Stochastic Programming: Tutorial Part I

W. Römisch
Humboldt-University Berlin
Institute of Mathematics 10099 Berlin, Germany
http://www.math.hu-berlin.de/~romisch

Optimization: Computation, Theory and Modeling Workshop Optimization under Uncertainty Singapore, December 10-11, 2012

Introduction

What is Stochastic Programming ?

- Mathematics for Decision Making under Uncertainty
- subfield of Mathematical Programming (MSC 90C15)

Stochastic programs are optimization models

- having special properties and structures,
- depending on the underlying probability distribution,
- requiring specific approximation and numerical approaches,
- having close relations to practical applications.

Selected recent monographs:

P. Kall, S.W. Wallace 1994, A. Prekopa 1995, J.R. Birge, F. Louveaux 1997
A. Ruszczynski, A. Shapiro (eds.): Stochastic Programming, Handbook, Elsevier, 2003
S.W. Wallace, W.T. Ziemba (eds.): Applications of Stochastic Programming, MPS-SIAM, 2005,
P. Kall, J. Mayer: Stochastic Linear Programming, Kluwer, 2005,
A. Shapiro, D. Dentcheva, A. Ruszczyński: Lectures on Stochastic Programming, MPS-SIAM, 2009.
G. Infanger (ed.): Stochastic Programming - The State-of-the-Art, Springer, 2010.

Contents (Part I)

(1) Motivating example: Newsboy
(2) Approaches to optimization under stochastic uncertainty
(3) Properties of expectation functionals
(4) Two-stage stochastic programs
(5) Mixed-integer two-stage stochastic programs
(6) Stochastic programs with probabilistic constraints
(7) Optimization problems with stochastic dominance constraints
(8) Stochastic programs with equilibrium constraints
(9) Multi-stage stochastic programs
(10) Risk functionals and risk averse stochastic programs

Title Page

Motivating example: Newsvendor problem

- ξ uncertain daily demand for a (daily) newspaper
- x decision about the quantity of newspapers to be purchased from a distributor
- c cost to be paid by the newsvendor for one newspaper at the beginning of the day
- s selling price for one newspaper
- r return price for one unsold newspaper at the end of the day

Revenue function: (Assumption: $0 \leq r<c<s$)

$$
f(x, \xi)=\left\{\begin{array}{cl}
(s-c) x & , x \leq \xi \\
s \xi+r(x-\xi)-c x & , x>\xi
\end{array}\right.
$$

Expected revenue:

$$
\mathbb{E}[f(x, \xi)]=\int_{0}^{\infty} f(x, \xi) d F(\xi)=\sum_{k=1}^{\infty} p_{k} f(x, k),
$$

where $F(w)=\mathbb{P}(\xi \leq w)=\sum_{k=1, k \leq w} p_{k}$ is the piecewise constant (cumulative) probability distribution function of the demand ξ.

Maximization of the expected revenue:

$\max \left\{\sum_{k=1, k \leq x} p_{k}[(r-c) x+(s-r) k]+\sum_{k>x}^{\infty} p_{k}(s-c) x: x \geq 0\right\}$
or
$\max \left\{\sum_{k=1, k \leq x} p_{k}[(s-c) x+(s-r)(k-x)]+\sum_{k>x}^{\infty} p_{k}(s-c) x: x \geq 0\right\}$
or

$$
\max \left\{(s-c) x+(s-r) \sum_{k=1, k \leq x} p_{k}(k-x): x \geq 0\right\}
$$

or

$$
\max \{(s-c) x-(s-r) \mathbb{E}[\max \{0, x-\xi\}]: x \geq 0\}
$$

or

$$
\max \left\{[(s-c)-(s-r) F(x)] x+(s-r) \sum_{k=1, k \leq x} k p_{k}: x \geq 0\right\}
$$

Hence, x can be maximized as long as $[(s-c)-(s-r) F(x)] \geq 0$, i.e.,

$$
F(x) \leq \frac{s-c}{s-r}
$$

Hence, the optimal decision x_{*} is the minimal $n \in \mathbb{N}$ such that

$$
F(n)=\sum_{k=1}^{n} p_{k} \geq \frac{s-c}{s-r}
$$

The latter model will be called two-stage stochastic program with first-stage decision x and optimal recourse $\max \{0, x-\xi\}$.

Of course, the newsvendor needs knowledge on the distribution function F (at least, approximately).

Basic assumption in stochastic programming: The probability distribution is independent on the decision.

The problem may occur that the random variable $f\left(x_{*}, \xi\right)$ has a high variance $\mathbb{V}\left[f\left(x_{*}, \xi\right)\right]=\mathbb{E}\left[f\left(x_{*}, \xi\right)^{2}\right]-\left[\mathbb{E}\left[f\left(x_{*}, \xi\right)\right]\right]^{2}$. Then the decision x_{*} has high risk and one should be interested in a risk averse decision whose expected revenue is still close to $\mathbb{E}\left[f\left(x_{*}, \xi\right)\right]$.

An alternative is to consider the risk averse optimization problem

$$
\max \{\mathbb{E}[f(x, \xi)]-\gamma \mathbb{V}[f(x, \xi)]: x \geq 0\}
$$

with a risk aversion parameter $\gamma \geq 0$.
In general, one might be interested in a risk averse alternative with certain risk functional \mathbb{F} instead of the variance \mathbb{V} in order to maintain good properties of the optimization problem.

The newsvendor may also be interested in making a specific amount of money b with high probability, but minimal work.

Optimization model with probabilistic constraints:

$$
\min \{x \in \mathbb{R}: \mathbb{P}(f(x, \xi) \geq b) \geq p\}
$$

with $p \in(0,1)$ close to 1 . The model is equivalent to

$$
\min \left\{x \in \mathbb{R}:(s-c) x \geq b, \mathbb{P}\left(\xi \geq \frac{b+(c-r) x}{s-r}\right) \geq p\right\}
$$

$$
\min \left\{x \in \mathbb{R}:(s-c) x \geq b, \frac{b+(c-r) x}{s-r} \leq F^{-1}(1-p)\right\}
$$

A feasible solution of the optimization model exists if

$$
b \leq(s-c) F^{-1}(1-p)
$$

leading to the optimal solution $\hat{x}=\frac{b}{s-c}$.

Approaches to optimization models under stochastic uncertainty

Let us consider the optimization model

$$
\min \{f(x, \xi): x \in X, g(x, \xi) \leq 0\}
$$

where $\xi: \Omega \rightarrow \Xi$ is a random vector defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P}), \Xi$ and X are closed subsets of \mathbb{R}^{s} and \mathbb{R}^{m}, respectively, $f: X \times \Xi \rightarrow \mathbb{R}$ and $g: X \times \Xi \rightarrow \mathbb{R}^{d}$ are lower semicontinuous.

Aim: Finding optimal decisions before knowing the random outcome of ξ (here-and-now decision).

