Quasi-Monte Carlo approximations in stochastic optimization

H. Leövey and W. Römisch
Humboldt-University Berlin
Institute of Mathematics
www.math.hu-berlin.de/~romisch

DFG Research Center Matheon
Mathematics for key technologies

Stevens Institute of Technology, Department of Mathematical Sciences, Hoboken, New Jersey, May 9, 2013

Introduction

- Computational methods for solving stochastic programs require (first) a discretization of the underlying probability distribution induced by a numerical integration scheme and (second) an efficient solver for the finite-dimensional program.
- Discretization means scenario or sample generation.
- Standard approach: Variants of Monte Carlo (MC) methods.
- Recent alternative approaches to scenario generation:
(a) Optimal quantization of probability distributions
(Pflug-Pichler 2011).
(b) Quasi-Monte Carlo (QMC) methods
(Koivu-Pennanen 05, Homem-de-Mello 08).
(c) Sparse grid quadrature rules
(Chen-Mehrotra 08).
(d) Moment matching methods
(Høyland-Wallace 01, Gülpinar-Rustem-Settergren 04)
- Known convergence rates in terms of scenario or sample size n :

MC: $\hat{e}_{n}(f)=O\left(n^{-\frac{1}{2}}\right)$ if $f \in L_{2}$,
(a): $e_{n}(f)=O\left(n^{-\frac{1}{d}}\right)$ if $f \in \mathrm{Lip}$,
(b): classical: $e_{n}(f)=O\left(n^{-1}(\log n)^{d}\right)$ if $f \in \mathrm{BV}$,
recently: $\hat{e}_{n}(f) \leq C(\delta) n^{-1+\delta}\left(\delta \in\left(0, \frac{1}{2}\right]\right)$ if $f \in W^{(1, \ldots, 1)}$, where $C(\delta)$ does not depend on d,
(c): $e_{n}(f)=O\left(n^{-r}(\log n)^{(d-1)(r+1)}\right)$ if $f \in W^{(r, \ldots, r)}$,
where d is the dimension of the random vector and $e_{n}(f)$ the quadrature error for integrand f and sample size n, i.e.,

$$
e_{n}(f)=\left|\int_{[0,1]^{d}} f(\xi) d \xi-\frac{1}{n} \sum_{i=1}^{n} f\left(\xi^{i}\right)\right|
$$

and $\hat{e}_{n}(f)$ denotes mean (square) quadrature error.

- Monte Carlo methods and (a) may be justified by available stability results for stochastic programs, but there is almost no reasonable justification in cases (b), (c) and (d).
- In applications of stochastic programming d is often large.

Contents

(0) Introduction
(1) Quasi-Monte Carlo methods: old and new developments
(2) ANOVA decomposition of multivariate functions and effective dimension
(3) Integrands of two-stage stochastic programs
(4) ANOVA decomposition of two-stage integrands
(5) Reduction of effective dimension
(6) Numerical experience with randomized lattice rules and Sobol sequences
(7) Conclusions

Quasi-Monte Carlo methods

We consider the approximate computation of

$$
I_{d}(f)=\int_{[0,1]^{d}} f(\xi) d \xi
$$

by a QMC algorithm

$$
Q_{n, d}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(\xi^{i}\right)
$$

with (non-random) points $\xi^{i}, i=1, \ldots, n$, from $[0,1]^{d}$.
We assume that f belongs to a linear normed space \mathbb{F}_{d} of functions on $[0,1]^{d}$ with norm $\|\cdot\|_{d}$ and unit ball \mathbb{B}_{d}.

Worst-case error of $Q_{n, d}$ over \mathbb{B}_{d} :

$$
e\left(Q_{n, d}\right)=\sup _{f \in \mathbb{B}_{d}}\left|I_{d}(f)-Q_{n, d}(f)\right|
$$

Classical convergence results:

Theorem: (Proinov 88)
If the real function f is continuous on $[0,1]^{d}$, then there exists $C>0$ such that

$$
\left|Q_{n, d}(f)-I_{d}(f)\right| \leq C \omega_{f}\left(D_{n}^{*}\left(\xi^{1}, \ldots, \xi^{n}\right)^{\frac{1}{d}}\right)
$$

where $\left.\omega_{f}(\delta)=\sup \{|f(\xi)-f(\tilde{\xi})|: \| \xi-\tilde{\xi}) \| \leq \delta, \xi, \tilde{\xi} \in[0,1]^{d}\right\}$ is the modulus of continuity of f and

$$
D_{n}^{*}\left(\xi^{1}, \ldots, \xi^{n}\right):=\sup _{x \in[0,1]^{d}}|\operatorname{disc}(x)|, \quad \operatorname{disc}(x)=\lambda^{d}([0, x))-\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{[0, x)}\left(\xi^{i}\right)
$$

is the star-discrepancy of $\xi^{1}, \ldots, \xi^{n}\left(\lambda^{d}\right.$ denotes Lebesgue's measure on $\left.\mathbb{R}^{d}\right)$.

