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H. Leövey and W. Römisch

Humboldt-University Berlin
Institute of Mathematics

www.math.hu-berlin.de/~romisch

Stevens Institute of Technology, Department of Mathematical Sciences,
Hoboken, New Jersey, May 9, 2013



Introduction

• Computational methods for solving stochastic programs require (first) a dis-

cretization of the underlying probability distribution induced by a numerical

integration scheme and (second) an efficient solver for the finite-dimensional

program.

• Discretization means scenario or sample generation.

• Standard approach: Variants of Monte Carlo (MC) methods.

• Recent alternative approaches to scenario generation:

(a) Optimal quantization of probability distributions

(Pflug-Pichler 2011).

(b) Quasi-Monte Carlo (QMC) methods

(Koivu-Pennanen 05, Homem-de-Mello 08).

(c) Sparse grid quadrature rules

(Chen-Mehrotra 08).

(d) Moment matching methods

(Høyland-Wallace 01, Gülpinar-Rustem-Settergren 04)



• Known convergence rates in terms of scenario or sample size n:

MC: ên(f ) = O(n−
1
2) if f ∈ L2,

(a): en(f ) = O(n−
1
d) if f ∈ Lip,

(b): classical: en(f ) = O(n−1(log n)d) if f ∈ BV,

recently: ên(f ) ≤ C(δ)n−1+δ (δ ∈ (0, 1
2]) if f ∈ W (1,...,1),

where C(δ) does not depend on d,

(c): en(f ) = O(n−r(log n)(d−1)(r+1)) if f ∈ W (r,...,r),

where d is the dimension of the random vector and en(f ) the quadrature

error for integrand f and sample size n, i.e.,

en(f ) =
∣∣∣ ∫

[0,1]d
f (ξ)dξ − 1

n

n∑
i=1

f (ξi)
∣∣∣

and ên(f ) denotes mean (square) quadrature error.

• Monte Carlo methods and (a) may be justified by available stability results

for stochastic programs, but there is almost no reasonable justification in

cases (b), (c) and (d).

• In applications of stochastic programming d is often large.
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Quasi-Monte Carlo methods

We consider the approximate computation of

Id(f ) =

∫
[0,1]d

f (ξ)dξ

by a QMC algorithm

Qn,d(f ) = 1
n

n∑
i=1

f (ξi)

with (non-random) points ξi, i = 1, . . . , n, from [0, 1]d.

We assume that f belongs to a linear normed space Fd of functions on [0, 1]d

with norm ‖ · ‖d and unit ball Bd.

Worst-case error of Qn,d over Bd:

e(Qn,d) = sup
f∈Bd

∣∣Id(f )−Qn,d(f )
∣∣



Classical convergence results:

Theorem: (Proinov 88)

If the real function f is continuous on [0, 1]d, then there exists C > 0 such that

|Qn,d(f )− Id(f )| ≤ Cωf
(
D∗n(ξ1, . . . , ξn)

1
d
)
,

where ωf(δ) = sup{|f (ξ)− f (ξ̃)| : ‖ξ − ξ̃)‖ ≤ δ, ξ, ξ̃ ∈ [0, 1]d} is the modulus

of continuity of f and

D∗n(ξ1, . . . , ξn) := sup
x∈[0,1]d

|disc(x)|, disc(x) = λd([0, x))− 1
n

n∑
i=1

1l[0,x)(ξ
i),

is the star-discrepancy of ξ1, . . . , ξn (λd denotes Lebesgue’s measure on Rd).

Theorem: (Koksma-Hlawka 61)

If VHK(f ) is the variation of f in the sense of Hardy and Krause, it holds

|Id(f )−Qn,d(f )| ≤ VHK(f )D∗n(ξ1, . . . , ξn)

for any n ∈ N and any ξ1, . . . , ξn ∈ [0, 1]d.



Extended Koksma-Hlawka inequality:

|Id(f )−Qn,d(f )| ≤ ‖disc(·)‖p,p′‖f‖q,q′ ,
where 1 ≤ p, p′, q, q′ ≤ ∞, 1

p + 1
q = 1, 1

p′ + 1
q′ = 1, and

‖disc(·)‖p,p′ =

(∑
u⊆D

(∫
[0,1]|u|

|disc(xu, 1)|p
′
dxu

) p
p′
)1

p

and

‖f‖q,q′ =

∑
u⊆D

(∫
[0,1]|u|

∣∣∣∣∂|u|f∂xu
(xu, 1)

∣∣∣∣q
′

dxu

) q
q′


1
q

with the obvious modifications if one or more of p, p′, q, q′ are infinite.