Main approaches:

- Replace the objective by $\mathbb{E}[f(x, \xi)]$ or by $\mathbb{F}[f(x, \xi)]$, where \mathbb{E} denotes expectation (w.r.t. \mathbb{P}) and \mathbb{F} some functional on the space of real random variables (e.g., playing the role of a risk functional).
- (i) Replace the random constraints by the constraint

$$
\mathbb{P}(\{\omega \in \Omega: g(x, \xi(\omega)) \leq 0\})=\mathbb{P}(g(x, \xi) \leq 0) \geq p
$$

where $p \in[0,1]$ denotes a probability level, or (ii) go back to the modeling stage and introduce a recourse action to compensate constraint violations and add the optimal recourse cost to the objective.

The first variant leads to stochastic programs with probabilistic or chance constraints:

$$
\min \{\mathbb{E}[f(x, \xi)]: x \in X, \mathbb{P}(g(x, \xi) \leq 0) \geq p\}
$$

The second variant leads to two-stage stochastic programs with recourse:
$\min \{\mathbb{E}[f(x, \xi)]+\mathbb{E}[q(y, \xi)]: x \in X, y \in Y, g(x, \xi)+h(y, \xi) \leq 0\}$. or \mathbb{E} replaced by a risk functional \mathbb{F}.

Properties of expectation functions

We consider analytical properties of functions having the form

$$
\mathbb{E}[f(x, \xi)]=\int_{\mathbb{R}^{s}} f(x, \xi) P(d \xi), \quad\left(x \in \mathbb{R}^{m}\right)
$$

where $f: \mathbb{R}^{m} \times \mathbb{R}^{s} \rightarrow \overline{\mathbb{R}}, \overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\} \cup\{-\infty\}$ denoting the extended real numbers, is an integrand such that

$$
f(x, \cdot) \text { is measurable and } \mathbb{E}\left[[f(x, \xi)]_{ \pm}\right]<+\infty
$$

and P is a (Borel) probability measure on \mathbb{R}^{s}.

Aim: Properties of the expectation function

$$
x \mapsto \mathbb{E}[f(x, \xi)] \quad\left(\text { on } \mathbb{R}^{s}\right)
$$

under reasonable assumptions on the integrand f.

Proposition 1: Assume that

(i) $f(\cdot, \xi)$ is lower semicontinuous at $x_{0} \in \mathbb{R}^{m}$ for P-almost all $\xi \in \mathbb{R}^{s}$,
(ii) there exists a P-integrable function $z: \mathbb{R}^{s} \rightarrow \overline{\mathbb{R}}$, such that $f(x, \xi) \geq z(\xi)$ for P-almost all $\xi \in \mathbb{R}^{s}$ and all x in a neighborhood of x_{0}.
Then the function $x \mapsto \mathbb{E}[f(x, \xi)]$ is lower semicontinuous at x_{0}.

Proof: follows by applying Fatou's Lemma.
Proposition 2: Assume that
(i) $f(\cdot, \xi)$ is continuous at $x_{0} \in \mathbb{R}^{m}$ for P-almost all $\xi \in \mathbb{R}^{s}$,
(ii) there exists a P-integrable function $z: \mathbb{R}^{s} \rightarrow \overline{\mathbb{R}}$, such that $|f(x, \xi)| \leq z(\xi)$ for P-almost all $\xi \in \mathbb{R}^{s}$ and all x in a neighborhood of x_{0}.
Then the function $x \mapsto \mathbb{E}[f(x, \xi)]$ is finite in a neighborhood of x_{0} and continuous at x_{0}.

Proof: follows by applying Lebesgue's dominated convergence theorem.

Example:

For $f(x, \xi)=-\mathbf{1}_{(-\infty, x]}(\xi),(x, \xi) \in \mathbb{R} \times \mathbb{R}$, where $\mathbb{1}_{A}$ denotes the characteristic function of $A \subset \mathbb{R}$, the function $x \rightarrow \mathbb{E}[f(x, \xi)]$ is lower semicontinuous on \mathbb{R}, but continuous at $x_{0} \in \mathbb{R}$ only if $P\left(\left\{x_{0}\right\}\right)=0$.

Proposition 3: Assume

(i) $\mathbb{E}\left[\left|f\left(x_{0}, \xi\right)\right|\right]<+\infty$ for some $x_{0} \in \mathbb{R}^{m}$,
(ii) there exists a P-integrable function $L: \mathbb{R}^{s} \rightarrow \mathbb{R}$ such that

$$
|f(x, \xi)-f(\tilde{x}, \xi)| \leq L(\xi)\|x-\tilde{x}\|
$$

Page 13 of 69
holds for all x and \tilde{x} in a neighborhood U of x_{0} in \mathbb{R}^{m} and P almost all $\xi \in \mathbb{R}^{s}$.
Then the function $x \mapsto \mathbb{E}[f(x, \xi)]$ is Lipschitz continuous on U.
(iii) Assume, in addition, $f(\cdot, \xi)$ is differentiable at x_{0} for P-almost all $\xi \in \mathbb{R}^{s}$.
Then the function $F(x)=\mathbb{E}[f(x, \xi)]$ is differentiable at x_{0} and

$$
\nabla F\left(x_{0}\right)=\mathbb{E}\left[\nabla_{x} f\left(x_{0}, \xi\right)\right] .
$$

Proposition 4: Assume that

(i) the function $x \mapsto \mathbb{E}[f(x, \xi)]$ is finite on some neighborhood U of x_{0},
(ii) $f(\cdot, \xi): \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex for P-almost all $\xi \in \mathbb{R}^{s}$.

Then the function $F(x)=\mathbb{E}[f(x, \xi)]$ from \mathbb{R}^{m} to $\mathbb{R} \cup\{+\infty\}$ is convex and directionally differentiable at x_{0} with

$$
F^{\prime}\left(x_{0} ; h\right)=\mathbb{E}\left[f^{\prime}\left(x_{0}, \xi ; h\right)\right] \quad\left(\forall h \in \mathbb{R}^{m}\right) .
$$

(iii) Assume, in addition, that f is a normal integrand and dom F has nonempty interior.
Then F is subdifferentiable at x_{0} and

$$
\partial F\left(x_{0}\right)=\int_{\mathbb{R}^{s}} \partial f\left(x_{0}, \xi\right) P(d \xi)+N_{\operatorname{dom} F}\left(x_{0}\right) .
$$

(Ruszczyński/Shapiro, Handbook, 2003)

Two-stage stochastic programming models with recourse

Consider a linear program with stochastic parameters of the form

$$
\min \{\langle c, x\rangle: x \in X, T(\xi) x=h(\xi)\}
$$

where $\xi: \Omega \rightarrow \Xi$ is a random vector defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P}), c \in \mathbb{R}^{m}, \Xi$ and X are polyhedral subsets of \mathbb{R}^{s} and \mathbb{R}^{m}, respectively, and the $d \times m$-matrix $T(\cdot)$ and vector $h(\cdot) \in \mathbb{R}^{d}$ are affine functions of ξ.

