \inf_{x \in D} P(f(x) + \bar{u}(G(x, z)) - \bar{u}(t)), \end{aligned}$$

where \bar{u} is a shadow utility and $P := P_{\xi} \times P_{Y}$.

Proposition: (Donsker class)

Let the assumptions of the main stability theorem be satisfied. Let D and the supports $\Xi = \text{supp}(P_{\xi})$ and $\Upsilon = \text{supp}(P_Y)$ be compact.

Then Γ_k is a Donsker class, i.e., the empirical process $\mathcal{E}_n g$ indexed by $g \in \Gamma_k$

$$\mathcal{E}_n g = \sqrt{n} (P_n - P) g = \sqrt{n} \left(n^{-1} \sum_{i=1}^n g(\xi_i, Y_i) - \mathbb{E}(g(\xi, Y)) \right) \stackrel{d}{\longrightarrow} \mathbb{G}(g) \quad (g \in \Gamma_k)$$

converges in distribution to a Gaussian limit process \mathbb{G} on the space $\ell^{\infty}(\Gamma_k)$ (of bounded functions on Γ_k) equipped with supremum norm, where

$$\Gamma_k = \left\{ g_x : g_x(z,t) = f(x) + \bar{u}(G(x,z)) - \bar{u}(t), (z,t) \in \Xi \times \Upsilon, x \in D \right\}.$$

The Gaussian process ${\mathbb G}$ has zero mean and covariances

$$\mathbb{E}[\mathbb{G}(x) \mathbb{G}(\tilde{x})] = \mathbb{E}_P[g_x g_{\tilde{x}}] - \mathbb{E}_P[g_x] \mathbb{E}_P[g_{\tilde{x}}] \text{ for } x, \tilde{x} \in D.$$

Proposition: (functional delta method)

Let B_1 and B_2 be Banach spaces equipped with their Borel σ -fields and B_1 be separable. Let (X_n) be random elements of B_1 , $h : B_1 \to B_2$ be a mapping and (τ_n) be a sequence of positive numbers tending to infinity as $n \to \infty$. If

$$au_n(X_n - \theta) \stackrel{d}{\longrightarrow} X$$

for some $\theta \in B_1$ and some random element X of B_1 and h is Hadamard directionally differentiable at θ , it holds

$$au_n(h(X_n) - h(\theta)) \stackrel{d}{\longrightarrow} h'(\theta; X),$$

where $\stackrel{d}{\rightarrow}$ means convergence in distribution.

Application:

 $B_1 = C(D), B_2 = \mathbb{R}, h(g) = \inf_{x \in D} g(x), h \text{ is concave and Lipschitz w.r.t.} \\ \| \cdot \|_{\infty}, \text{ and } h'(g; d) = \min\{d(y) : y \in \arg\min_{x \in D} g(x)\}.$

Theorem: (Limit theorem)

Let the assumptions of the Donsker class Proposition be satisfied. Then the optimal values $v(P_{\xi}^{(n)}, P_{Y}^{(n)})$, $n \in \mathbb{N}$, satisfy the limit theorem

$$\sqrt{n} \left(v(P_{\xi}^{(n)}, P_Y^{(n)}) - v(P_{\xi}, P_Y) \right) \xrightarrow{d} \min \{ \mathbb{G}(x) : x \in S(P_{\xi}, P_Y) \}$$

where \mathbb{G} is a Gaussian process with zero mean and covariances $\mathbb{E}[\mathbb{G}(x) \mathbb{G}(\tilde{x})] = \mathbb{E}_P[g_x g_{\tilde{x}}] - \mathbb{E}_P[g_x] \mathbb{E}_P[g_{\tilde{x}}]$ for $x, \tilde{x} \in S(P_{\xi}, P_Y)$. If $S(P_{\xi}, P_Y)$ is a singleton, i.e., $S(P_{\xi}, P_Y) = \{\bar{x}\}$, the limit $\mathbb{G}(\bar{x})$ is normal with zero mean and variance $\mathbb{E}_P[g_{\tilde{x}}^2] - (\mathbb{E}_P[g_{\tilde{x}}])^2$.

The result allows the application of resampling techniques to determine asymptotic confidence intervals for the optimal value $v(P_{\xi}, P_Y)$, in particular, bootstrapping if $S(P_{\xi}, P_Y)$ is a singleton and subsampling in the general case.

A. Eichhorn and W. Römisch: Stochastic integer programming: Limit theorems and confidence intervals, *Math. Oper. Res.* 32 (2007), 118–135.

Conclusions

- Quantitative continuity properties for optimal values and solution sets in terms of a suitable distance of probability distributions have been obtained.
- A limit theorem for optimal values of empirical approximations of stochastic dominance constrained optimization models is shown which allows to derive confidence intervals.
- Extensions of the results to study (modern) Quasi-Monte Carlo approximations of such models are desirable (convergence rate O(n^{-1+δ}), δ ∈ (0, ½]).
- Extensions of the asymptotic result to the situation of estimated shadow utilities are desirable.
- Extensions to multivariate dominance constraints are desirable, e.g., for the concept

$$X \succeq_{(m,k)} Y \quad \text{iff} \quad v^{\top}X \succeq_{(k)} v^{\top}Y, \quad \forall v \in \mathcal{V},$$

where \mathcal{V} is convex in \mathbb{R}^m_+ and $X, Y \in L^m_{k-1}$. For example, $\mathcal{V} = \{v \in \mathbb{R}^m_+ : \|v\|_1 = 1\}$ is studied in (Dentcheva-Ruszczyński 09) and $\mathcal{V} \subseteq \{v \in \mathbb{R}^m : \|v\|_1 \leq 1\}$ in (Hu-Homem-de-Mello-Mehrotra 11).

References

D. Dentcheva, R. Henrion and A. Ruszczyński: Stability and sensitivity of optimization problems with first order stochastic dominance constraints, *SIAM Journal on Optimization* 18 (2007), 322–337.

D. Dentcheva and W. Römisch: Stability and sensitivity of stochastic dominance constrained optimization models, *SIAM Journal on Optimization* 23 (2013), 1672–1688.

Y. Liu, W. Römisch and H. Xu: Quantitative stability analysis of stochastic generalized equations, *SIAM Journal* on *Optimizatio* 24 (2014), 467–497.

Y. Liu and H. Xu: Stability and sensitivity analysis of stochastic programs with second order dominance constraints, *Mathematical Programming* 142 (2013), 435–460.