In particular, the classical Koksma-Hlawka inequality essentially corresponds to

p = p′ = ∞ if f belongs to the tensor product Sobolev space W (1,...,1)
2,mix ([0, 1]d)

which is defined next.
By (xu, 1) we mean the d-dimensional vector with the same components as x for indices in u and the rest of
the components replaced by 1.



The case of kernel reproducing Hilbert spaces

We assume that Fd is a kernel reproducing Hilbert space with inner product 〈·, ·〉
and kernel K : [0, 1]d × [0, 1]d → R, i.e.,

K(·, y) ∈ Fd and 〈f (·), K(·, y)〉 = f (y) (∀y ∈ [0, 1]d, f ∈ Fd).

If Id is a linear bounded functional on Fd, the quadrature error en(Qn,d) allows

the representation

en(Qn,d) = sup
f∈Bd

∣∣Id(f )−Qn,d(f )
∣∣ = sup

f∈Bd
|〈f, hn〉| = ‖hn‖d

according to Riesz’ theorem for linear bounded functionals.

The representer hn ∈ Fd of the quadrature error is of the form

hn(x) =

∫
[0,1]d

K(x, y)dy − 1
n

n∑
i=1

K(x, ξi) (∀x ∈ [0, 1]d),

and it holds

e2
n(Qn,d)=

∫
[0,1]2d

K(x, y)dx dy − 2
n

n∑
i=1

∫
[0,1]d

K(ξi, y)dy + 1
n2

n∑
i,j=1

K(ξi, ξj)

(Hickernell 96,98)



Example: Weighted tensor product Sobolev space

Fd =W (1,...,1)
2,mix ([0, 1]d) =

d⊗
i=1

W 1
2 ([0, 1])

equipped with the weighted norm ‖f‖2
γ = 〈f, f〉γ and inner product

〈f, g〉γ =
∑

u⊆{1,...,d}

γ−1
u

∫
[0,1]|u|

∂|u|f

∂xu
(xu, 1)

∂|u|g

∂xu
(xu, 1)dxu ,

where γ1 ≥ γ2 ≥ · · · ≥ γd > 0, γu =
∏

j∈u γj, is a kernel reproducing Hilbert

space with the kernel

Kd,γ(x, y) =

d∏
j=1

(1 + γjµ(xj, yj)) (x, y ∈ [0, 1]d),

where

µ(t, s) =

{
min{|t− 1|, |s− 1|} , (t− 1)(s− 1) > 0,

0 , else.

Note that f ∈ Fd iff ∂|u|f
∂xu

(·, 1) ∈ L2([0, 1]|u|) for all u ⊆ D.



Theorem: (Sloan-Woźniakowski 98)

Let Fd =W (1,...,1)
2,mix ([0, 1]d). Then the worst-case error

e2(Qn,d)= sup
‖f‖γ≤1

|Id(f )−Qn,d(f )| =
∑
∅6=u⊆D

∏
j∈u

γj

∫
[0,1]|u|

disc2(xu, 1)dxu

is called weighted L2-discrepancy of ξ1, . . . , ξn.

Note that any f ∈ Fd is of bounded variation VHK(f ) in the sense of Hardy and

Krause and it holds

V (f ) =
∑
∅6=u⊆D

∫
[0,1]|u|

∣∣∣∂|u|f
∂xu

(xu, 1)
∣∣∣dxu .

Problem: Integrands in two-stage stochastic programming do not belong to Fd
(piecewise linear functions are not of bounded variation (Owen 05)).



First general QMC construction: Digital nets (Sobol 69, Niederreiter 87)

Elementary subintervals E in base b:

E =

d∏
j=1

[
aj

bdj
,
aj + 1

bdj

)
,

where ai, di ∈ Z+, 0 ≤ ai < bdi, i = 1, . . . , d.

Let m, t ∈ Z+, m > t. A set of bm points in [0, 1)d is a (t,m, d)-net in base b if

every elementary subinterval E in base b with λd(E) = bt−m contains bt points.

Illustration of a (0, 4, 2)-net with b = 2 s s s s
s s s ss s s s

s s s s

1

0 1

A sequence (ξi) in [0, 1)d is a (t, d)-sequence in base b if, for all integers k ∈ Z+

and m > t, the set

{ξi : kbm ≤ i < (k + 1)bm}
is a (t,m, d)-net in base b.