Idea: Introduce a recourse variable $y \in \mathbb{R}^{\bar{m}}$, recourse costs $q(\xi) \in$ $\mathbb{R}^{\bar{m}}$, a fixed recourse $d \times \bar{m}$-matrix W, a polyhedral cone $Y \subseteq \mathbb{R}^{\bar{m}}$, and solve the second-stage or recourse program

$$
\min \{\langle q(\xi), y\rangle: y \in Y, W y=h(\xi)-T(\xi) x\}
$$

Add the expected minimal recourse costs $\mathbb{E}[\Phi(x, \xi)]$ (depending on the first-stage decision x) to the original objective and consider

$$
\min \{\langle c, x\rangle+\mathbb{E}[\Phi(x, \xi)]: x \in X\}
$$

where $\Phi(x, \xi):=\inf \{\langle q(\xi), y\rangle: y \in Y, W y=h(\xi)-T(\xi) x\}$.

Two formulations of two-stage models

Deterministic equivalent of the two-stage model:

$$
\min \left\{\langle c, x\rangle+\int_{\Xi} \Phi(x, \xi) P(d \xi): x \in X\right\}
$$

where $P:=\mathbb{P} \xi^{-1} \in \mathcal{P}(\Xi)$ is the probability distribution of the random vector ξ and $\Phi(\cdot, \cdot)$ is the infimum function of the secondstage program.

Infinite-dimensional optimization model:

$$
\begin{array}{r}
\min \left\{\langle c, x\rangle+\int_{\Xi}\langle q(\xi), y(\xi)\rangle P(d \xi): x \in X, y \in L_{r}(\Xi, \mathcal{B}(\Xi), P)\right. \\
y(\xi) \in Y, W y(\xi)=h(\xi)-T(\xi) x\}
\end{array}
$$

where $r \in[1,+\infty]$ is selected properly.

If the probability distribution P of ξ is assumed to have p-th order moments, i.e., $\int_{\Xi}\|\xi\|^{p} P(d \xi)<$ ∞, with $p>1, r$ should be chosen such that the constraints of y are consistent with these

Structural properties of two-stage models

We consider the infimum function $v(\cdot, \cdot)$ of the parametrized linear (second-stage) program, namely,

$$
\begin{aligned}
v(u, t) & =\inf \{\langle u, y\rangle: W y=t, y \in Y\}\left((u, t) \in \mathbb{R}^{m} \times \mathbb{R}^{d}\right) \\
& =\sup \left\{\langle t, z\rangle: W^{\top} z-u \in Y^{*}\right\} \\
\mathcal{D} & =\left\{u:\left\{z \in \mathbb{R}^{r}: W^{\top} z-u \in Y^{*}\right\} \neq \emptyset\right\}
\end{aligned}
$$

where W^{\top} is the transposed of W and Y^{*} the polar cone of Y. Hence, we have

$$
\Phi(x, \xi)=v(q(\xi), h(\xi)-T(\xi) x)
$$

Theorem: (Walkup/Wets 69)
The function $v(\cdot, \cdot)$ is finite and continuous on the polyhedral cone $\mathcal{D} \times W(Y)$. Furthermore, the function $v(u, \cdot)$ is piecewise linear convex on the polyhedral set $W(Y)$ for fixed $u \in \mathcal{D}$, and $v(\cdot, t)$ is piecewise linear concave on \mathcal{D} for fixed $t \in W(Y)$.

Assumptions:

(A1) relatively complete recourse: for any $(\xi, x) \in \Xi \times X$,

$$
h(\xi)-T(\xi) x \in W(Y)
$$

(A2) dual feasibility: $q(\xi) \in \mathcal{D}$ holds for all $\xi \in \Xi$.

(A3) finite second order moment: $\int_{\Xi}\|\xi\|^{2} P(d \xi)<\infty$.
Note that (A1) is satisfied if $W(Y)=\mathbb{R}^{d}$ (complete recourse). In general, (A1) and (A2) impose a condition on the support of P.

Proposition:

Assume (A1) and (A2). Then the deterministic equivalent of the two-stage model represents a convex program (with polyhedral constraints) if the integrals $\int_{\Xi} v(q(\xi), h(\xi)-T(\xi) x) P(d \xi)$ are finite for all $x \in X$. For the latter it suffices to assume (A3). An element $x \in X$ minimizes the convex program if and only if

$$
\begin{gathered}
0 \in \int_{\Xi} \partial \Phi(x, \xi) P(d \xi)+N_{X}(x) \\
\partial \Phi(x, \xi)=c-T(\xi)^{\top} \arg \max _{z \in D(\xi)} z^{\top}(h(\xi)-T(\xi) x) .
\end{gathered}
$$

Discrete approximations of two-stage stochastic programs

Replace the (original) probability measure P by measures P_{n} having (finite) discrete support $\left\{\xi_{1}, \ldots, \xi_{n}\right\}(n \in \mathbb{N})$, i.e.,

$$
P_{n}=\sum_{i=1}^{n} p_{i} \delta_{\xi_{i}},
$$

and insert it into the infinite-dimensional stochastic program:

$$
\begin{aligned}
& \min \left\{\langle c, x\rangle+\sum_{i=1}^{n} p_{i}\left\langle q\left(\xi_{i}\right), y_{i}\right\rangle: x \in X, y_{i} \in Y, i=1, \ldots, n,\right. \\
& W y_{1} \\
& +T\left(\xi_{1}\right) x=h\left(\xi_{1}\right) \\
& W y_{2} \\
& +T\left(\xi_{2}\right) x=h\left(\xi_{2}\right) \\
& \left.W y_{n}+T\left(\xi_{n}\right) x=h\left(\xi_{n}\right)\right\}
\end{aligned}
$$

Hence, we arrive at a (finite-dimensional) large scale block-structured linear program which allows for specific decomposition methods.

Mixed-integer two-stage stochastic programs

Applied optimization models often contain continuous and integer decisions (e.g. on/off decisions, quantities). If such decisions enter the second-stage program, its optimal value function is no longer continuous and/or convex in general.
We consider

$$
\min \left\{\langle c, x\rangle+\int_{\Xi} \Phi(q(\xi), h(\xi)-T(\xi) x) P(d \xi): x \in X\right\}
$$

where Φ is given by
Page 20 of 69

$$
\Phi(u, t):=\inf \left\{\begin{array}{l|l}
\left\langle u_{1}, y_{1}\right\rangle+\left\langle u_{2}, y_{2}\right\rangle & \begin{array}{l}
W_{1} y_{1}+W_{2} y_{2} \leq t \\
y_{1} \in \mathbb{R}_{+}^{m_{1}}, y_{2} \in \mathbb{Z}_{+}^{m_{2}}
\end{array}
\end{array}\right\}
$$

for all pairs $(u, t) \in \mathbb{R}^{m_{1}+m_{2}} \times \mathbb{R}^{d}$, and $c \in \mathbb{R}^{m}, X$ is a closed subset of \mathbb{R}^{m}, Ξ a polyhedron in $\mathbb{R}^{s}, T \in \mathbb{R}^{d \times m}, W_{1} \in \mathbb{R}^{d \times m_{1}}$, $W_{2} \in \mathbb{R}^{d \times m_{2}}$, and $q(\xi) \in \mathbb{R}^{m_{1}+m_{2}}$ and $h(\xi) \in \mathbb{R}^{d}$ are affine functions of ξ, and P is a Borel probability measure.

