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To our knowledge there is only one paper on conditioning in stochastic programming:
A. Shapiro, T. Homem-de-Mello and J. Kim: Conditioning of convex piecewise
linear stochastic programs, Math. Progr. 94 (2002), 1–19.



General definition of a condition number
(Bürgisser-Cucker 2013)

Let a mapping ϕ : D ⊆ Rm → Rq be given, where the (data) set D is open.

The condition number of ϕ is defined by

condϕ(d) = lim
δ→0

sup
rel err(d)≤δ

rel err(ϕ(d))

rel err(d)

or to avoid the limit by the estimate

rel err(ϕ(d)) ≤ condϕ(d)rel err(d) + o(rel err(d)),

where rel err(d) := ‖d̃−d‖
‖d‖ for some d̃ ∈ D etc.

The condition number of an input is the worst possible magnification of the

output error with respect to a small input perturbation.

On the other hand, it provides information on the distance to the nearest ill-posed

problem.



Linear systems

We set for r, s ∈ [1,∞] and A ∈ Rn×m

‖A‖rs = max
‖x‖r=1

‖Ax‖s.

For m = n let Σ denote the set of ill-posed matrices, i.e.,

Σ = {A ∈ Rm×m : A is not invertible},

and for all A ∈ A = Rm×m \ Σ Turing’s condition number

κrs = ‖A‖rs‖A−1‖sr.

Distance to ill-posedness:

dsr(A,Σ) = inf{‖A−B‖rs : B ∈ Σ}

Theorem: (Eckart-Young 1936)

Let A ∈ Rm×m \ Σ. Then it holds

dsr(A,Σ) = ‖A−1‖−1
sr and, hence, κrs(A) =

‖A‖rs
dsr(A,Σ)



Matrices in Rn×m:

For A ∈ Rn×m

κrs(A) = ‖A‖rs ‖A+‖sr
is Turing’s condition number, where A+ ∈ Rm×n is the Moore-Penrose inverse

of A.

Let Σ = {A ∈ Rn×m : rank(A) < min{n,m}} be the set of ill-posed matrices.

Proposition:
For A ∈ Rn×m \ Σ it holds

d(A,Σ) = σmin(A) = ‖A+‖−1 = sup{δ > 0 : δBn ⊆ A(Bm)},

where Bm and Bn are the closed unit balls in Rm and Rn, respectively, w.r.t.

‖ · ‖2 and σmin(A) the smallest positive singular value of A.



Polyhedral conic systems

For A ∈ Rn×m and a closed convex cone K ⊆ Rm with polar cone K?

we consider the homogeneous primal and dual feasibility problem.

∃x ∈ Rm \ {0} Ax = 0, x ∈ K , (PF)

∃y ∈ Rn \ {0} A>y ∈ K? . (DF)

We assume n ≤ m and define

P = {A ∈ Rn×m : A(K) = Rn},
D = {A ∈ Rn×m : A>Rn + K? = Rm},
Σ = Rn×m \ (P ∪ D) is the set of ill-posed matrices.

Proposition:
A ∈ P iff {x ∈ Rm : Ax = b, x ∈ K} 6= ∅ for every b ∈ Rn.

A ∈ D iff {y ∈ Rn : c− A>y ∈ K?} 6= ∅ for every c ∈ Rm.

If n < m then both P and D are open and P ∩ D = ∅.



Definition: (Renegar 95)

The condition number of the homogeneous conic system with respect to K given

by A ∈ Rn×m \ Σ is defined by

cond(A) =
‖A‖rs

drs(A,Σ)
.

Condition number of the inhomogeneous conic system with respect to K:

cond(A, b, c) = max

{
cond(A,−b), cond

(
A

−c>
)}

.

Proposition: (Renegar 95)

If A ∈ P then drs(A,Σ) = sup{δ > 0 : δBn ⊆ A(Bm ∩K)}.
If A ∈ D then drs(A,Σ) = sup{δ > 0 : δBm ⊆ A>Bn + K?}.

Here, Bn and Bm are the unit ball w.r.t. ‖·‖s in Rn and ‖·‖r in Rm, respectively.



Conditioning of set-valued mappings and equations
(Dontchev-Rockafellar 2004, 2014)

Let X and Y be finite-dimensional normed spaces, F : X ×D ⇒ Y and consider

a parametric generalized equation

0 ∈ F (x, d) .