Theorem: (Koksma-Hlawka 61)
If $V_{\mathrm{HK}}(f)$ is the variation of f in the sense of Hardy and Krause, it holds

$$
\left|I_{d}(f)-Q_{n, d}(f)\right| \leq V_{\mathrm{HK}}(f) D_{n}^{*}\left(\xi^{1}, \ldots, \xi^{n}\right)
$$

for any $n \in \mathbb{N}$ and any $\xi^{1}, \ldots, \xi^{n} \in[0,1]^{d}$.

Extended Koksma-Hlawka inequality:

$$
\left|I_{d}(f)-Q_{n, d}(f)\right| \leq\|\operatorname{disc}(\cdot)\|_{p, p^{\prime}}\|f\|_{q, q^{\prime}},
$$

where $1 \leq p, p^{\prime}, q, q^{\prime} \leq \infty, \frac{1}{p}+\frac{1}{q}=1, \frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}=1$, and

$$
\|\operatorname{disc}(\cdot)\|_{p, p^{\prime}}=\left(\sum_{u \subseteq D}\left(\int_{[0,1]^{|u|}}\left|\operatorname{disc}\left(x_{u}, 1\right)\right|^{p^{\prime}} d x_{u}\right)^{\frac{p}{p^{\prime}}}\right)^{\frac{1}{p}}
$$

and

$$
\|f\|_{q, q^{\prime}}=\left(\sum_{u \subseteq D}\left(\int_{[0,1]^{|u|}}\left|\frac{\partial^{|u|} f}{\partial x_{u}}\left(x_{u}, 1\right)\right|^{q^{q^{\prime}}} d x_{u}\right)^{\frac{q}{q^{\prime}}}\right)^{\frac{1}{q}}
$$

with the obvious modifications if one or more of $p, p^{\prime}, q, q^{\prime}$ are infinite.
In particular, the classical Koksma-Hlawka inequality essentially corresponds to $p=p^{\prime}=\infty$ if f belongs to the tensor product Sobolev space $\mathcal{W}_{2, \text { mix }}^{(1, \ldots, 1)}\left([0,1]^{d}\right)$ which is defined next.
By $\left(x_{u}, 1\right)$ we mean the d-dimensional vector with the same components as x for indices in u and the rest of the components replaced by 1 .

The case of kernel reproducing Hilbert spaces

We assume that \mathbb{F}_{d} is a kernel reproducing Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and kernel $K:[0,1]^{d} \times[0,1]^{d} \rightarrow \mathbb{R}$, i.e.,

$$
K(\cdot, y) \in \mathbb{F}_{d} \text { and }\langle f(\cdot), K(\cdot, y)\rangle=f(y) \quad\left(\forall y \in[0,1]^{d}, f \in \mathbb{F}_{d}\right) .
$$

If I_{d} is a linear bounded functional on \mathbb{F}_{d}, the quadrature error $e_{n}\left(Q_{n, d}\right)$ allows the representation

$$
e_{n}\left(Q_{n, d}\right)=\sup _{f \in \mathbb{B}_{d}}\left|I_{d}(f)-Q_{n, d}(f)\right|=\sup _{f \in \mathbb{B}_{d}}\left|\left\langle f, h_{n}\right\rangle\right|=\left\|h_{n}\right\|_{d}
$$

according to Riesz' theorem for linear bounded functionals.

The representer $h_{n} \in \mathbb{F}_{d}$ of the quadrature error is of the form

$$
h_{n}(x)=\int_{[0,1]^{d}} K(x, y) d y-\frac{1}{n} \sum_{i=1}^{n} K\left(x, \xi^{i}\right) \quad\left(\forall x \in[0,1]^{d}\right),
$$

and it holds

$$
e_{n}^{2}\left(Q_{n, d}\right)=\int_{[0,1]^{2 d}} K(x, y) d x d y-\frac{2}{n} \sum_{i=1}^{n} \int_{[0,1]^{d}} K\left(\xi^{i}, y\right) d y+\frac{1}{n^{2}} \sum_{i, j=1}^{n} K\left(\xi^{i}, \xi^{j}\right)
$$

Example: Weighted tensor product Sobolev space

$$
\mathbb{F}_{d}=\mathcal{W}_{2, \text { mix }}^{(1, \ldots, 1)}\left([0,1]^{d}\right)=\bigotimes_{i=1}^{d} W_{2}^{1}([0,1])
$$

equipped with the weighted norm $\|f\|_{\gamma}^{2}=\langle f, f\rangle_{\gamma}$ and inner product

$$
\langle f, g\rangle_{\gamma}=\sum_{u \subseteq\{1, \ldots, d\}} \gamma_{u}^{-1} \int_{[0,1]^{|u|}} \frac{\partial^{|u|} f}{\partial x_{u}}\left(x_{u}, 1\right) \frac{\partial^{|u|} g}{\partial x_{u}}\left(x_{u}, 1\right) d x_{u}
$$

where $\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{d}>0, \gamma_{u}=\prod_{j \in u} \gamma_{j}$, is a kernel reproducing Hilbert space with the kernel

$$
K_{d, \gamma}(x, y)=\prod_{j=1}^{d}\left(1+\gamma_{j} \mu\left(x_{j}, y_{j}\right)\right) \quad\left(x, y \in[0,1]^{d}\right)
$$

where

$$
\mu(t, s)=\left\{\begin{array}{cl}
\min \{|t-1|,|s-1|\} & ,(t-1)(s-1)>0 \\
0 & , \text { else. }
\end{array}\right.
$$

Note that $f \in \mathbb{F}_{d}$ iff $\frac{\partial^{|u|} f}{\partial x_{u}}(\cdot, 1) \in L_{2}\left([0,1]^{|u|}\right)$ for all $u \subseteq D$.