Assumptions:

(C1) The matrices W_{1} and W_{2} have rational elements.
(C2) For each pair $(x, \xi) \in X \times \Xi$ it holds that $h(\xi)-T(\xi) x \in \mathcal{T}$ (relatively complete recourse), where
$\mathcal{T}:=\left\{t \in \mathbb{R}^{d} \mid \exists y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{m_{1}} \times \mathbb{Z}^{m_{2}}\right.$ with $\left.W_{1} y_{1}+W_{2} y_{2} \leq t\right\}$.
(C3) For each $\xi \in \Xi$ the recourse cost $q(\xi)$ belongs to the dual feasible set (dual feasibility)
$\mathcal{U}:=\left\{u=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{m_{1}+m_{2}} \mid \exists z \in \mathbb{R}_{-}^{d}\right.$ with $\left.W_{j}^{\top} z=u_{j}, j=1,2\right\}$.
(C4) $P \in \mathcal{P}_{r}(\Xi)$, i.e., $\int_{\Xi}\|\xi\|^{r} P(d \xi)<+\infty, r \in\{1,2\}$.
Condition (C2) means that a feasible second stage decision always exists. Both (C2) and (C3) imply $\Phi(u, t)$ to be finite for all $(u, t) \in \mathcal{U} \times \mathcal{T}$. Clearly, it holds $(0,0) \in \mathcal{U} \times \mathcal{T}$ and $\Phi(0, t)=0$ for every $t \in \mathcal{T}$.
$r=1$ holds if either $q(\xi)$ is the only quantity depending on ξ or $q(\xi)$ does not depend on ξ. Otherwise, we set $r=2$.

With the convex polyhedral cone
$\mathcal{K}:=\left\{t \in \mathbb{R}^{d} \mid \exists y_{1} \in \mathbb{R}^{m_{1}}\right.$ such that $\left.t \geq W_{1} y_{1}\right\}=W_{1}\left(\mathbb{R}^{m_{1}}\right)+\mathbb{R}_{+}^{d}$ one obtains the representation

$$
\mathcal{T}=\bigcup_{z \in \mathbb{Z}^{m}}\left(W_{2} z+\mathcal{K}\right)
$$

The set \mathcal{T} is always (path) connected (i.e., there exists a polygon connecting two arbitrary points of \mathcal{T}) and condition (C1) implies that \mathcal{T} is closed. If, for each $t \in \mathcal{T}, Z(t)$ denotes the set

$$
Z(t):=\left\{z \in \mathbb{Z}^{m_{2}} \mid \exists y_{1} \in \mathbb{R}^{m_{1}} \text { such that } W_{1} y_{1}+W_{2} z \leq t\right\}
$$

the representation of \mathcal{T} implies that it is decomposable into subsets of the form

$$
\begin{aligned}
\mathcal{T}\left(t_{0}\right) & :=\left\{t \in \mathcal{T} \mid Z(t)=Z\left(t_{0}\right)\right\} \\
& =\bigcap_{z \in Z\left(t_{0}\right)}\left(W_{2} z+\mathcal{K}\right) \backslash \bigcup_{z \in \mathbb{Z}^{m_{2}} \backslash Z\left(t_{0}\right)}\left(W_{2} z+\mathcal{K}\right)
\end{aligned}
$$

for every $t_{0} \in \mathcal{T}$.

In general, the set $Z\left(t_{0}\right)$ is finite or countable, but condition (C1) implies that there exist countably many elements $t_{i} \in \mathcal{T}$ and $z_{i j} \in$ $\mathbb{Z}^{m_{2}}$ for j belonging to a finite subset N_{i} of $\mathbb{N}, i \in \mathbb{N}$, such that

$$
\mathcal{T}=\bigcup_{i \in \mathbb{N}} \mathcal{T}\left(t_{i}\right) \quad \text { with } \quad \mathcal{T}\left(t_{i}\right)=\left(t_{i}+\mathcal{K}\right) \backslash \bigcup_{j \in N_{i}}\left(W_{2} z_{i j}+\mathcal{K}\right)
$$

The sets $\mathcal{T}\left(t_{i}\right), i \in \mathbb{N}$, are nonempty and star-shaped, but nonconvex in general.

Illustration of $\mathcal{T}\left(t_{i}\right)$ for $W_{1}=0$ and $d=2$, i.e., $\mathcal{K}=\mathbb{R}_{+}^{2}$, with $N_{i}=\{1,2,3\}$ and its decomposition into the sets $B_{j}, j=1,2,3,4$, whose closures are rectangular.

If for some $i \in \mathbb{N}$ the set $\mathcal{T}\left(t_{i}\right)$ is nonconvex, it can be decomposed into a finite number of subsets.
This leads to a countable number of subsets $B_{j}, j \in \mathbb{N}$, of \mathcal{T} whose closures are convex polyhedra with facets parallel to $W_{1}\left(\mathbb{R}^{m_{1}}\right)$ or to suitable facets of \mathbb{R}_{+}^{r} and form a partition of \mathcal{T}.

Since the sets $Z(t)$ of feasible integer decisions do not change if t varies in some B_{j}, the function $(u, t) \mapsto \Phi(u, t)$ from $\mathcal{U} \times \mathcal{T}$ to \mathbb{R} has the (local) Lipschitz continuity regions $\mathcal{U} \times B_{j}, j \in \mathbb{N}$ and the estimate

$$
|\Phi(u, t)-\Phi(\tilde{u}, \tilde{t})| \leq L(\max \{1,\|t\|,\|\tilde{t}\|\}\|u-\tilde{u}\|+\max \{1,\|u\|,\|\tilde{u}\|\}\|t-\tilde{t}\|)
$$

holds for all pairs $(u, t),(\tilde{u}, \tilde{t}) \in \mathcal{U} \times B_{j}$ and some (uniform) con$\operatorname{stant} L>0$.
(Blair-Jeroslow 77, Bank-Guddat-Kummer-Klatte-Tammer 1982)

For the integrand

$$
f_{0}(x, \xi)=\langle c, x\rangle+\Phi(q(\xi), h(\xi)-T(\xi) x) \quad((x, \xi) \in X \times \Xi)
$$

it holds

$$
\begin{aligned}
\mid f_{0}(x, \xi)- & f_{0}(x, \tilde{\xi}) \mid
\end{aligned}
$$

for all $x \in X$ with some constants \hat{L} and C and

$$
\Xi_{x, j}=\left\{\xi \in \Xi \mid h(\xi)-T(\xi) x \in B_{j}\right\} \quad(j \in \mathbb{N})
$$

Proposition: (Schultz 93, 95)
Assume (C1)-(C4). Then the objective function

$$
F_{P}(x)=\langle c, x\rangle+\int_{\Xi} \Phi(q(\xi), h(\xi)-T(\xi) x) P(d \xi)
$$

is lower semicontinuous on X and solutions exist if X is compact.
If the probability distribution P has a density, the objective function is continuous, but nonconvex in general.
If the support of P is finite, the objective function is piecewise continuous with a finite number of continuity regions, whose closures are polyhedral.

