
Home Page

Title Page

Contents

JJ II

J I

Page 1 of 32

Go Back

Full Screen

Close

Quit

Scenario Reduction Techniques
in Stochastic Programming

W. Römisch

Humboldt-University Berlin
Institute of Mathematics
10099 Berlin, Germany

http://www.math.hu-berlin.de/~romisch

(H. Heitsch, R. Henrion, C. Küchler)
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Introduction

Most approaches for solving stochastic programs of the form

min

{∫
Ξ

f0(x, ξ)P (dξ) : x ∈ X

}
with a probability measure P on Ξ ⊂ Rd and a (normal) inte-

grand f0, require numerical integration techniques, i.e., replacing

the integral by some quadrature formula∫
Ξ

f0(x, ξ)P (dξ) ≈
n∑

i=1

pif0(x, ξi),

where pi = P ({ξi}),
∑n

i=1 pi = 1 and ξi ∈ Ξ, i = 1, . . . , n.

Since f0 is often expensive to compute, the number n should be as

small as possible.
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With v(P ) and S(P ) denoting the optimal value and solution set

of the stochastic program, respectively, the following estimates are

known

|v(P )− v(Q)| ≤ sup
x∈X

∣∣∣∣∫
Ξ

f0(x, ξ)(P −Q)(dξ)

∣∣∣∣
∅ 6= S(Q) ⊆ S(P ) + ΨP

(
sup
x∈X

∣∣∣∣∫
Ξ

f0(x, ξ)(P −Q)(dξ)

∣∣∣∣) ,

where X is assumed to be compact, Q is a probability distribution

approximating P and the function ΨP is the inverse of the growth

function of the objective near the solution set, i.e.,

Ψ−1
P (t) := inf

{∫
Ξ

f0(x, ξ)P (dξ)− v(P ) : x ∈ X, d(x, S(P )) ≥ t

}
.

Hence, the distance dF with F := {f0(x, ·) : x ∈ X}

dF(P, Q) := sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ)

∣∣∣∣
becomes important when approximating P .
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For given n ∈ N and for the special case pi = 1
n, i = 1, . . . , n, the

best possible choice of elements ξi ∈ Ξ, i = 1, . . . , n (scenarios),

is obtained by minimizing

sup
x∈X

∣∣∣∣∣
∫

Ξ

f0(x, ξ)P (dξ)− 1

n

n∑
i=1

f0(x, ξi)

∣∣∣∣∣,
i.e., by solving the best approximation problem

min
Q∈Pn(Ξ)

dF(P, Q)

where

Pn(Ξ) := {Q : Q is a uniform probability measure with n scenarios}.

It may be reformulated as a semi-infinite program. and is known as

optimal quantization of P with respect to the function class F .
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If Ξ is bounded, P has a Lipschitz continuous and bounded density

and all functions f ∈ F are Lipschitz continuous with a uniform

constant, it is known that

min
Q∈Pn(Ξ)

dF(P, Q) = O

(
(log n)d

n

)
(Koksma-Hlawka)

The convergence rate can be attained by a proper transformation

of Quasi Monte Carlo sequences. The convergence rate can be im-

proved if the functions f ∈ F satisfy a higher degree of smoothness.

Aim of the talk:
Solving the best approximation problem for discrete probability mea-

sures P having many scenarios and for function classes F , which

are relevant for two-stage stochastic programs (scenario reduction).

Additional motivation:
Scenario reduction methods are important for generating scenario

trees for multistage stochastic programs.
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Linear two-stage stochastic programs

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X

}
,

where c ∈ Rm, Ξ and X are polyhedral subsets of Rd and Rm,

respectively, P is a probability measure on Ξ and the s×m-matrix

T (·), the vectors q(·) ∈ Rm and h(·) ∈ Rs are affine functions of ξ.