Theorem: (Sloan-Woźniakowski 98)

Let $\mathbb{F}_{d}=\mathcal{W}_{2, \text { mix }}^{(1, \ldots, 1)}\left([0,1]^{d}\right)$. Then the worst-case error

$$
e^{2}\left(Q_{n, d}\right)=\sup _{\|f\|_{\gamma} \leq 1}\left|I_{d}(f)-Q_{n, d}(f)\right|=\sum_{\emptyset \neq u \subseteq D} \prod_{j \in u} \gamma_{j} \int_{[0,1]^{u u}} \operatorname{disc}^{2}\left(x_{u}, 1\right) d x_{u}
$$

is called weighted L_{2}-discrepancy of ξ^{1}, \ldots, ξ^{n}.

Note that any $f \in \mathbb{F}_{d}$ is of bounded variation $V_{\mathrm{HK}}(f)$ in the sense of Hardy and Krause and it holds

$$
V(f)=\sum_{\emptyset \neq u \subseteq D} \int_{[0,1]^{|u|}}\left|\frac{\partial^{|u|} f}{\partial x_{u}}\left(x_{u}, 1\right)\right| d x_{u}
$$

Problem: Integrands in two-stage stochastic programming do not belong to F_{d} (piecewise linear functions are not of bounded variation (Owen 05)).

First general QMC construction: Digital nets (Sobol 69, Niederreiter 87)
Elementary subintervals E in base b :

$$
E=\prod_{j=1}^{d}\left[\frac{a_{j}}{b^{d_{j}}}, \frac{a_{j}+1}{b^{d_{j}}}\right),
$$

where $a_{i}, d_{i} \in \mathbb{Z}_{+}, 0 \leq a_{i}<b^{d_{i}}, i=1, \ldots, d$.
Let $m, t \in \mathbb{Z}_{+}, m>t$. A set of b^{m} points in $[0,1)^{d}$ is a (t, m, d)-net in base b if every elementary subinterval E in base b with $\lambda^{d}(E)=b^{t-m}$ contains b^{t} points. Illustration of a $(0,4,2)$-net with $b=2$

A sequence $\left(\xi^{i}\right)$ in $[0,1)^{d}$ is a (t, d)-sequence in base b if, for all integers $k \in \mathbb{Z}_{+}$ and $m>t$, the set

$$
\left\{\xi^{i}: k b^{m} \leq i<(k+1) b^{m}\right\}
$$

is a (t, m, d)-net in base b.

There exist (t, d)-sequences $\left(\xi^{i}\right)$ in $[0,1]^{d}$ such that

$$
D_{n}^{*}\left(\xi^{1}, \ldots, \xi^{n}\right)=O\left(n^{-1}(\log n)^{d-1}\right) \leq C(\delta, d) n^{-1+\delta} \quad(\forall \delta>0) .
$$

Specific sequences: Faure, Sobol', Niederreiter and Niederreiter-Xing sequences (Lemieux 09, Dick-Pillichshammer 10).
Recent development: Scrambled (t, m, d)-nets, where the digits are randomly permuted (Owen 95).

Second general QMC construction: Lattices (Korobov 59, Sloan-Joe 94)
Lattice rules: Let $g \in \mathbb{Z}^{d}$ and consider the lattice points

$$
\left\{\xi^{i}=\left\{\frac{i}{n} g\right\}: i=1, \ldots, n\right\}
$$

where $\{z\}$ is defined as componentwise fractional part of $z \in \mathbb{R}_{+}$, i.e., $\{z\}=z-\lfloor z\rfloor \in[0,1)$.
The generator g is chosen such that the lattice rule has good convergence properties. Such lattice rules may achieve better convergence rates $O\left(n^{-k+\delta}\right), k \in \mathbb{N}$, for integrands in C^{k}.

Fig. 5.3 Four different point sets with $n=64$: random (top left), rectangular grid (top right), Korobov lattice (bottom left), and Sobol' (bottom right).

Recent development: Randomized lattice rules.

Randomly shifted lattice points: If \triangle is a sample from uniform distribution in $[0,1]^{d}$. put

$$
Q_{n, d}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(\frac{i}{n} g+\triangle\right)
$$

Theorem:

Let n be prime, $\mathbb{F}_{d}=\mathcal{W}_{2, \text { mix }}^{(1, \ldots, 1)}\left([0,1]^{d}\right)$ and $g \in \mathbb{Z}^{d}$ be constructed componentwise. Then there exists for any $\delta \in\left(0, \frac{1}{2}\right]$ a constant $C(\delta)>0$ such that the mean quadrature error attains the optimal convergence rate

$$
\hat{e}\left(Q_{n, d}\right) \leq C(\delta) n^{-1+\delta}
$$

where the constant $C(\delta)$ grows when δ decreases, but does not depend on the dimension d if the sequence $\left(\gamma_{j}\right)$ satisfies the condition

$$
\sum_{j=1}^{\infty} \gamma_{j}^{\frac{1}{2(1-\delta)}}<\infty \quad\left(\text { e.g. } \gamma_{j}=\frac{1}{j^{2}}\right)
$$

(Sloan/Wožniakowski 98, Sloan/Kuo/Joe 02, Kuo 03)

ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms are smooth, but hopefully only some of them relevant.