Example: (Schultz-Stougie-van der Vlerk 98)

$m=d=s=2, m_{1}=0, m_{2}=4, c=(0,0), X=[0,5]^{2}$, $h(\xi)=\xi, q(\xi) \equiv q=(-16,-19,-23,-28), y_{i} \in\{0,1\}, i=$ $1,2,3,4, P \sim \mathcal{U}\{5,10,15\}^{2}$ (discrete)
Second stage problem: MILP with 36 binary variables and 18 constraints.

$$
T=\left(\begin{array}{cc}
\frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right) \quad W=\left(\begin{array}{llll}
2 & 3 & 4 & 5 \\
6 & 1 & 3 & 2
\end{array}\right)
$$

Optimal value function

Example: (Schultz-Stougie-van der Vlerk 98)
Stochastic multi-knapsack problem:
$m=d=s=2, m_{1}=0, m_{2}=4, c=(1.5,4), X=[-5,5]^{2}$,
$h(\xi)=\xi, q(\xi) \equiv q=(16,19,23,28), y_{i} \in\{0,1\}, i=1,2,3,4$,
$P \sim \mathcal{U}\{5,5.5, \ldots, 14.5,15\}^{2}$ (discrete)
Second stage problem: MILP with 1764 Boolean variables and 882 constraints.

$$
T=\left(\begin{array}{cc}
\frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right) \quad W=\left(\begin{array}{llll}
2 & 3 & 4 & 5 \\
6 & 1 & 3 & 2
\end{array}\right)
$$

Stochastic programs with probabilistic constraints

We consider the stochastic program

$$
\min \{f(x): x \in X, P(g(x, \xi) \leq 0) \geq p\}
$$

where X is a closed subset of $\mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}, g: \mathbb{R}^{m} \times \mathbb{R}^{s} \rightarrow \mathbb{R}^{r}$, ξ a random vector with probability distribution P and $p \in(0.1)$.

Problem: If the original optimization problem is smooth, convex or even linear, the probabilistic constraint function

$$
G(x):=P(g(x, \xi) \leq 0)
$$

may be non-differentiable, non-Lipschitzian and non-convex.

Special forms of probabilistic constraints:

- $g(x, \xi):=\xi-h(x)$, where $h: \mathbb{R}^{m} \rightarrow \mathbb{R}^{s}$, i.e.,

$$
G(x)=P(\xi \leq h(x))=F_{P}(h(x)) \geq p,
$$

where $F_{P}(y):=P(\{\xi \leq y\})\left(y \in \mathbb{R}^{s}\right)$ denotes the (multivari-

- $g(x, \xi):=b(\xi)-A(\xi) x$, where the matrix $A(\cdot)$ and the vector $b(\cdot)$ are affine functions of ξ. Then

$$
G(x):=P(\{\xi: A(\xi) x \geq b(\xi)\})
$$

corresponds to the probability of a polyhedron depending on x.

Proposition: (Prekopa)

If $H: \mathbb{R}^{m} \rightarrow \mathbb{R}^{s}$ is a set-valued mapping with closed graph, the function $G: \mathbb{R}^{m} \rightarrow \mathbb{R}$ defined by $G(x):=P(H(x))\left(x \in \mathbb{R}^{m}\right)$ is upper semicontinuous for every probability distribution P on \mathbb{R}^{s}. Hence, the feasible set

$$
\mathcal{X}_{p}(P)=\{x \in X: G(x)=P(H(x)) \geq p\}
$$

is closed.
(In particular, H is of the form $H(x)=\left\{\xi \in \mathbb{R}^{s}: g(x, \xi) \leq 0\right\}$, $\operatorname{gph} H=\left\{(x, \xi) \in \mathbb{R}^{m} \times \mathbb{R}^{s}: g(x, \xi) \leq 0\right\}$.)

Proposition: (Henrion 02)

For any $i=1, \ldots, r$ let $g_{i}(\cdot, \xi)$ be quasiconvex for all $\xi \in \mathbb{R}^{s}$ and min stable w.r.t. X, i.e., for any $x, \tilde{x} \in X$ there exists $\bar{x} \in X$ such that

$$
g_{i}(\bar{x}, \xi) \leq \min \left\{g_{i}(x, \xi), g_{i}(\tilde{x}, \xi)\right\} \quad \forall \xi \in \mathbb{R}^{s} .
$$

Then the set $\mathcal{X}_{p}(P)=\{x \in X: P(g(x, \xi) \leq 0) \geq p\}$ is (path) connected for any $p \in[0,1]$ and probability distribution P on \mathbb{R}^{s}.

Corollary:

Let A be a (s, m)-matrix and ξ a s-dimensional random vector with distribution P. If the rows of A are positively linear independent, the set $\mathcal{X}_{p}(P)=\left\{x \in \mathbb{R}^{m}: P(A x \geq \xi) \geq p\right\}$ is path connected for any $p \in[0,1]$ and probability distribution P on \mathbb{R}^{s}.

Problem:

Which conditions imply continuity and differentiability properties of $G(x)=P(H(x))$ or convexity of $\mathcal{X}_{p}(P)=\{x \in X: P(H(x)) \geq p\} ?$

Examples:

(i) Let $H(x)=x+\mathbb{R}_{-}^{s}\left(\forall x \in \mathbb{R}^{s}\right)$ and P have finite support, i.e.,

$$
P=\sum_{i=1}^{n} p_{i} \delta_{\xi_{i}}
$$

where δ_{ξ} denotes the Dirac measure placing unit mass at ξ and $p_{i}>0, i=1, \ldots, n, \sum_{i=1}^{n} p_{i}=1$. Then

$$
\mathcal{X}_{p}(P)=X \cap\left(\cup_{i \in I}\left(\xi_{i}+\mathbb{R}_{+}^{s}\right)\right)
$$

holds for some index set $I \subset\{1, \ldots, n\}$ and, hence, is non-convex in general. Moreover, $G=F_{P}$ is discontinuous with jumps at $\operatorname{bd}\left(\xi_{i}+\mathbb{R}_{-}^{s}\right)$.
(ii) Let $H(x)=x+\mathbb{R}_{-}^{s}\left(\forall x \in \mathbb{R}^{s}\right)$ and P have a density f_{P} with respect to the Lebesgue measure on \mathbb{R}^{s}, i.e.,
$G(x)=F_{P}(x)=\int_{-\infty}^{x} f_{P}(y) d y=\int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{s}} f_{P}\left(y_{1}, \ldots, y_{s}\right) d y_{s} \cdots d y_{1}$.
Conjecture: $G=F_{P}$ is Lipschitz continuous if the density f_{P} is continuous and bounded.

