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Introduction

Most approaches for solving stochastic programs of the form

min {/Efo(x,g)P(dg) Lz € X}

with a probability measure P on = C R? and a (normal) inte-
grand fy, require numerical integration techniques, i.e., replacing
the integral by some quadrature formula

[ fle. 0P % 3" pifa(o. 6,
= i=1

where p; = P({&}), Y pi=land €= i=1,...,n.

Since f is often expensive to compute, the number n should be as
small as possible.

[ Conens |
KT
N
Page 2 of 32 |

Go Back I

Close I

Quit I



With v(P) and S(P) denoting the optimal value and solution set
of the stochastic program, respectively, the following estimates are N
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known

[o(P) —v(Q)] < sup
reX

0#£S5(Q) C S(P)+Vp (bup

zeX

[P - Q)
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| o3P - Q)(d£>D S
where X is assumed to be compact, () is a probability distribution y S

approximating P and the function Wp is the inverse of the growth
function of the objective near the solution set, i.e., Poge s0r 52|

ULt (t) = inf {/:fo(x,f)P(dﬁ) —v(P):z e X,d(z,S(P)) > t}. Go Back

Hence, the distance dr with F = {fo(x,) : v € X} Full Screen |
dA(P.Q) 1= sup /f )P — @><d5>| e |
€

becomes important when approximating P. e



For given n € N and for the special case p; = % 1=1,...,n, the
best possible choice of elements & € =, i = 1,...,n (scenarios), =N
is obtained by minimizing

Title Page |
1 n
su);g folx, &) P(dE) — - Z fo(z,&)|, Contets_|
TE = i—1
i.e., by solving the best approximation problem | » ]
min  dr(P, Q) «| >

QEPn(E)
where =
P.(2) = {Q : Q is a uniform probability measure with n scenarios}. e |

It may be reformulated as a semi-infinite program. and is known as
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optimal quantization of P with respect to the function class F.



If = is bounded, P has a Lipschitz continuous and bounded density
and all functions f € F are Lipschitz continuous with a uniform
constant, it is known that

| (log n)*
dr(P = O —_— Koksma-Hlawka
i (P, Q) < - ( )

The convergence rate can be attained by a proper transformation
of Quasi Monte Carlo sequences. The convergence rate can be im-
proved if the functions f € F satisfy a higher degree of smoothness.

Aim of the talk:

Solving the best approximation problem for discrete probability mea-
sures P having many scenarios and for function classes F, which
are relevant for two-stage stochastic programs (scenario reduction).

Additional motivation:
Scenario reduction methods are important for generating scenario
trees for multistage stochastic programs.
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Linear two-stage stochastic programs

uin { (e2) + [ @(a(©).1(6) ~ T Plag) 2 € X |

—
—

where ¢ € R™, = and X are polyhedral subsets of RY and R™,

respectively, P is a probability measure on = and the s X m-matrix
T(-), the vectors g(-) € R™ and h(-) € R® are affine functions of &.

Furthermore, ® and D denote the infimum function of the linear
second-stage program and its dual feasibility set, i.e.,

O(u,t) = mf{{u,y) Wy =t,y € Y} ((u,t) € R" x R
D= {ueR": {zeR*:W'z—ueY*} 40},
where ¢(£) € R™ are the recourse costs, TV is the s X 7 recourse

matrix, W' the transposed of W and Y* the polar cone to the
polyhedral cone Y.
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Theorem: (walkup-Wets 69)

The function ®(-,-) is finite and continuous on the polyhedral set
D x W(Y'). Furthermore, the function ®(u, -) is piecewise linear
convex on the polyhedral set W (Y') for fixed u € D, and ®(-, 1) is
piecewise linear concave on D for fixed t € W(Y).

Assumptions:

(A1) relatively complete recourse: for any (£, z) € = x X,
h(§) —T(§)x € W(Y);

(A2) dual feasibility: q(£) € D holds for all £ € =.
(A3) existence of second moments: |- ||{||*P(d§) < +oo.

Note that (Al) is satisfied if W (Y) = R® (complete recourse). In
general, (A1) and (A2) impose a condition on the support of P.

Extensions to random recourse models, i.e., to W (&), exist.
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Idea: Extend the class F such that it covers all two-stage models.
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G(P.Q)=sw| [ FOP - Q) f € F(E)|, C
where r > 1 1L2YifW(E) =W
ere 7 > 1 (r € {1,2} if W(¢) ) ~ ~ —_—
Fr(E) ={f :E- R f(§) = f(§) < (€, ), V&, & € E}
|

cr(€,€) == max{L, [lE]" €N HIE = €Il (€€ € E),
Proposition: (Rachev-Riischendorf 98) Page 5 of 32 I
If = is bounded, (, may be reformulated as transportation problem

o(P.Q) =it [ aule.mlas. dy:mn=Pmn =],

where ¢, is a metric (reduced cost) with ¢, < ¢, and given by
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Scenario reduction

We consider discrete distributions P with scenarios & and proba-
bilities p;, 1 = 1,..., N, and () being supported by a given subset
of scenarios &, j & J C {1,..., N}, of P.