There exist (t, d)-sequences (ξi) in [0, 1]d such that

D∗n(ξ1, . . . , ξn) = O(n−1(log n)d−1) ≤ C(δ, d)n−1+δ (∀δ > 0).

Specific sequences: Faure, Sobol’, Niederreiter and Niederreiter-Xing se-

quences (Lemieux 09, Dick-Pillichshammer 10).

Recent development: Scrambled (t,m, d)-nets, where the digits are randomly

permuted (Owen 95).

Second general QMC construction: Lattices (Korobov 59, Sloan-Joe 94)

Lattice rules: Let g ∈ Zd and consider the lattice points{
ξi =

{
i
ng
}

: i = 1, . . . , n
}
,

where {z} is defined as componentwise fractional part of z ∈ R+, i.e.,

{z} = z − bzc ∈ [0, 1).

The generator g is chosen such that the lattice rule has good convergence proper-

ties. Such lattice rules may achieve better convergence rates O(n−k+δ), k ∈ N,

for integrands in Ck.





Recent development: Randomized lattice rules.

Randomly shifted lattice points:

If 4 is a sample from uniform distribution in [0, 1]d. put

Qn,d(f ) = 1
n

n∑
i=1

f
(
i
ng +4

)
.

Theorem:
Let n be prime, Fd = W (1,...,1)

2,mix ([0, 1]d) and g ∈ Zd be constructed componen-

twise. Then there exists for any δ ∈ (0, 1
2] a constant C(δ) > 0 such that the

mean quadrature error attains the optimal convergence rate

ê(Qn,d) ≤ C(δ)n−1+δ ,

where the constant C(δ) grows when δ decreases, but does not depend on the

dimension d if the sequence (γj) satisfies the condition

∞∑
j=1

γ
1

2(1−δ)
j <∞ (e.g. γj = 1

j2
).

(Sloan/Wožniakowski 98, Sloan/Kuo/Joe 02, Kuo 03)



ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms are smooth,

but hopefully only some of them relevant.

Let D = {1, . . . , d} and f ∈ L1,ρ(Rd) with ρ(ξ) =
∏d

j=1 ρj(ξj), where

f ∈ Lp,ρ(Rd) iff

∫
Rd
|f (ξ)|pρ(ξ)dξ <∞ (p ≥ 1).

Let the projection Pk, k ∈ D, be defined by

(Pkf )(ξ) :=

∫ ∞
−∞

f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ Rd).

Clearly, Pkf is constant with respect to ξk. For u ⊆ D we write

Puf =
(∏
k∈u

Pk

)
(f ),

where the product means composition, and note that the ordering within the

product is not important because of Fubini’s theorem. The function Puf is

constant with respect to all xk, k ∈ u.



ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = PD(f ) and recursively

fu = P−u(f )−
∑
v⊂u

fv

or (due to Kuo-Sloan-Wasilkowski-Woźniakowski 10)

fu =
∑
v⊆u

(−1)|u|−|v|P−vf = P−u(f ) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u(f )),

where P−u and Pu−v mean integration with respect to ξj, j ∈ D\u and j ∈ u\v,

respectively. The second representation motivates that fu is essentially as smooth

as P−u(f ).

If f belongs to L2,ρ(Rd), its ANOVA terms {fu}u⊆D are orthogonal in L2,ρ(Rd).

We set σ2(f ) = ‖f − Id(f )‖2
L2

and σ2
u(f ) = ‖fu‖2

L2
, and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

σ2
u(f ) .



Owen’s superposition (truncation) dimension distribution of f : Probability mea-

sure νS (νT ) defined on the power set of D

νS(s) :=
∑
|u|=s

σ2
u(f )

σ2(f )

(
νT (s) =

∑
max{j:j∈u}=s

σ2
u(f )

σ2(f )

)
(s ∈ D).

Effective superposition (truncation) dimension dS(ε) (dT (ε)) of f is the (1− ε)-

quantile of νS (νT ):

dS(ε) = min
{
s ∈ D :

∑
|u|≤s

σ2
u(f ) ≥ (1− ε)σ2(f )

}
≤ dT (ε)

dT (ε) = min
{
s ∈ D :

∑
u⊆{1,...,s}

σ2
u(f ) ≥ (1− ε)σ2(f )

}
It holds

max
{∥∥∥f − ∑

|u|≤dS(ε)

fu

∥∥∥
2,ρ
,
∥∥∥f − ∑

u⊆{1,...,dT (ε)}

fu

∥∥∥
2,ρ

}
≤
√
εσ(f ).