Answer: The conjecture is true for $s=1$, but wrong for $s>1$ in general.

Example: (Wakolbinger)

$$
f_{P}\left(x_{1}, x_{2}\right)= \begin{cases}0 & x_{1}<0 \\ c x_{1}^{1 / 4} e^{-x_{1} x_{2}^{2}} & x_{1} \in[0,1] \\ c e^{-x_{1}^{4} x_{2}^{2}} & x_{1}>1\end{cases}
$$

where c is chosen such that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{P}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=1$.

The density f_{P} is continuous and bounded. However, F_{P} is not locally Lipschitz continuous (as the marginal density functions are not bounded).

Proposition:

A probability distribution function F_{P} with density f_{P} is locally Lipschitz continuous if its (one-dimensional) marginal density func-
F_{P} is (globally) Lipschitz continuous iff its marginal density functions are bounded.
$f_{P}^{i}\left(x_{i}\right):=\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f_{P}\left(x_{1}, \ldots, x_{s}\right) d x_{1} \cdots d x_{i-1} d x_{i+1} \cdots d x_{s}$

Contents

Question: Is there a reasonable class of probability distributions to which the proposition applies?

Definition:

A probability measure P on \mathbb{R}^{s} is called quasi-concave whenever

$$
P(\lambda B+(1-\lambda) \tilde{B}) \geq \min \{P(B), P(\tilde{B})\}
$$

holds true for all Borel measurable convex subsets $B, \tilde{B} \subseteq \mathbb{R}^{s}$ and all $\lambda \in[0,1]$ such that $\lambda B+(1-\lambda) \tilde{B}$ is Borel measurable.

Proposition: (Prekopa)

Let $H: \mathbb{R}^{m} \rightarrow \mathbb{R}^{s}$ be a set-valued mapping with closed convex graph and P be quasi-concave on \mathbb{R}^{s}. Then the function $G(x):=$ $P(H(x))\left(x \in \mathbb{R}^{m}\right)$ is quasi-concave on \mathbb{R}^{m}. Hence, if X is closed and convex, the feasible set

$$
\mathcal{X}_{p}(P)=\{x \in X: G(x)=P(H(x)) \geq p\}
$$

is closed and convex.

Proof: Let $x, \tilde{x} \in \mathbb{R}^{m}, \lambda \in[0,1]$.

$$
\begin{aligned}
G(\lambda x+(1-\lambda) \tilde{x}) & =P(H(\lambda x+(1-\lambda) \tilde{x})) \geq P(\lambda H(x)+(1-\lambda) H(\tilde{x})) \\
& \geq \min \{P(H(x)), P(H(\tilde{x}))\}=\min \{G(x), G(\tilde{x})\}
\end{aligned}
$$

Theorem: (Borell 75)
Assume that the probability distribution on \mathbb{R}^{s} has a density f_{P}. Then P is quasi-concave iff $f_{P}^{-\frac{1}{s}}: \mathbb{R}^{s} \rightarrow \overline{\mathbb{R}}$ is convex.

Examples: (of quasi-concave probability measures)
Multivariate normal distributions $N(m, C)$ (with mean $m \in \mathbb{R}^{s}$ and $s \times s$ symmetric, positive semidefinite covariance matrix C; nondegenerate or singular), uniform distributions on convex compact subsets of \mathbb{R}^{s}, Dirichlet-, Pareto-, Gamma-distributions etc.

Theorem: (Henrion/Römisch 10)
The probability distribution function F_{P} of a quasi-concave probability measure P on \mathbb{R}^{s} is Lipschitz continuous iff the support $\operatorname{supp} P$ is not contained in a $(s-1)$-dimensional hyperplane.

Question: Are distribution functions of quasi-concave measures differentiable, too?

Title Page

Example: (singular normal distributions) The probability distribution functions F_{P} of 2-dimensional normal distributions $N(0, C)$ with

$$
C=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

are not differentiable on \mathbb{R}^{2}.

Theorem: (Henrion/Römisch 10)

Let ξ be an s-dimensional normal random vector whose covariance matrix is nonsingular. Let F_{η} denote the probability distribution function of the random vector $\eta=A \xi+b$ where A is an $m \times s$ matrix and $b \in \mathbb{R}^{m}$.
Then F_{η} is infinitely many times differentiable at any $\bar{x} \in \mathbb{R}^{m}$ for which the system $(A, \bar{x}-b)$ satisfies the Linear Independence Constraint Qualification (LICQ), i.e., the rows $a_{i}, i=1, \ldots, m$, of A satisfy the condition rank $\left\{a_{i}: i \in I\right\}=\# I$ for every index set $I \in\{1, \ldots, m\}$ such that there exists $z \in \mathbb{R}^{s}$ with $a_{i}^{T} z=\bar{x}_{i}-b_{i} \quad(i \in I), \quad a_{i}^{T} z<\bar{x}_{i}-b_{i} \quad(i \in\{1, \ldots, m\} \backslash I)$.

Example:

Our second example of singular normal distributions corresponds to the probability distribution function F_{η} of

$$
\eta=\binom{1}{1} \xi, \quad \xi \sim N(0,1)
$$

The result implies the C^{∞}-property of F_{η} on $R^{2} \backslash\{(x, x): x \in \mathbb{R}\}$.

Let us consider the chance constraint set

$$
\mathcal{X}_{p}(P)=\left\{x \in \mathbb{R}^{m}: P(\Xi x \leq a) \geq p\right\}
$$

where Ξ is a stochastic matrix whose rows ξ_{i} have multivariate normal distributions with mean μ_{i} and covariance matrix $\Sigma_{i}, i=$ $1, \ldots, r$, and P is the distribution of $\left(\xi_{1}, \ldots, \xi_{r}\right)$.
For $r=1$ convexity of $\mathcal{X}_{p}(P)$ for $p \in\left[\frac{1}{2}, 1\right)$ is a classical result. (van de Panne/Popp 63)

Proposition: (Henrion/Strugarek 08)
Assume that the rows ξ_{i} of Ξ are pairwise independent.
Then \mathcal{X}_{p} is convex for $p>\Phi\left(u^{*}\right)$, where Φ is the one-dimensional standard normal distribution function and $u^{*} \geq \sqrt{3}$ is computable and depends on the means μ_{i} and the eigenvalues of Σ_{i}.