Optimal reduction of a given scenario set J:
The best approximation of P with respect to (, by such a distribu-
tion () exists and is denoted by ()*. It has the distance

D= CT(P7Q ) = mlnCr P Q sz mlncr gz;&])
1eJ

and the probabilities ¢7 = p; + > pi, Vj & J, where

ZEJ

Ji={ieJ:j=j()}and j(i) € argn;zl?cr(fl,ﬁj) VielJ
(optimal redistribution).

Home Page I
Title Page I
Contents I

4« 44
< >

Page 9 of 32 I
Go Back I

Close I
Quit I



Determining the optimal index set J with prescribed cardinality
N — n is, however, a combinatorial optimization problem:

min{D;:J C {l,...,N},|J| =N —n}

Hence, the problem of finding the optimal set .J for deleting scenar-
ios is N"P-hard and polynomial time algorithms are not available.

—— Search for fast heuristics starting fromn =1orn =N — 1.



Fast reduction heuristics

Starting point (n = N — 1):

min min ¢, (&, &,
le{l,.... N}pl £l (&,6)

Algorithm 1: (Backward reduction)

Step [0]: J" =0
Step [i]: [; € arg

1g Jli—1]

Ji =7
Step [N-n+1]: Optimal

min g pr  min

keJli=lu{1}
=1y 1)

redistribution.




N
Starting point (n = 1):  min > ppc, (&, &u)
ue{l,...,.N} .

Algorithm 2: (Forward selection)
Step [0]: J" .= {1,...,N}.

Step [i]: w; € arg min Z pr  min

ue Jli—1]

Ji = g1 fu;} .
Step [n+1]: Optimal redistribution.




Example: (Electrical load scenario tree)
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Application: Scenario tree generation
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Mixed-integer two-stage stochastic programs
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We consider
| Title Page |
win { (e2) + [ @(a(©).1(6) ~ T(©)0)Plag) 2 € X |
where @ is given by
44 »»
i Wiy + Ways <t
q)(ua t) = inf <u17 y1> + <u27 y2> mq meo
1 €ERL g € ZY e

for all pairs (u,t) € R™™2 x R" and ¢ € R™, X is a closed sub-

set of R™, = a polyhedron in R®, W; € Q"", Wy € Q"*"2, and e
T(&) € R™™ q(&) € R™*™2 and h(£) € R” are affine functions
of £, and P is a probability measure.

We again assume (Al) for W = (Wy, W) (relatively complete
recourse), (A2) (dual feasibility) and (A3). Cose |
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(Schultz-Stougie-van der Vlerk 98)

Second stage problem: MILP with 1764 0-1 variables and 882 constraints.

Stochastic multi-knapsack problem:
min = max, m = 2, my
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The function ® is well understood and the function class
Fop(Z) ={f1p: f € F(2),B € B},
is relevant, where r € {1,2}, B is a class of (convex) polyhedra in

= and 15 denotes the characteristic function of the set B.

The class B contains all polyhedra of the form
B—{¢€=:h(§) - T(&)x € D},

where x € X and D is a polyhedron in R* each of whose facets,
i.e., (s — 1)-dimensional faces, is parallel to a facet of the cone
Wi(RY") or of the unit cube [0,1]°. Hence, B is very problem-
specific.

Therefore, we consider the class of rectangular sets
Brect = {11 X Iy x -+ x I;: ) # I, is a closed interval in R}

covering the situation of pure integer programs.
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Proposition:
In case F = F, ....(=), the metric dr allows the estimates

A5(P,Q) = max{az,.(P,Q),¢(P,Q)}
A5(P,Q) < C (G(P,Q)+ o (P,Q)7T)

where C' is some constant only depending on = and ag__. is the

rect

rectangular discrepancy given by

aB,(P, Q) = sup |P(B)—Q(B)
BeBrect

If the set = is bounded, even the estimate holds

05, (P, Q) < dr(P, Q) < Cop, (P, Q)7

‘ -
0

Since ap,,, has even a stronger influence on d than ¢, we consider
the distance

dA(Pa Q) - AaBrcct<P7 Q) + (1 - >‘) Cr(Pv Q)

with A € [0, 1] close to 1.
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Scenario reduction

We consider again discrete distributions P with scenarios &; and
probabilities p;, 1 = 1,..., N, and () being supported by a subset
of scenarios &;, j & J C {1,..., N}, of P with weights ¢;, j & J,
where J has cardinality N — n.