(Caflisch-Morokoff-Owen 97, Owen 03, Wang-Fang 03)



Two-stage linear stochastic programs

We consider the linear two-stage stochastic program

min
{∫

Ξ

f (x, ξ)P (dξ) : x ∈ X
}
,

where f is extended real-valued defined on Rm × Rd given by

f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x), (x, ξ) ∈ X × Ξ,

c ∈ Rm, X ⊆ Rm and Ξ ⊆ Rd are convex polyhedral, W is an (r,m)-matrix, P

is a Borel probability measure on Ξ, and the vectors q(ξ) ∈ Rm, h(ξ) ∈ Rr and

the (r,m)-matrix T (ξ) are affine functions of ξ, Φ is the second-stage optimal

value function

Φ(u, t) = inf{〈u, y〉 : Wy = t, y ≥ 0} ((u, t) ∈ Rm × Rr),

Let posW = W (Rm
+), D ={u ∈ Rm :{z ∈ Rr : W>z ≤ u} 6= ∅}.

Assumptions:
(A1) h(ξ)− T (ξ)x ∈ posW and q(ξ) ∈ D for all (x, ξ) ∈ X × Ξ.

(A2)
∫

Ξ ‖ξ‖
2P (dξ) <∞.



Proposition:
(A1) and (A2) imply that the two-stage stochastic program represents a convex

minimization problem with respect to the first stage decision x with polyhedral

constraints.

Lemma: (Walkup-Wets 69, Nožička-Guddat-Hollatz-Bank 74)

Φ is finite, polyhedral and continuous on the (m + r)-dimensional polyhedral

cone D × posW and there exist (r,m)-matrices Cj and (m + r)-dimensional

polyhedral cones Kj, j = 1, ..., `, such that

⋃̀
j=1

Kj = D × posW and intKi ∩ intKj = ∅ , i 6= j,

Φ(u, t) = 〈Cju, t〉, for each (u, t) ∈ Kj, j = 1, ..., `.

The function Φ(u, ·) is convex on posW for each u ∈ D, and Φ(·, t) is concave

on D for each t ∈ posW . The intersection Ki ∩ Kj, i 6= j, is either equal to

{0} or contained in a (m+r−1)-dimensional subspace of Rm+r if the two cones

are adjacent.



Error estimates for optimal values and solution sets

With v(P ) and S(P ) denoting the optimal value and solution set of

min
{∫

Ξ

f (x, ξ)P (dξ) : x ∈ X
}
,

it holds

|v(P )− v(Q)| ≤ L sup
x∈X

∣∣∣ ∫
Ξ

f (x, ξ)P (dξ)−
∫

Ξ

f (x, ξ)Q(dξ)
∣∣∣

∅ 6= S(Q) ⊆ S(P ) + ΨP

(
L sup
x∈X

∣∣∣ ∫
Ξ

f (x, ξ)(P −Q)(dξ)
∣∣∣),

where L > 0 is some constant, P the original probability distribution and Q its

perburbation, and ΨP the conditioning function given by

ΨP (η) := η + ψ−1
P (2η) (η ∈ R+),

where the growth function ψP is

ψP (τ ) := min
{∫

Ξ

f0(x, ξ)P (dξ)− v(P ) : d(x, S(P )) ≥ τ, x ∈ X
}

with inverse ψ−1
P (t) := sup{τ ∈ R+ : ψP (τ ) ≤ t}. (Römisch 03)



ANOVA decomposition of two-stage integrands

Assumptions:
(A1), (A2) and

(A3) P has a density of the form ρ(ξ) =
∏d

j=1 ρj(ξj) (ξ ∈ Rd) with continuous

marginal densities ρj, j ∈ D.

Proposition:
(A1) implies that the function f (x, ·), where

fx(ξ) := f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x) (x ∈ X, ξ ∈ Ξ)

is the two-stage integrand, is continuous and piecewise linear-quadratic.

For each x ∈ X , f (x, ·) is linear-quadratic on each polyhedral set

Ξj(x) = {ξ ∈ Ξ : (q(ξ), h(ξ)− T (ξ)x) ∈ Kj} (j = 1, . . . , `).