Furthermore, Φ and D denote the infimum function of the linear

second-stage program and its dual feasibility set, i.e.,

Φ(u, t) := inf{〈u, y〉 :Wy = t, y ∈ Y } ((u, t) ∈ Rm × Rs)

D := {u ∈ Rm : {z ∈ Rs : W>z − u ∈ Y ∗} 6= ∅},

where q(ξ) ∈ Rm are the recourse costs, W is the s×m recourse

matrix, W> the transposed of W and Y ∗ the polar cone to the

polyhedral cone Y .
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Theorem: (Walkup-Wets 69)

The function Φ(·, ·) is finite and continuous on the polyhedral set

D × W (Y ). Furthermore, the function Φ(u, ·) is piecewise linear

convex on the polyhedral set W (Y ) for fixed u ∈ D, and Φ(·, t) is

piecewise linear concave on D for fixed t ∈ W (Y ).

Assumptions:

(A1) relatively complete recourse: for any (ξ, x) ∈ Ξ×X,

h(ξ)− T (ξ)x ∈ W (Y );

(A2) dual feasibility: q(ξ) ∈ D holds for all ξ ∈ Ξ.

(A3) existence of second moments:
∫

Ξ ‖ξ‖
2P (dξ) < +∞.

Note that (A1) is satisfied if W (Y ) = Rs (complete recourse). In

general, (A1) and (A2) impose a condition on the support of P .

Extensions to random recourse models, i.e., to W (ξ), exist.
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Idea: Extend the class F such that it covers all two-stage models.

Fortet-Mourier metrics:

ζr(P, Q) := sup

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ) : f ∈ Fr(Ξ)

∣∣∣∣,
where r ≥ 1 (r ∈ {1, 2} if W (ξ) ≡ W )

Fr(Ξ) := {f : Ξ 7→ R : f (ξ)− f (ξ̃) ≤ cr(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ},

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).

Proposition: (Rachev-Rüschendorf 98)

If Ξ is bounded, ζr may be reformulated as transportation problem

ζr(P, Q) = inf

{∫
Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) :π1η=P, π2η =Q

}
,

where ĉr is a metric (reduced cost) with ĉr ≤ cr and given by

ĉr(ξ, ξ̃) := inf

{
n−1∑
i=1

cr(ξli, ξli+1) : n ∈ N, ξli ∈ Ξ, ξl1 = ξ, ξln = ξ̃

}
.
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Scenario reduction

We consider discrete distributions P with scenarios ξi and proba-

bilities pi, i = 1, . . . , N , and Q being supported by a given subset

of scenarios ξj, j 6∈ J ⊂ {1, . . . , N}, of P .

Optimal reduction of a given scenario set J :

The best approximation of P with respect to ζr by such a distribu-

tion Q exists and is denoted by Q∗. It has the distance

DJ := ζr(P, Q∗) = min
Q

ζr(P, Q) =
∑
i∈J

pi min
j 6∈J

ĉr(ξi, ξj)

and the probabilities q∗j = pj +
∑
i∈Jj

pi, ∀j 6∈ J, where

Jj := {i ∈ J : j = j(i)} and j(i) ∈ arg min
j 6∈J

ĉr(ξi, ξj), ∀i ∈ J

(optimal redistribution).
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Determining the optimal index set J with prescribed cardinality

N − n is, however, a combinatorial optimization problem:

min {DJ : J ⊂ {1, ..., N}, |J | = N − n}

Hence, the problem of finding the optimal set J for deleting scenar-

ios is NP-hard and polynomial time algorithms are not available.

−→ Search for fast heuristics starting from n = 1 or n = N − 1.
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Fast reduction heuristics

Starting point (n = N − 1): min
l∈{1,...,N}

pl min
j 6=l

ĉr(ξl, ξj)

Algorithm 1: (Backward reduction)

Step [0]: J [0] := ∅ .

Step [i]: li ∈ arg min
l 6∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

ĉr(ξk, ξj).

J [i] := J [i−1] ∪ {li} .

Step [N-n+1]: Optimal redistribution.
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Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkĉr(ξk, ξu)

Algorithm 2: (Forward selection)

Step [0]: J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

ĉr(ξk, ξj),

J [i] := J [i−1] \ {ui} .