Then F (·, d)−1(y) is the solution set of the parametric generalized equation

y ∈ F (x, d). Next we fix d and consider F = F (·, d).

F is metrically regular at (x̄, ȳ) ∈ gphF if there is a constant κ > 0 together

with neighborhoods U of x̄ and V of ȳ such that

(?) d(x, F−1(y)) ≤ κ d(y, F (x)) for all (x, y) ∈ U × V .

The condition number of ȳ ∈ F (x̄) is the regularity modulus defined by

cond(F ) = regF (x̄|ȳ) = inf{κ : κ satisfies condition (?)}.
F−1 has the Aubin property at (ȳ, x̄) ∈ gphF−1 iff F is metrically regular at

(x̄, ȳ) ∈ gphF and it holds

lipF−1(ȳ|x̄) = regF (x̄|ȳ).



F−1 is said to be calm at (ȳ, x̄) ∈ gphF−1 iff F is metrically subregular at

(x̄, ȳ) ∈ gphF iff there is a constant κ > 0 along with a neighborhood U of x̄

such that

d(x, F−1(ȳ)) ≤ κd(ȳ, F (x)) for all x ∈ U.

Radius of metric regularity of F at x̄ for ȳ: (Dontchev-Lewis-Rockafellar 2003)

radF (x̄|ȳ) = inf
G:X→Y
G(x̄)=0

{lipG(x̄) : F + G is not metrically regular at (x̄, ȳ + G(x̄))},

where lipG(x̄) = lim supx,x′→x̄
x 6=x′

|G(x)−G(x′)|
‖x−x′‖ .

Proposition: (Rockafellar-Wets 98)

Let F : X ⇒ Y be locally closed at (x̄, ȳ) ∈ gphF . Then

radF (x̄|ȳ) =
1

regF (x̄|ȳ)
and regF (x̄|ȳ) = sup

x∈B
sup

y∈D?F (x̄|ȳ)−1(x)

‖y‖.

where D?F (x̄|ȳ) : Y? → X ? is the Mordukhovich coderivative, i.e.,

D?F (x̄|ȳ)(y?) =
{
x? : (x?,−y?) ∈ NgphF (x̄, ȳ)

}
.



Parametric convex differentiable program with polyhedral constraints

min{f (x, d) : x ∈ X} (d ∈ D)

and the optimality condition in form of a parametric set-valued equation

0 ∈ F (x, d) = ∇f (x, d) + NX(x).

with the solution mapping S(d) = {x ∈ X : 0 ∈ ∇f (x, d)+NX(x)} for d ∈ D.

We know that the conditioning of the program is characterized by

lipS
(
d̄|x̄
)

= sup
x∗∈B

sup
p∗∈D∗S(d̄|x̄)(x∗)

‖p∗‖ ,

Proposition: (see also Mordukhovich 06)

Let (d̄, x̄) ∈ gphS with d̄ ∈ D and x̄ ∈ X . Assume that the multifunction

y 7→ {(d, x) : y ∈ ∇f (x, d) + NX(x)}
is calm at (0, d̄, x̄). Then it holds

D?S(d̄|x̄)(x?) ⊆
{
p? : ∃v? with (−x?, p?) ∈ (D?∇)f (x̄, d̄)(v?)

+D?NX(x̄,−∇f (x̄, d̄))(v?)
}
.



Computing ∂2f = (D?∇)f and D?NX

Proposition:
Let f (v) = supz∈Z〈v, z〉 − 1

2〈Bz, z〉 (v ∈ Rk) with B ∈ Rk×k symmetric and

positive definite, and Z convex polyhedral. Then

∂2f (v̄)(w?) =
{
z? ∈ Rk : Bz? − w? ∈ D?NZ(z(v̄), v̄ −Bz(v̄))(−z?)

}
,

where z(v̄) is the unique solution of the maximum problem defining f (v̄).

Proposition: (Henrion-Römisch 07)

Consider the polyhedron P = {u : Au ≤ b}, NP the normal cone mapping

to P and fix (ū, w̄) ∈ gphNP . Denote by I = {i : 〈ai, ū〉 = bi the index

set of active rows of A at ū and assume that these active rows are linearly

independent. Moreover, let J = {i ∈ I : λi > 0} be the index set of strictly

positive multipliers, where λ is the unique solution of
∑

i∈I λiai = w̄. Then

D?NP (ū, w̄)(s?) ={
pos {ai : i ∈ I, 〈ai, s?〉 > 0} + span {ai : i ∈ I, 〈ai, s?〉 = 0} if s? ∈ ∩i∈Ja⊥i ,
∅ else.