Furthermore, the function $G(x)=P(\Xi x \leq a)$ is differentiable and the gradients of G can be explicitly computed if Ξ is Gaussian. (van Ackooij/Henrion/Möller/Zorgati 11)

Example: (Henrion)

Let P be the standard normal $(N(0,1))$ distribution with probability distribution function

$$
F(x)=\frac{1}{(2 \pi)^{\frac{1}{2}}} \int_{-\infty}^{x} \exp \left(-\frac{\xi^{2}}{2}\right) d \xi
$$

$A=\binom{1}{-1}$ and $b(\xi)=\binom{\xi}{\xi}$ for each $\xi \in \mathbb{R}$. Then we have

$$
\begin{aligned}
G(x) & =P(\{\xi \in \mathbb{R}: A x \geq b(\xi)\}) \\
& =P(\{\xi \in \mathbb{R}: x \geq \xi,-x \geq \xi\})=F(\min \{-x, x\})
\end{aligned}
$$

Hence, although F is in $C^{\infty}(\mathbb{R}), G$ is non-differentiable.

Hence, tools from nonsmooth analysis should be used for studying the behavior of constraints sets, in general.

Metric regularity of chance constraints

Let $H: \mathbb{R}^{m} \rightarrow \mathbb{R}^{s}$ be a set-valued mapping with closed graph, $X \subseteq \mathbb{R}^{m}$ be closed and P be a probability distribution on \mathbb{R}^{s}. We consider the set-valued mapping (from \mathbb{R} to \mathbb{R}^{m})

$$
y \mapsto \mathcal{X}_{y}(P)=\{x \in X: P(H(x)) \geq y\} .
$$

Definition:

The chance constraint function $P(H(\cdot))-p$ is metrically regular with respect to X at $\bar{x} \in \mathcal{X}_{p}(P)$ if there exist positive constants a and ε such that

$$
d\left(x, \mathcal{X}_{y}(P)\right) \leq a \max \{0, y-P(H(x))\}
$$

holds for all $x \in X \cap \mathbb{B}(\bar{x}, \varepsilon)$ and $|p-y| \leq \varepsilon$.

Motivation: Continuity properties of the feasible set $\mathcal{X}_{p}(P)$ with respect to perturbations of P measured in terms of a suitable distance on the space of all probability distributions on \mathbb{R}^{s}.

The convex case

Proposition: (Römisch/Schultz 91)

Let the set-valued mapping H have closed and convex graph, X be closed and convex, $p \in(0,1)$ and the probability distribution P on \mathbb{R}^{s} be r-concave for some $r \in(-\infty,+\infty]$. Suppose there exists a Slater point $\bar{x} \in X$ such that $P(H(\bar{x})>p$.
Then $P(H(\cdot))-p$ is metrically regular with respect to X at each $x \in \mathcal{X}_{p}(P)$.

The proof is based on the Robinson-Ursescu theorem applied to the set-valued mapping $\Gamma(x):=$ $\left\{v \in \overline{\mathbb{R}: x} \in X, p^{r}-(P(H(x)))^{r} \geq v\right\}$ for some $r<0$ (w.l.o.g.).

The proposition applies to $H(x)=\left\{\xi \in \mathbb{R}^{s}: h(x) \geq \xi\right\}$, i.e., $P(H(x))=F_{P}(h(x))$, where h has concave components. However, even for linear h, i.e., $h(x)=A x$ the matrix A has to be non-stochastic.

Definition:

A probability measure P on \mathbb{R}^{s} is called r - concave for some $r \in$ $[-\infty,+\infty]$ if the inequality

$$
P(\lambda B+(1-\lambda) \tilde{B}) \geq m_{r}(P(B), P(\tilde{B}) ; \lambda)
$$

holds for all $\lambda \in[0,1]$ and all convex Borel subsets B, \tilde{B} of \mathbb{R}^{s} such that $\lambda B+(1-\lambda) \tilde{B}$ is Borel.

Here, the generalized mean function m_{r} on $\mathbb{R}_{+} \times \mathbb{R}_{+} \times[0,1]$ for $r \in[-\infty, \infty]$ is given by

$$
m_{r}(a, b ; \lambda):=\left\{\begin{aligned}
\left(\lambda a^{r}+(1-\lambda) b^{r}\right)^{1 / r} & , r>0 \text { or } r<0, a b>0, \\
0 & , a b=0, r<0, \\
a^{\lambda} b^{1-\lambda} & , r=0, \\
\max \{a, b\} & , r=\infty, \\
\min \{a, b\} & , r=-\infty .
\end{aligned}\right.
$$

Notice that $r=-\infty$ corresponds to quasi-concavity.

Optimization problems with stochastic dominance constraints

Optimization model with k th order stochastic dominance constraint

$$
\min \left\{f(x): x \in D, G(x, \xi) \succeq{ }_{(k)} Y\right\}
$$

where $k \in \mathbb{N}, D$ is a nonempty convex closed subset of \mathbb{R}^{m}, Ξ a closed subset of $\mathbb{R}^{s}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is convex, ξ is a random vector with support Ξ and Y a real random variable on some probability space both having finite moments of order $k-1$, and $G: \mathbb{R}^{m} \times$ $\mathbb{R}^{s} \rightarrow \mathbb{R}$ is continuous, concave with respect to the first argument and satisfies the linear growth condition

$$
|G(x, \xi)| \leq C(B) \max \{1,\|\xi\|\} \quad(x \in B, \xi \in \Xi)
$$

for every bounded subset $B \subset \mathbb{R}^{m}$ and some constant $C(B)$ (depending on B). The random variable Y plays the role of a benchmark outcome.
D. Dentcheva, A. Ruszczyński: Optimization with stochastic dominance constraints, SIAM J. Optim. 14 (2003), 548-566.

Stochastic dominance relation $\succeq_{(k)}$

$$
X \succeq_{(1)} Y \quad \Leftrightarrow \quad F_{X}(\eta) \leq F_{Y}(\eta) \quad(\forall \eta \in \mathbb{R})
$$

where X and Y are real random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. P_{X} denotes the probability distribution of X and F_{X} its distribution function, i.e.,

$$
F_{X}(\eta)=\mathbb{P}(\{X \leq \eta\})=\int_{-\infty}^{\eta} P_{X}(d \xi) \quad(\forall \eta \in \mathbb{R})
$$

Equivalent characterization:

$$
X \succeq_{(1)} Y \quad \Leftrightarrow \quad \mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)]
$$

for each nondecreasing $u: \mathbb{R} \rightarrow \mathbb{R}$ such that the expectations are finite.
Expected utility hypotheses: (von Neumann-Morgenstern) Outcome X is preferred over outcome Y if and only if

$$
\mathbb{E}[u(X)]>\mathbb{E}[u(Y)]
$$

for some utility $u(\cdot)$.