Step [n+1]: Optimal redistribution.
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Example: (Electrical load scenario tree)

(Mean shifted ternary) Load scenario tree (729 scenarios)
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24 48 72 96 120 144 168

<Start Animation>

file:E:/anim05/animation.html
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Reduced load scenario tree obtained by the forward selection method (15 scenarios)

−1000

−500

0

500

1000

24 48 72 96 120 144 168
Reduced load scenario tree obtained by the backward reduction method (12 scenarios)
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Application: Scenario tree generation

 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

Illustration of the forward construction for T=5 time periods starting with 58 scenarios
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Mixed-integer two-stage stochastic programs

We consider

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X

}
,

where Φ is given by

Φ(u, t) := inf

{
〈u1, y1〉 + 〈u2, y2〉

∣∣∣∣ W1y1 + W2y2 ≤ t

y1 ∈ Rm1
+ , y2 ∈ Zm2

+

}
for all pairs (u, t) ∈ Rm1+m2 ×Rr, and c ∈ Rm, X is a closed sub-

set of Rm, Ξ a polyhedron in Rs, W1 ∈ Qr×m1, W2 ∈ Qr×m2, and

T (ξ) ∈ Rr×m, q(ξ) ∈ Rm1+m2 and h(ξ) ∈ Rr are affine functions

of ξ, and P is a probability measure.

We again assume (A1) for W = (W1, W2) (relatively complete

recourse), (A2) (dual feasibility) and (A3).
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Example 1: (Schultz-Stougie-van der Vlerk 98)

Stochastic multi-knapsack problem:

min = max, m = 2, m1 = 0, m2 = 4, c = (1.5, 4), X = [−5, 5]2,

h(ξ) = ξ, q(ξ) ≡ q = (16, 19, 23, 28), yi ∈ {0, 1}, i = 1, 2, 3, 4,

P ∼ U(5, 5.5, . . . , 14.5, 15} (discrete)

Second stage problem: MILP with 1764 0-1 variables and 882 constraints.

T =

(
2
3

1
3

1
3

2
3

)
W =

(
2 3 4 5

6 1 3 2

)
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The function Φ is well understood and the function class

Fr,B(Ξ) := {f1lB : f ∈ Fr(Ξ), B ∈ B},

is relevant, where r ∈ {1, 2}, B is a class of (convex) polyhedra in

Ξ and 1lB denotes the characteristic function of the set B.

The class B contains all polyhedra of the form

B = {ξ ∈ Ξ : h(ξ)− T (ξ)x ∈ D},

where x ∈ X and D is a polyhedron in Rs each of whose facets,

i.e., (s − 1)-dimensional faces, is parallel to a facet of the cone

W1(Rm1
+ ) or of the unit cube [0, 1]s. Hence, B is very problem-

specific.

Therefore, we consider the class of rectangular sets

Brect = {I1 × I2 × · · · × Id : ∅ 6= Ij is a closed interval in R}

covering the situation of pure integer programs.
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Proposition:
In case F = Fr,Brect(Ξ), the metric dF allows the estimates

dF(P, Q) ≥ max{αBrect(P, Q), ζr(P, Q)}
dF(P, Q) ≤ C

(
ζr(P, Q) + αBrect(P, Q)

1
s+1

)
where C is some constant only depending on Ξ and αBrect is the

rectangular discrepancy given by

αBrect(P, Q) := sup
B∈Brect

|P (B)−Q(B)|

If the set Ξ is bounded, even the estimate holds

αBrect(P, Q) ≤ dF(P, Q) ≤ CαBrect(P, Q)
1

s+1 .

Since αBrect has even a stronger influence on dF than ζr, we consider

the distance

dλ(P, Q) = λ αBrect(P, Q) + (1− λ) ζr(P, Q)

with λ ∈ [0, 1] close to 1.
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Scenario reduction

We consider again discrete distributions P with scenarios ξi and

probabilities pi, i = 1, . . . , N , and Q being supported by a subset

of scenarios ξj, j 6∈ J ⊂ {1, . . . , N}, of P with weights qj, j 6∈ J ,

where J has cardinality N − n.