Let $D=\{1, \ldots, d\}$ and $f \in L_{1, \rho}\left(\mathbb{R}^{d}\right)$ with $\rho(\xi)=\prod_{j=1}^{d} \rho_{j}\left(\xi_{j}\right)$, where

$$
f \in L_{p, \rho}\left(\mathbb{R}^{d}\right) \quad \text { iff } \quad \int_{\mathbb{R}^{d}}|f(\xi)|^{p} \rho(\xi) d \xi<\infty \quad(p \geq 1)
$$

Let the projection $P_{k}, k \in D$, be defined by

$$
\left(P_{k} f\right)(\xi):=\int_{-\infty}^{\infty} f\left(\xi_{1}, \ldots, \xi_{k-1}, s, \xi_{k+1}, \ldots, \xi_{d}\right) \rho_{k}(s) d s \quad\left(\xi \in \mathbb{R}^{d}\right)
$$

Clearly, $P_{k} f$ is constant with respect to ξ_{k}. For $u \subseteq D$ we write

$$
P_{u} f=\left(\prod_{k \in u} P_{k}\right)(f),
$$

where the product means composition, and note that the ordering within the product is not important because of Fubini's theorem. The function $P_{u} f$ is constant with respect to all $x_{k}, k \in u$.

ANOVA-decomposition of f :

$$
f=\sum_{u \subseteq D} f_{u},
$$

where $f_{\emptyset}=I_{d}(f)=P_{D}(f)$ and recursively

$$
f_{u}=P_{-u}(f)-\sum_{v \subset u} f_{v}
$$

or (due to Kuo-Sloan-Wasilkowski-Woźniakowski 10)

$$
f_{u}=\sum_{v \subseteq u}(-1)^{|u|-|v|} P_{-v} f=P_{-u}(f)+\sum_{v \subset u}(-1)^{|u|-|v|} P_{u-v}\left(P_{-u}(f)\right),
$$

where P_{-u} and P_{u-v} mean integration with respect to $\xi_{j}, j \in D \backslash u$ and $j \in u \backslash v$, respectively. The second representation motivates that f_{u} is essentially as smooth as $P_{-u}(f)$.

If f belongs to $L_{2, \rho}\left(\mathbb{R}^{d}\right)$, its ANOVA terms $\left\{f_{u}\right\}_{u \subseteq D}$ are orthogonal in $L_{2, \rho}\left(\mathbb{R}^{d}\right)$.
We set $\sigma^{2}(f)=\left\|f-I_{d}(f)\right\|_{L_{2}}^{2}$ and $\sigma_{u}^{2}(f)=\left\|f_{u}\right\|_{L_{2}}^{2}$, and have

$$
\sigma^{2}(f)=\|f\|_{L_{2}}^{2}-\left(I_{d}(f)\right)^{2}=\sum_{\emptyset \neq u \subseteq D} \sigma_{u}^{2}(f) .
$$

Owen's superposition (truncation) dimension distribution of f : Probability measure $\nu_{S}\left(\nu_{T}\right)$ defined on the power set of D

$$
\nu_{S}(s):=\sum_{|u|=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)} \quad\left(\nu_{T}(s)=\sum_{\max \{j: j \in u\}=s} \frac{\sigma_{u}^{2}(f)}{\sigma^{2}(f)}\right) \quad(s \in D) .
$$

Effective superposition (truncation) dimension $d_{S}(\varepsilon)\left(d_{T}(\varepsilon)\right)$ of f is the $(1-\varepsilon)$ quantile of $\nu_{S}\left(\nu_{T}\right)$:

$$
\begin{aligned}
& d_{S}(\varepsilon)=\min \left\{s \in D: \sum_{|u| \leq s} \sigma_{u}^{2}(f) \geq(1-\varepsilon) \sigma^{2}(f)\right\} \leq d_{T}(\varepsilon) \\
& d_{T}(\varepsilon)=\min \left\{s \in D: \sum_{u \subseteq\{1, \ldots, s\}} \sigma_{u}^{2}(f) \geq(1-\varepsilon) \sigma^{2}(f)\right\}
\end{aligned}
$$

It holds

$$
\max \left\{\left\|f-\sum_{|u| \leq d_{S}(\varepsilon)} f_{u}\right\|_{2, \rho},\left\|f-\sum_{u \subseteq\left\{1, \ldots, d_{T}(\varepsilon)\right\}} f_{u}\right\|_{2, \rho}\right\} \leq \sqrt{\varepsilon} \sigma(f) .
$$

(Caflisch-Morokoff-Owen 97, Owen 03, Wang-Fang 03)