It holds int Ξj(x) 6= ∅, int Ξj(x) ∩ int Ξi(x) = ∅, i 6= j, and the sets Ξj(x),

j = 1, . . . , `, decompose Ξ. Furthermore, the intersection of two adjacent sets

Ξi(x) and Ξj(x), i 6= j, is contained in some (d−1)-dimensional affine subspace.



To compute projections Pkf for k ∈ D, let ξi ∈ R, i = 1, . . . , d, i 6= k, be

given. We set ξk = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd) and

ξk(s) = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd) ∈ Rd (s ∈ R).

We fix x ∈ X and consider the one-dimensional affine subspace {ξk(s) : s ∈ R}:

@
@

@
@
@

@
@
@

@

�
�
�
�
�
�
�
�
�

Ξ2(x) Ξ1(x)

Ξ3(x)

0

ξ1(s) q q
s1 s2

Example with d = 2 = p, where the polyhedral sets are cones

It meets the nontrivial intersections of two adjacent polyhedral sets Ξi(x) and

Ξj(x), i 6= j, at finitely many points si, i = 1, . . . , p if all (d − 1)-dimensional

subspaces containing the intersections do not parallel the kth coordinate axis.



The si = si(ξ
k), i = 1, . . . , p, are affine functions of ξk. It holds

si = −
p∑

l=1,l 6=k

gil
gik
ξl + ai (i = 1, . . . , p)

for some ai ∈ R and gi ∈ Rd belonging to an intersection of polyhedral sets.

Proposition:
Let k ∈ D, x ∈ X . Assume (A1)–(A3) and that all (d − 1)-dimensional affine

subspaces containing nontrivial intersections of adjacent sets Ξi(x) and Ξj(x) do

not parallel the kth coordinate axis.

Then the kth projection Pkf has the explicit representation

Pkf (ξk) =

p+1∑
i=1

2∑
j=0

pij(ξ
k;x)

∫ si

si−1

sjρk(s)ds,

where s0 = −∞, sp+1 = +∞ and pij(·;x) are polynomials in ξk of degree 2− j,

j = 0, 1, 2, with coefficients depending on x, and is continuously differentiable.

Pkf is infinitely differentiable if the marginal density ρk belongs to C∞(R).



Theorem:
Let x ∈ X , assume (A1)–(A3) and that the following geometric condition (GC)

be satisfied: All (d− 1)-dimensional affine subspaces containing nontrivial inter-

sections of adjacent sets Ξi(x) and Ξj(x) do not parallel any coordinate axis.

Then the ANOVA approximation

fd−1 :=
∑
|u|≤d−1

fu i.e. f = fd−1 + fD

of f is infinitely differentiable if all densities ρk, k ∈ D, belong to C∞b (R).

Here, the subscript b means that all derivatives of functions belonging to that

space are bounded on R.



Example: Let m̄ = 3, d = 2, P denote the two-dimensional standard normal

distribution, h(ξ) = ξ, q and W be given such that (A1) is satisfied and the dual

feasible set is

{z ∈ R2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z2 ≤ 0}.

@
@

@
@
@

@
@
@

@

�
�
�
�
�
�
�
�
�

qq
q

q�
�
�
�@

@
@
@

K2 K1

K3

0

v3

v2 v1

Dual feasible set, its vertices vj and the normal cones Kj to its vertices

The function Φ and the integrand are of the form

Φ(t) = max
i=1,2,3

〈vi, t〉 = max{t1,−t1, t2} = max{|t1|, t2}

f (ξ) = 〈c, x〉 + Φ(ξ − Tx) = 〈c, x〉 + max{|ξ1− [Tx]1|, ξ2 − [Tx]2}

and the convex polyhedral sets are Ξj(x) = Tx +Kj, j = 1, 2, 3.

The ANOVA projection P1f is in C∞, but P2f is not differentiable.



QMC quadrature error estimates

If the assumptions of the theorem are satisfied, the two-stage integrand f = fx
(for fixed x ∈ X) allows the representation f = fd−1 + fD with fd−1 belonging

to Fd. This implies∣∣∣ ∫
[0,1]d

f (ξ)dξ − 1
n

n∑
j=1

f (ξj)
∣∣∣ ≤ e(Qn,d)‖fd−1‖γ +

∣∣∣ ∫
[0,1]d

fD(ξ)dξ − 1
n

n∑
j=1

fD(ξj)
∣∣∣

≤ e(Qn,d)‖fd−1‖γ + ‖fD‖L2 +
(

1
n

n∑
j=1

|fD(ξj)|2
)1

2

where ‖ · ‖γ is the weighted tensor product Sobolev space norm.