Linear-quadratic two-stage stochastic optimization problems

min
{
〈c, x〉 + 1

2 〈x,Cx〉 + E (Φ(x, ξ)) |x ∈ X
}
,

where x is the first-stage decision and

Φ(x, ξ) = max
z∈Z

{
〈z, h(ξ)− Tx〉 − 1

2 〈z,Bz〉
}
.

We assume that X and Z are nonempty convex polyhedra in Rm and Rk, respec-

tively, B and C are symmetric positive definite matrices, c ∈ Rm, h(ξ) is a ran-

dom vector in Rk, T a k×m matrix, Z is of the form Z = {z ∈ Rr : W>z ≤ q}
with a k × r matrix W and q ∈ Rr, and E denotes expectation with respect to

a probability distribution P on Rs.

Here, we assume that P is a discrete probability distribution of the form

P =
1

n

n∑
i=1

δξi

with scenarios ξi ∈ Rs, i = 1, . . . , n.



Aim: Conditioning of the two-stage model with respect to P .

So, we have d = (ξ1, . . . , ξn) ∈ Rns and

f (x, d) = 〈c, x〉 + 1
2 〈x,Cx〉 + EP (Φ(x, ξ)) .

Proposition:
The function f (·, d) is Frechet differentiable and its gradient locally Lipschitz

continuous, but, in general, not twice differentiable.

Proposition: Let (d̄, x̄) ∈ gphS, T be surjective and h(ξ) = Hξ + h̄. Then

lipS
(
d̄|x̄
)

= sup
x∗∈B

sup
p∗∈D∗S(d̄|x̄)(x∗)

‖p∗‖ ,

where D∗S
(
d̄|x̄
)

(x∗) ⊆p
∗

∣∣∣∣∣∣∣∣∣∣
∃v∗, ∃u∗ ∈ D∗NX(x̄,−c− Cx̄ + n−1T>

∑n
i=1 z(v̄i)) (v∗)

∃z∗i : Bz∗i + Tv∗ ∈ D∗NZ(z(v̄i), v̄i −Bz(v̄i))(−z∗i ) (i = 1, . . . , n)

n−1T>
n∑
i=1

z∗i = C>v∗ + x∗ + u∗

p∗i = n−1H>z∗i , v̄i = Hξ̄i + h̄− T x̄ (i = 1, . . . , n)


with z(v) = arg maxz∈Z{〈z, v〉 − 1

2〈z,Bz〉}.



Special case: C = σ I, B = τ I and Z = [−q−, q+] (simple recourse),

where σ > 0, τ > 0.

Theorem:
Assume that strict complementarity holds at x̄. Let T be surjective and let σ

and τ satisfy

σ τ > n−14(T, d̄, x̄)‖T‖ .
Then the condition number lipS(d̄|x̄) can be estimated by

lipS(d̄|x̄) ≤ ‖H‖
[4(T, d̄, x̄)]−1nστ − ‖T‖

,

where 4(T ) is defined by

4(T, d̄, x̄) =

n∑
i=1

4i(T, ξ̄
i, x̄) , (4i(T, ξ̄

i, x̄))2 =

r∑
j=1

zj(Hξ̄i+h̄−T x̄)

is not active in Z

‖tj‖2

with tj denoting the rows of T . Note that n−14(T, d̄, x̄) refers to the mean

number of non strongly active components of z(Hξ̄i + h̄− T x̄), i = 1, . . . , n.



Conclusions

• Characterization of the condition number in the general two-stage case is

open. Which quantities influence its size and what are the consequences of

large condition numbers ? Of course, the Lipschitz constants of the second-

stage solution mapping

v 7→ z(v) = arg max
z∈Z

{
〈z, v〉 − 1

2〈z,Bz〉
}

become important.

• The relations to the results in (Shapiro–Homem-de-Mello–Kim 02) and in the recent

paper (Zolezzi 15) need to be explored.

• Extension of the results to more general linear-quadratic two-stage models

and to linear two-stage models are desirable, but not straightforward. In

the linear case, uniqueness of solutions and, hence, differentiability of the

recourse function is lost in general.

• Extension of characterizing the conditioning by considering metric subreg-
ularity instead of metric regularity is of interest.
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