Two-stage linear stochastic programs

We consider the linear two-stage stochastic program

$$
\min \left\{\int_{\Xi} f(x, \xi) P(d \xi): x \in X\right\}
$$

where f is extended real-valued defined on $\mathbb{R}^{m} \times \mathbb{R}^{d}$ given by

$$
f(x, \xi)=\langle c, x\rangle+\Phi(q(\xi), h(\xi)-T(\xi) x),(x, \xi) \in X \times \Xi
$$

$c \in \mathbb{R}^{m}, X \subseteq \mathbb{R}^{m}$ and $\Xi \subseteq \mathbb{R}^{d}$ are convex polyhedral, W is an (r, \bar{m})-matrix, P is a Borel probability measure on Ξ, and the vectors $q(\xi) \in \mathbb{R}^{\bar{m}}, h(\xi) \in \mathbb{R}^{r}$ and the (r, m)-matrix $T(\xi)$ are affine functions of ξ, Φ is the second-stage optimal value function

$$
\Phi(u, t)=\inf \{\langle u, y\rangle: W y=t, y \geq 0\} \quad\left((u, t) \in \mathbb{R}^{\bar{m}} \times \mathbb{R}^{r}\right)
$$

Let $\operatorname{pos} W=W\left(\mathbb{R}_{+}^{\bar{m}}\right), \mathcal{D}=\left\{u \in \mathbb{R}^{\bar{m}}:\left\{z \in \mathbb{R}^{r}: W^{\top} z \leq u\right\} \neq \emptyset\right\}$.

Assumptions:

(A1) $h(\xi)-T(\xi) x \in \operatorname{pos} W$ and $q(\xi) \in \mathcal{D}$ for all $(x, \xi) \in X \times \Xi$.
(A2) $\int_{\Xi}\|\xi\|^{2} P(d \xi)<\infty$.

Proposition:

(A1) and (A2) imply that the two-stage stochastic program represents a convex minimization problem with respect to the first stage decision x with polyhedral constraints.

Lemma: (Walkup-Wets 69, Nožička-Guddat-Hollatz-Bank 74)
Φ is finite, polyhedral and continuous on the $(\bar{m}+r)$-dimensional polyhedral cone $\mathcal{D} \times \operatorname{pos} W$ and there exist (r, \bar{m})-matrices C_{j} and $(\bar{m}+r)$-dimensional polyhedral cones $\mathcal{K}_{j}, j=1, \ldots, \ell$, such that

$$
\begin{aligned}
& \bigcup_{j=1} \mathcal{K}_{j}=\mathcal{D} \times \operatorname{pos} W \quad \text { and } \quad \operatorname{int} \mathcal{K}_{i} \cap \operatorname{int} \mathcal{K}_{j}=\emptyset, i \neq j \\
& \Phi(u, t)=\left\langle C_{j} u, t\right\rangle, \text { for each }(u, t) \in \mathcal{K}_{j}, j=1, \ldots, \ell
\end{aligned}
$$

The function $\Phi(u, \cdot)$ is convex on $\operatorname{pos} W$ for each $u \in \mathcal{D}$, and $\Phi(\cdot, t)$ is concave on \mathcal{D} for each $t \in \operatorname{pos} W$. The intersection $\mathcal{K}_{i} \cap \mathcal{K}_{j}, i \neq j$, is either equal to $\{0\}$ or contained in a $(\bar{m}+r-1)$-dimensional subspace of $\mathbb{R}^{\bar{m}+r}$ if the two cones are adjacent.

Error estimates for optimal values and solution sets

With $v(P)$ and $S(P)$ denoting the optimal value and solution set of

$$
\min \left\{\int_{\Xi} f(x, \xi) P(d \xi): x \in X\right\}
$$

it holds

$$
\begin{aligned}
|v(P)-v(Q)| & \leq L \sup _{x \in X}\left|\int_{\Xi} f(x, \xi) P(d \xi)-\int_{\Xi} f(x, \xi) Q(d \xi)\right| \\
\emptyset \neq S(Q) & \subseteq S(P)+\Psi_{P}\left(L \sup _{x \in X}\left|\int_{\Xi} f(x, \xi)(P-Q)(d \xi)\right|\right),
\end{aligned}
$$

where $L>0$ is some constant, P the original probability distribution and Q its perburbation, and Ψ_{P} the conditioning function given by

$$
\Psi_{P}(\eta):=\eta+\psi_{P}^{-1}(2 \eta) \quad\left(\eta \in \mathbb{R}_{+}\right)
$$

where the growth function ψ_{P} is

$$
\psi_{P}(\tau):=\min \left\{\int_{\Xi} f_{0}(x, \xi) P(d \xi)-v(P): d(x, S(P)) \geq \tau, x \in X\right\}
$$

with inverse $\psi_{P}^{-1}(t):=\sup \left\{\tau \in \mathbb{R}_{+}: \psi_{P}(\tau) \leq t\right\}$. (Römisch 03)

ANOVA decomposition of two-stage integrands

Assumptions:
(A1), (A2) and
(A3) P has a density of the form $\rho(\xi)=\prod_{j=1}^{d} \rho_{j}\left(\xi_{j}\right)\left(\xi \in \mathbb{R}^{d}\right)$ with continuous marginal densities $\rho_{j}, j \in D$.