The problem of optimal scenario reduction consists in determining

such a probability measure Q deviating from P as little as possible

with respect to dλ. It can be written as

min

{
dλ

(
P,

∑
j 6∈J

qjδξj

) ∣∣∣∣ J ⊂ {1, . . . , N}, |J | = N − n

qj ≥ 0 j 6∈ J,
∑

j 6∈J qj = 1

}
.

This optimization problem may be decomposed into an outer prob-

lem for determining the index set J and an inner problem for choos-

ing the probabilities qj, j 6∈ J .
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To this end, we denote

d(P, (J, q)) := dλ

(
P,

∑
j 6∈J

qjδξj

)
Sn := {q ∈ Rn : qj ≥ 0, j 6∈ J,

∑
j 6∈J

qj = 1}.

Then the optimal scenario reduction problem may be rewritten as

min
J
{min

q∈Sn

d(P, (J, q)) : J ⊂ {1, . . . , N}, |J | = N − n}

with the inner problem (optimal redistribution)

min{d(P, (J, q)) : q ∈ Sn}

for fixed index set J . The outer problem is a NP hard combina-

torial optimization problem while the inner problem may be refor-

mulated as a linear program.

The latter is illustrated by reformulating DJ := minq∈Sn d(P, (J, q)).

An explicit formula for DJ is no longer available !
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For B ∈ Brect we define the system of critical index sets I(B) by

Irect := {I(B) = {i ∈ {1, . . . , N} : ξi ∈ B} : B ∈ Brect}

and write

|P (B)−Q(B)| =

∣∣∣∣∣∣
∑

i∈I(B)

pi −
∑

j∈I(B)\J

qj

∣∣∣∣∣∣ .

Then, the rectangular discrepancy between P and Q is

αBrect(P, Q) = max
I∈Irect

∣∣∣∣∣∣
∑
i∈I

pi −
∑

j∈I\J

qj

∣∣∣∣∣∣.
Using the reduced system of critical index sets

I∗rect(J) := {I \ J : I ∈ Irect},

every I∗ ∈ I∗rect(J) is associated with a family ϕ(I∗) ⊂ Irect:

ϕ(I∗) := {I ∈ Irect : I∗ = I \ J} (I∗ ∈ I∗rect(J)).
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With the quantities

γI∗ := max
I∈ϕ(I∗)

∑
i∈I

pi and γI∗ := min
I∈ϕ(I∗)

∑
i∈J

pi (I∗ ∈ I∗rect(J)),

we obtain DJ as infimum of the linear program

min


λtα + (1− λ)tζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tα, tζ ≥ 0, qj ≥ 0,
∑

j 6∈J qj = 1,

ηi,j ≥ 0, i = 1, . . . , N, j 6∈ J,

tζ ≥
∑

i=1,...,N,j 6∈J ĉr(ξi, ξj)ηi,j,∑
j 6∈J ηi,j = pi, i = 1, . . . , N,∑N
i=1 ηi,j = qj, j 6∈ J,

−
∑

j∈I∗ qj ≤ tα − γI∗, I∗ ∈ I∗rect(J)∑
j∈I∗ qj ≤ tα + γI∗, I∗ ∈ I∗rect(J)


We have |I∗rect(J)| ≤ 2n and, hence, the LP should be solvable at

least for moderate values of n.
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How to determine I∗rect(J), γI∗ and γI∗?

Observation:
I∗rect(J), γI∗ and γI∗ are determined by those rectangles B ∈ R,

each of whose facets contains an element of {ξj : j 6∈ J}, such that

it can not be enlarged without changing its interior’s intersection

with {ξj : j 6∈ J}. The rectangles in R are called supporting.