As fD is (Lipschitz) continuous and if the ξj, j = 1, . . . , n are properly selected,

the last term in the above estimate may be assumed to be bounded by 2‖fD‖L2.

Hence, if the effective superposition dimension satisfies dS(ε) ≤ d − 1, i.e.,

‖fD‖L2 ≤
√
εσ(f ) holds for some small ε > 0, the first term e(Qn,d)‖fd−1‖γ

dominates and the convergence rate of e(Qn,d) becomes most important.



Question: How important is the geometric condition (GC) ?

Partial answer: If P is normal with nonsingular covariance matrix, (GC) is

satisfied for almost all covariance matrices. Namely, it holds

Proposition: Let x ∈ X , (A1), (A2) be satisfied, dom Φ = Rr and P be

a normal distribution with nonsingular covariance matrix Σ. Then the infinite

differentiability of the ANOVA approximation fd−1 of f is a generic property,

i.e., it holds in a residual set (countable intersection of open dense subsets)

in the metric space of orthogonal (d, d)-matrices Q (endowed with the norm

topology) appearing in the spectral decomposition Σ = Q>DQ of Σ (with a

diagonal matrix D containing the eigenvalues of Σ).

Question: For which two-stage stochastic programs is ‖fD‖L2,ρ small, i.e., the

effective superposition dimension dS(ε) of f is less than d−1 or even much less?

Partial answer: In case of a (log)normal probability distribution P the effective

dimension depends on the mode of decomposition of the covariance matrix into

a diagonal one.



Dimension reduction in case of (log)normal distributions

Let P be the normal distribution with mean µ and nonsingular covariance matrix

Σ. Let A be a matrix satisfying Σ = AA>. Then η defined by ξ = Aη + µ is

standard normal.

A universal principle is principal component analysis (PCA). Here, one uses

A = (
√
λ1u1, . . . ,

√
λdud), where λ1 ≥ · · · ≥ λd > 0 are the eigenvalues

of Σ in decreasing order and the corresponding orthonormal eigenvectors ui,

i = 1, . . . , d. Wang-Fang 03, Wang-Sloan 05 report an enormous reduction of the effec-

tive truncation dimension in financial models if PCA is used.

A problem-dependent principle may be based on the following equivalence prin-

ciple (Papageorgiou 02, Wang-Sloan 11).

Proposition: Let A be a fixed d×d matrix such that AA> = Σ. Then it holds

Σ = BB> if and only if B is of the form B = AQ with some orthogonal d× d
matrix Q.

Idea: Determine Q for given A such that the effective truncation dimension is

minimized (Wang-Sloan 11).



Some computational experience

We considered a two-stage production planning problem for maximizing the ex-

pected revenue while satisfying a fixed demand in a time horizon with d = T =

100 time periods and stochastic prices for the second-stage decisions. It is as-

sumed that the probability distribution of the prices ξ is log-normal. The model

is of the form

max
{ T∑

t=1

(
c>t xt +

∫
RT
qt(ξ)>ytP (dξ)

)
: Wy + V x = h, y ≥ 0, x ∈ X

}
The use of PCA for decomposing the covariance matrix has led to effective trun-

cation dimension dT (0.01) = 2. As QMC methods we used a randomly scram-

bled Sobol sequence (SSobol)(Owen, Hickernell) with n = 27, 29, 211 and a randomly

shifted lattice rule (Sloan-Kuo-Joe) with n = 127, 509, 2039, weights γj = 1
j2

and for

MC the Mersenne-Twister. 10 runs were performed for the error estimates and

30 runs for plotting relative errors.

Average rate of convergence for QMC: O(n−0.9) and O(n−0.8).
Instead of n = 27 SSobol samples one would need n = 104 MC samples to achieve a similar accuracy as SSobol.



log10 of the relative errors of MC, SLA (randomly shifted lattice rule) and SSOB (scrambled Sobol’ points)



Conclusions

• Our analysis provides a theoretical basis for applying QMC methods accom-

panied by dimension reduction techniques to two-stage stochastic programs.

• The analysis also applies to sparse grid quadrature techniques.

Sparse grids in the unit cube [0, 1]d



• The results are extendable and will be extended to mixed-integer two-stage

models, to multi-stage situations, and to models with stochastic dominance

constraints.

Second-stage optimal value function of an integer program (van der Vlerk)
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