Proposition:

(A1) implies that the function $f(x, \cdot)$, where

$$
f_{x}(\xi):=f(x, \xi)=\langle c, x\rangle+\Phi(q(\xi), h(\xi)-T(\xi) x) \quad(x \in X, \xi \in \Xi)
$$

is the two-stage integrand, is continuous and piecewise linear-quadratic.
For each $x \in X, f(x, \cdot)$ is linear-quadratic on each polyhedral set

$$
\Xi_{j}(x)=\left\{\xi \in \Xi:(q(\xi), h(\xi)-T(\xi) x) \in \mathcal{K}_{j}\right\} \quad(j=1, \ldots, \ell) .
$$

It holds int $\Xi_{j}(x) \neq \emptyset$, int $\Xi_{j}(x) \cap \operatorname{int} \Xi_{i}(x)=\emptyset, i \neq j$, and the sets $\Xi_{j}(x)$, $j=1, \ldots, \ell$, decompose Ξ. Furthermore, the intersection of two adjacent sets $\Xi_{i}(x)$ and $\Xi_{j}(x), i \neq j$, is contained in some ($d-1$)-dimensional affine subspace.

To compute projections $P_{k} f$ for $k \in D$, let $\xi_{i} \in \mathbb{R}, i=1, \ldots, d, i \neq k$, be given. We set $\xi^{k}=\left(\xi_{1}, \ldots, \xi_{k-1}, \xi_{k+1}, \ldots, \xi_{d}\right)$ and

$$
\xi_{k}(s)=\left(\xi_{1}, \ldots, \xi_{k-1}, s, \xi_{k+1}, \ldots, \xi_{d}\right) \in \mathbb{R}^{d} \quad(s \in \mathbb{R}) .
$$

We fix $x \in X$ and consider the one-dimensional affine subspace $\left\{\xi_{k}(s): s \in \mathbb{R}\right\}$:

Example with $d=2=p$, where the polyhedral sets are cones
It meets the nontrivial intersections of two adjacent polyhedral sets $\Xi_{i}(x)$ and $\Xi_{j}(x), i \neq j$, at finitely many points $s_{i}, i=1, \ldots, p$ if all $(d-1)$-dimensional subspaces containing the intersections do not parallel the k th coordinate axis.

The $s_{i}=s_{i}\left(\xi^{k}\right), i=1, \ldots, p$, are affine functions of ξ^{k}. It holds

$$
s_{i}=-\sum_{l=1, l \neq k}^{p} \frac{g_{i l}}{g_{i k}} \xi_{l}+a_{i} \quad(i=1, \ldots, p)
$$

for some $a_{i} \in \mathbb{R}$ and $g_{i} \in \mathbb{R}^{d}$ belonging to an intersection of polyhedral sets.

Proposition:

Let $k \in D, x \in X$. Assume (A1)-(A3) and that all $(d-1)$-dimensional affine subspaces containing nontrivial intersections of adjacent sets $\Xi_{i}(x)$ and $\Xi_{j}(x)$ do not parallel the k th coordinate axis.
Then the k th projection $P_{k} f$ has the explicit representation

$$
P_{k} f\left(\xi^{k}\right)=\sum_{i=1}^{p+1} \sum_{j=0}^{2} p_{i j}\left(\xi^{k} ; x\right) \int_{s_{i-1}}^{s_{i}} s^{j} \rho_{k}(s) d s,
$$

where $s_{0}=-\infty, s_{p+1}=+\infty$ and $p_{i j}(\cdot ; x)$ are polynomials in ξ^{k} of degree $2-j$, $j=0,1,2$, with coefficients depending on x, and is continuously differentiable. $P_{k} f$ is infinitely differentiable if the marginal density ρ_{k} belongs to $C^{\infty}(\mathbb{R})$.

Theorem:

Let $x \in X$, assume (A1)-(A3) and that the following geometric condition (GC) be satisfied: All $(d-1)$-dimensional affine subspaces containing nontrivial intersections of adjacent sets $\Xi_{i}(x)$ and $\Xi_{j}(x)$ do not parallel any coordinate axis. Then the ANOVA approximation

$$
f_{d-1}:=\sum_{|u| \leq d-1} f_{u} \quad \text { i.e. } \quad f=f_{d-1}+f_{D}
$$

of f is infinitely differentiable if all densities $\rho_{k}, k \in D$, belong to $C_{b}^{\infty}(\mathbb{R})$. Here, the subscript b means that all derivatives of functions belonging to that space are bounded on \mathbb{R}.