Non supporting rectangle (left) and supporting rectangle (right). The dots represent the
remaining scenarios ξj, j 6∈ J .
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Proposition:
It holds that

I∗rect(J)=
⋃

B∈R

{I∗ ⊆ {1, . . . , N}\J :∪j∈I∗{ξj}={ξj :j 6∈ J}∩ int B}

and, for every I∗ ∈ I∗rect(J),

γI∗ = max {P (int B) : B ∈ R,∪j∈I∗{ξj} = {ξj : j 6∈ J} ∩ int B}
γI∗ =

∑
i∈I

pi,

where

I := {i ∈ {1, . . . , N} : min
j∈I∗

ξj,l ≤ ξi,l ≤ max
j∈I∗

ξj,l , l = 1, . . . , d}.

Note that |R| ≤
(
n+2

2

)d
!
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Numerical results

Optimal redistribution: αBrect versus ζ2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

25 scenarios chosen by Quasi Monte Carlo out of 1000 samples from the uniform
distribution on [0, 1]2 and optimal probabilities adjusted w.r.t. λαBrect + (1− λ)ζ2

for λ = 1 (gray balls) and λ = 0.9 (black circles)
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Optimal redistribution w.r.t. the rectangular discrepancy αBrect:

d n=5 n=10 n=15 n=20

N=100 3 0.01 0.04 0.56 6.02

4 0.01 0.19 1.83 17.22

N=200 3 0.01 0.05 0.53 4.28

4 0.01 0.20 2.56 41.73

Running times [sec] of the optimal redistribution algorithm

The majority of the running time is spent for determining the sup-

porting rectangles, while the time needed to solve the linear program

is insignificant.
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Optimal scenario reduction

Forward selection:

Step [0]: J [0] := ∅ .

Step [i]: li ∈ argminl 6∈J [i−1] inf
q∈Si

dλ

(
P,

∑
j∈J [i−1]∪{l}

qjδξj

)
,

J [i] := J [i−1] ∪ {li}.
Step [n+1]: Minimize dλ

(
P,

∑
j∈J [n]

qjδξj

)
s.t. q ∈ Sn.

N=100 n=5 n=10 n=15

d = 2 0.21 2.07 17.46

d = 3 0.33 8.40 230.40

d = 4 0.61 33.69 1944.94

Growth of running times (in seconds) of forward selection for λ = 1

−→ Search for more efficient heuristics
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Alternative heuristics (for P with independent marginals):

• (next neighbor) Quasi Monte Carlo: The first n numbers

of the Halton sequences with bases 2 and 3 provide n equally

weighted points. The closest scenarios are determined and the

resulting discrepancy to the initial measure is computed for

fixed probability weights.

• (next neighbor) adjusted Quasi Monte Carlo: The prob-

abilities of the closest scenarios are adjusted by the optimal

redistribution algorithm to obtain a minimal rectangular dis-

crepancy to P .

For general distributions P with densities transformation formulas

are needed (e.g. Hlawka-Mück 71).
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Conclusion: (Next neighbor) readjusted QMC decreases signifi-

cantly the approximation error. Forward selection provides good

results, but is very slow due to the optimal redistribution in each

step.

0 10 20 30 40 50

0.2

0.4

0.6

0.8

200

400

600

discrepancy time

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

Left: The distance dλ (λ = 1) between P and uniform (next neighbor) QMC points (dashed
line) and (next neighbor) readjusted QMC points (solid line), and running time in seconds
of optimal redistribution. Right: Distances αBrect (solid) and ζ2 (dashed) of 10 out of 100
scenarios, resulting from forward selection for several λ ∈ [0, 1].
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Conclusions and outlook

• There exist reasonably fast heuristics for scenario reduction in

linear two-stage stochastic programs,

• Recursive application of the heuristics apply to generating sce-

nario trees for multistage stochastic programs,

• For scenario tree reduction the heuristics have to be modified.

• For mixed-integer two-stage stochastic programs heuristics ex-

ist, but have to be based on different arguments. They are

more expensive and restricted to moderate dimensions,

• There is hope for generating scenario trees for mixed-integer

multistage models, but it is not yet supported by stability re-

sults.



Home Page

Title Page

Contents

JJ II

J I

Page 32 of 32

Go Back

Full Screen

Close

Quit

References
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