The problem of optimal scenario reduction consists in determining
such a probability measure () deviating from P as little as possible
with respect to dy. It can be written as

: JC{l...N}J!N—n}
min < d (P, 0 ) ' LR :
{ 4 ij %) | g > 05 ¢ J, Dias =1
This optimization problem may be decomposed into an outer prob-

lem for determining the index set J and an inner problem for choos-
ing the probabilities ¢;, j & J.
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To this end, we denote

d(P,(J,9)) = dy (P, > ;% )
Sn = {g€R" ;20,5 ¢ 7> a=1}
Then the optimal scenario reduction problem may be rewritten as

m}in{misnd(P, (J,q)): JC{l,...,N},|J|=N —n}
J  qeS,

with the inner problem (optimal redistribution)
min{d(P, (J,q)) : ¢ € Sy}

for fixed index set J. The outer problem is a NP hard combina-
torial optimization problem while the inner problem may be refor-
mulated as a linear program.

The latter is illustrated by reformulating D ; := min,eg, d(P, (J,q)).

An explicit formula for D is no longer available !
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For B € Bt we define the system of critical index sets I(B) by
Tt ={I(B)={i€{l,...,N}:& € B} : B € Bt}

and write
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Using the reduced system of critical index sets

Tra( ) = {IN\J : I € Lewt}, [ s |

rect

every [* € T* .(J) is associated with a family (I*) C Zyec: N

rect

o(I*) ={l €Tt : I" =T\ J} (I"€Z;.(J])). que |



With the quantities
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How to determine Z,

Observation:
I*

rect

each of whose facets contains an element of {£; : j & J}, such that
it can not be enlarged without changing its interior’s intersection
with {&; : 7 & J}. The rectangles in R are called supporting.

(J), v+ and 7

______ S S G

Non supporting rectangle (left) and supporting rectangle (right). The dots represent the

remaining scenarios &;, j & J.

(J), v+ and 4" are determined by those rectangles B € R,
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Proposition:

It holds that _ Homerage |
Tro(N) =\ (I € {1,.. ., NI\J:Ujer{} ={&:j & J}Nint B} |l
BeR

and, for every I* € Z* . (J),

v =max {P(int B) : B € R, Ujer{&} = {&:5 ¢ J}nint B} I I

Y+ = Zpu

el
where

I ={ie{l,...,N} : min¢;; <&; <max¢;,l=1,...,d}.
jeI* jerr

Note that |[R| < (”;Q)d !



Numerical results
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Optimal redistribution w.r.t. the rectangular discrepancy ap__:

rect "

d | n=5 n=10 n=15 n=20
N=100 3(/0.01 0.04 056 6.02

41001 019 183 17.22 N
N=200 3/0.01 0.05 0.53 4.28

41001 020 256 41.73 < 4

Running times [sec] of the optimal redistribution algorithm P o |
The majority of the running time is spent for determining the sup-

porting rectangles, while the time needed to solve the linear program e
is insignificant. E—
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Optimal scenario reduction

Forward selection:

Step [0]: J" =&

Step [i]: 1 € argmingg iy qigzgi = <P’ Zjeﬂi—llu{z} 4% ) 7

Ji .= J=1y 1),

Step [n+1]: Minimize d) (P, ngﬂn] qj%.) s.t. ¢ €.5,.

N=100 | n=5 n=10 n=15
d=2 1021 207 17.46
d=3 033 8.40 230.40
d=4 [0.61 33.69 1944.94

Growth of running times (in seconds) of forward selection for A = 1

—— Search for more efficient heuristics
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Alternative heuristics (for P with independent marginals):
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e (next neighbor) Quasi Monte Carlo: The first n numbers ]
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e (next neighbor) adjusted Quasi Monte Carlo: The prob-
abilities of the closest scenarios are adjusted by the optimal Ll ]
redistribution algorithm to obtain a minimal rectangular dis-

crepancy to P. Page 2007 22|

For general distributions P with densities transformation formulas Gosock |

fixed probability weights.

are needed (e.g. Hlawka-Miick 71).
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Conclusion: (Next neighbor) readjusted QMC decreases signifi-
cantly the approximation error. Forward selection provides good
results, but is very slow due to the optimal redistribution in each
step.

discrepancy time

600 0.6

400 04

200 02

0 02 04 06 08 1

Left: The distance d) (A = 1) between P and uniform (next neighbor) QMC points (dashed
line) and (next neighbor) readjusted QMC points (solid line), and running time in seconds
of optimal redistribution. Right: Distances ag,,,, (solid) and (, (dashed) of 10 out of 100
scenarios, resulting from forward selection for several A € [0, 1].
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Conclusions and outlook
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e There exist reasonably fast heuristics for scenario reduction in
linear two-stage stochastic programs, Title Page |

e Recursive application of the heuristics apply to generating sce- =
nario trees for multistage stochastic programs,

KT

e For scenario tree reduction the heuristics have to be modified.

e For mixed-integer two-stage stochastic programs heuristics ex- < 4
ist, but have to be based on different arguments. They are
more expensive and restricted to moderate dimensions, =T

e There is hope for generating scenario trees for mixed-integer Gopack |
multistage models, but it is not yet supported by stability re-
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