Example: Let $\bar{m}=3, d=2, P$ denote the two-dimensional standard normal distribution, $h(\xi)=\xi, q$ and W be given such that (A1) is satisfied and the dual feasible set is

$$
\left\{z \in \mathbb{R}^{2}:-z_{1}+z_{2} \leq 1, z_{1}+z_{2} \leq 1,-z_{2} \leq 0\right\}
$$

Dual feasible set, its vertices v^{j} and the normal cones \mathcal{K}_{j} to its vertices
The function Φ and the integrand are of the form

$$
\begin{aligned}
& \Phi(t)=\max _{i=1,2,3}\left\langle v^{i}, t\right\rangle=\max \left\{t_{1},-t_{1}, t_{2}\right\}=\max \left\{\left|t_{1}\right|, t_{2}\right\} \\
& f(\xi)=\langle c, x\rangle+\Phi(\xi-T x)=\langle c, x\rangle+\max \left\{\left|\xi_{1}-[T x]_{1}\right|, \xi_{2}-[T x]_{2}\right\}
\end{aligned}
$$

and the convex polyhedral sets are $\Xi_{j}(x)=T x+\mathcal{K}_{j}, j=1,2,3$.
The ANOVA projection $P_{1} f$ is in C^{∞}, but $P_{2} f$ is not differentiable.

QMC quadrature error estimates

If the assumptions of the theorem are satisfied, the two-stage integrand $f=f_{x}$ (for fixed $x \in X$) allows the representation $f=f_{d-1}+f_{D}$ with f_{d-1} belonging to \mathbb{F}_{d}. This implies

$$
\begin{aligned}
\left|\int_{[0,1]^{d}} f(\xi) d \xi-\frac{1}{n} \sum_{j=1}^{n} f\left(\xi^{j}\right)\right| & \leq e\left(Q_{n, d}\right)\left\|f_{d-1}\right\|_{\gamma}+\left|\int_{[0,1]^{d}} f_{D}(\xi) d \xi-\frac{1}{n} \sum_{j=1}^{n} f_{D}\left(\xi^{j}\right)\right| \\
& \leq e\left(Q_{n, d}\right)\left\|f_{d-1}\right\|_{\gamma}+\left\|f_{D}\right\|_{L_{2}}+\left(\frac{1}{n} \sum_{j=1}^{n}\left|f_{D}\left(\xi^{j}\right)\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

where $\|\cdot\|_{\gamma}$ is the weighted tensor product Sobolev space norm.
As f_{D} is (Lipschitz) continuous and if the $\xi^{j}, j=1, \ldots, n$ are properly selected, the last term in the above estimate may be assumed to be bounded by $2\left\|f_{D}\right\|_{L_{2}}$.

Hence, if the effective superposition dimension satisfies $d_{S}(\varepsilon) \leq d-1$, i.e., $\left\|f_{D}\right\|_{L_{2}} \leq \sqrt{\varepsilon} \sigma(f)$ holds for some small $\varepsilon>0$, the first term $e\left(Q_{n, d}\right)\left\|f_{d-1}\right\|_{\gamma}$ dominates and the convergence rate of $e\left(Q_{n, d}\right)$ becomes most important.

Question: How important is the geometric condition (GC) ?
Partial answer: If P is normal with nonsingular covariance matrix, (GC) is satisfied for almost all covariance matrices. Namely, it holds

Proposition: Let $x \in X,(\mathrm{~A} 1)$, (A2) be satisfied, $\operatorname{dom} \Phi=\mathbb{R}^{r}$ and P be a normal distribution with nonsingular covariance matrix Σ. Then the infinite differentiability of the ANOVA approximation f_{d-1} of f is a generic property, i.e., it holds in a residual set (countable intersection of open dense subsets) in the metric space of orthogonal (d, d)-matrices Q (endowed with the norm topology) appearing in the spectral decomposition $\Sigma=Q^{\top} D Q$ of Σ (with a diagonal matrix D containing the eigenvalues of Σ).

Question: For which two-stage stochastic programs is $\left\|f_{D}\right\|_{L_{2, \rho}}$ small, i.e., the effective superposition dimension $d_{S}(\varepsilon)$ of f is less than $d-1$ or even much less?

Partial answer: In case of a (log)normal probability distribution P the effective dimension depends on the mode of decomposition of the covariance matrix into a diagonal one.

Dimension reduction in case of (log)normal distributions

Let P be the normal distribution with mean μ and nonsingular covariance matrix Σ. Let A be a matrix satisfying $\Sigma=A A^{\top}$. Then η defined by $\xi=A \eta+\mu$ is standard normal.
A universal principle is principal component analysis (PCA). Here, one uses $A=\left(\sqrt{\lambda_{1}} u_{1}, \ldots, \sqrt{\lambda_{d}} u_{d}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{d}>0$ are the eigenvalues of Σ in decreasing order and the corresponding orthonormal eigenvectors u_{i}, $i=1, \ldots, d$. Wang-Fang 03, Wang-Sloan 05 report an enormous reduction of the effective truncation dimension in financial models if PCA is used.

A problem-dependent principle may be based on the following equivalence principle (Papageorgiou 02, Wang-Sloan 11).

Proposition: Let A be a fixed $d \times d$ matrix such that $A A^{\top}=\Sigma$. Then it holds $\Sigma=B B^{\top}$ if and only if B is of the form $B=A Q$ with some orthogonal $d \times d$ matrix Q.

Idea: Determine Q for given A such that the effective truncation dimension is minimized (Wang-Sloan 11).

Some computational experience

We considered a two-stage production planning problem for maximizing the expected revenue while satisfying a fixed demand in a time horizon with $d=T=$ 100 time periods and stochastic prices for the second-stage decisions. It is assumed that the probability distribution of the prices ξ is log-normal. The model is of the form

$$
\max \left\{\sum_{t=1}^{T}\left(c_{t}^{\top} x_{t}+\int_{\mathbb{R}^{T}} q_{t}(\xi)^{\top} y_{t} P(d \xi)\right): W y+V x=h, y \geq 0, x \in X\right\}
$$

The use of PCA for decomposing the covariance matrix has led to effective truncation dimension $d_{T}(0.01)=2$. As QMC methods we used a randomly scrambled Sobol sequence (SSobol)(Owen, Hickernell) with $n=2^{7}, 2^{9}, 2^{11}$ and a randomly shifted lattice rule (Sloan-Kuo-Joe) with $n=127,509,2039$, weights $\gamma_{j}=\frac{1}{j^{2}}$ and for MC the Mersenne-Twister. 10 runs were performed for the error estimates and 30 runs for plotting relative errors.

Average rate of convergence for QMC: $O\left(n^{-0.9}\right)$ and $O\left(n^{-0.8}\right)$. Instead of $n=2^{7}$ SSobol samples one would need $n=10^{4} \mathrm{MC}$ samples to achieve a similar accuracy as SSobol.

$\log _{10}$ of the relative errors of MC, SLA (randomly shifted lattice rule) and SSOB (scrambled Sobol' points)

Conclusions

- Our analysis provides a theoretical basis for applying QMC methods accompanied by dimension reduction techniques to two-stage stochastic programs.
- The analysis also applies to sparse grid quadrature techniques.

(a) $d=2$

(b) $d=3$
- The results are extendable and will be extended to mixed-integer two-stage models, to multi-stage situations, and to models with stochastic dominance constraints.

Second-stage optimal value function of an integer program (van der Vlerk)

References

R. E. Caflisch, W. Morokoff and A. Owen: Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, Journal of Computational Finance 1 (1997), 27-46.
M. Chen and S. Mehrotra: Epi-convergent scenario generation method for stochastic problems via sparse grid, Stochastic Programming E-Print Series 7-2008 (www.speps.org).
J. Dick, F. Pillichshammer: Digital Nets and Sequences, Cambridge University Press, Cambridge 2010.
M. Griebel, F. Y. Kuo and I. H. Sloan: The smoothing effect of integration in \mathbb{R}^{d} and the ANOVA decomposition, Mathematics of Computation 82 (2013), 383-400.
H. Heitsch, H. Leövey and W. Römisch, Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?, Stochastic Programming E-Print Series 5-2012 (www.speps.org) and submitted.
F. J. Hickernell: A generalized discrepancy and quadrature error bound, Mathematics of Computation 67 (1998), 299322.
T. Homem-de-Mello: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling, SIAM Journal on Optimization 19 (2008), 524-551.
F. Y. Kuo: Component-by-component constructions achieve the optimal rate of convergence in weighted Korobov and Sobolev spaces, Journal of Complexity 19 (2003), 301-320.
F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski: On decomposition of multivariate functions, Mathematics of Computation 79 (2010), 953-966.
F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, B. J. Waterhouse: Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands, Journal of Complexity 26 (2010), 135-160.
A. B. Owen: Randomly permuted (t, m, s)-nets and (t, s)-sequences, in: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Lecture Notes in Statistics, Vol. 106, Springer, New York, 1995, 299-317.
A. B. Owen: The dimension distribution and quadrature test functions, Statistica Sinica 13 (2003), 1-17.
A. B. Owen: Multidimensional variation for Quasi-Monte Carlo, in J. Fan, G. Li (Eds.), International Conference on Statistics, World Scientific Publ., 2005, 49-74.
T. Pennanen, M. Koivu: Epi-convergent discretizations of stochastic programs via integration quadratures, Numerische Mathematik 100 (2005), 141-163.
G. Ch. Pflug, A. Pichler: Approximations of probability distributions and stochastic optimization problems, in: Stochastic Optimization Methods in Finance and Energy (M.I. Bertocchi, G. Consigli, M.A.H. Dempster, eds.), Springer, 2011.
W. Römisch: Stability of stochastic programming problems, in: Stochastic Programming (A. Ruszczyński, A. Shapiro eds.), Handbooks in Operations Research and Management Science, Volume 10, Elsevier, Amsterdam 2003, 483-554.
I. H. Sloan and H. Woźniakowski: When are Quasi Monte Carlo algorithms efficient for high-dimensional integration, Journal of Complexity 14 (1998), 1-33.
I. H. Sloan, F. Y. Kuo and S. Joe: Constructing randomly shifted lattice rules in weighted Sobolev spaces, SIAM Journal Numerical Analysis 40 (2002), 1650-1665.
X. Wang and K.-T. Fang: The effective dimension and Quasi-Monte Carlo integration, Journal of Complexity 19 (2003), 101-124.
X. Wang and I. H. Sloan: Low discrepancy sequences in high dimensions: How well are their projections distributed ? Journal of Computational and Applied Mathematics 213 (2008), 366-386.
X. Wang and I. H. Sloan, Quasi-Monte Carlo methods in financial engineering: An equivalence principle and dimension reduction. Operations Research 59 (2011), 80-95.