$$
X \succeq_{(k)} Y \quad \Leftrightarrow \quad F_{X}^{(k)}(\eta) \leq F_{Y}^{(k)}(\eta) \quad(\forall \eta \in \mathbb{R})
$$

where X and Y are real random variables having moments of order $k-1$ and we define $F_{X}^{(1)}=F_{X}$ and recursively

$$
\begin{aligned}
F_{X}^{(k+1)}(\eta)=\int_{-\infty}^{\eta} F_{X}^{(k)}(\xi) d(\xi) & =\int_{-\infty}^{\eta} \frac{(\eta-\xi)^{k}}{k!} P_{X}(d \xi) \\
& =\frac{1}{k!}\|\max \{0, \eta-X\}\|_{k}^{k} \quad(\forall \eta \in \mathbb{R}),
\end{aligned}
$$

where

$$
\|X\|_{k}=\left(\mathbb{E}\left(|X|^{k}\right)\right)^{\frac{1}{k}} \quad(\forall k \geq 1)
$$

Equivalent characterization of $\succeq_{(2)}$:

$$
X \succeq_{(2)} Y \quad \Leftrightarrow \quad \mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)]
$$

for each nondecreasing concave $u: \mathbb{R} \rightarrow \mathbb{R}$ such that the expectations are finite.
A. Müller and D. Stoyan: Comparison Methods for Stochastic Models and Risks, Wiley, Chichester,

Relaxation, theory and discretization

We consider the relaxed k th order stochastic dominance (SD) constrained optimization model

$$
\min \left\{f(x): x \in D, F_{G(x, \xi)}^{(k)}(\eta) \leq F_{Y}^{(k)}(\eta), \forall \eta \in I\right\}
$$

where $I \subset \mathbb{R}$ is a compact interval.
Split-variable formulation:

$$
\min \left\{f(x): x \in D, G(x, \xi) \geq X, F_{X}^{(k)}(\eta) \leq F_{Y}^{(k)}(\eta), \forall \eta \in I\right\}
$$

Since the function $F_{X}^{(k)}: \mathbb{R} \rightarrow \mathbb{R}$ is nondecreasing for $k \geq 1$ and convex for $k \geq 2$, the SD constrained optimization model is a convex semi-infinite program.

Constraint qualification:

k th order uniform dominance condition: There exists $\bar{x} \in D$ such that

$$
\min _{\eta \in I}\left(F_{Y}^{(k)}(\eta)-F_{G(\bar{x}, \xi)}^{(k)}(\eta)\right)>0
$$

Optimality conditions and duality results can be derived when imposing the k th order uniform dominance condition.

Let X_{j} and Y_{j} the scenarios of X and Y with probabilities p_{j}, $j=1, \ldots, n$. Then the second order dominance constraints can be expressed as

$$
\sum_{j=1}^{n} p_{j}\left[\eta-X_{j}\right]_{+} \leq \sum_{j=1}^{n} p_{j}\left[\eta-Y_{j}\right]_{+} \quad \forall \eta \in I
$$

The latter condition can be shown to be equivalent to

$$
\left.\sum_{j=1}^{n} p_{j}\left[Y_{k}-X_{j}\right)\right]_{+} \leq \sum_{j=1}^{n} p_{j}\left[Y_{k}-Y_{j}\right]_{+} \quad \forall k=1, \ldots, n
$$

if $Y_{k} \in I, k=1, \ldots, n$. Here, $[\cdot]_{+}=\max \{0, \cdot\}$. Hence, the second order dominance constraints may be reformulated as linear constraints.
D. Dentcheva, A. Ruszczyński: Optimality and duality theory for stochastic optimization problems

Stochastic programs with equilibrium constraints

Such optimization models are extensions of two-stage stochastic programs. We consider the SMPEC

$$
\min \{\inf \{\mathbb{E}[f(x, y, \xi)]: y \in S(x, \xi)\}: x \in X\},
$$

where $S(x, \xi)$ is the solution set of the variational inequality

$$
g(x, y, \xi) \in N_{C(x, \xi)}(y)
$$

$f, g: \mathbb{R}^{m} \times \mathbb{R}^{\bar{m}} \times \mathbb{R}^{s} \rightarrow \mathbb{R}, C$ is a set-valued mapping from $\mathbb{R}^{m} \times \mathbb{R}^{s}$ to $R^{\bar{m}}$ and $N_{C}(y)$ denotes the normal cone to the set C at y. If we assume that $C(x, \xi)$ is of the form

$$
C(x, \xi)=\left\{y \in \mathbb{R}^{\bar{m}}: h(x, y, \xi) \in V\right\}
$$

with a closed convex cone V in \mathbb{R}^{r} and a mapping h which is differentiable with respect to y, the variational inequality may be rewritten as

$$
-g(x, y, \xi)+\nabla_{y} h(x, y, \xi)^{\top} \lambda=0, \quad \lambda \in N_{V}(h(x, y, \xi)) .
$$

The condition $\lambda \in N_{V}(h(x, y, \xi))$ is equivalent to

$$
\lambda \in V^{*}, h(x, y, \xi) \in V, \lambda^{\top} h(x, y, \xi)=0
$$

or equivalently

$$
h(x, y, \xi) \in N_{V^{*}}(\lambda)
$$

Hence, the introduction of the new variable λ allows to rewrite the original variational inequality into (Robinson 80)

$$
H(x,(y, \lambda), \xi) \in N_{K}(\lambda)
$$

where H maps from $\mathbb{R}^{m} \times \mathbb{R}^{\bar{m}+r} \times \mathbb{R}^{s}$ to $\mathbb{R}^{\bar{m}+r}$ and a (fixed) closed convex cone K in $\mathbb{R}^{\bar{m}+r}$ given by
$H(x,(y, \lambda), \xi)=\binom{-g(x, y, \xi)+\nabla_{y} h(x, y, \xi)^{\top} \lambda}{h(x, y, \xi)}, K=\mathbb{R}^{\bar{m}} \times V^{*}$.
Let $\bar{S}(x, \xi) \subset \mathbb{R}^{\bar{m}+r}$ denote the solution set of the previous variational inequality. Then $S(x, \xi)$ equals the projection of $\bar{S}(x, \xi)$ to the first component.

The original SMPEC is equivalent to

$$
\min \{\mathbb{E}[f(x, y, \xi)]:(y, \lambda) \in \bar{S}(x, \xi), x \in X\}
$$

Proposition: (Shapiro, JOTA 06)
Let the functions $f, g, h, \nabla_{y} h$ be continuous and there exist a P integrable function w such that

$$
\theta(x, \xi)=\inf \{f(x, y, \xi):(y, \lambda) \in \bar{S}(x, \xi)\} \geq w(\xi)
$$

holds for all ξ and all x in a neighborhood of some $\bar{x} \in X$. Assume that the solution set $\bar{S}(x, \xi)$ is nonempty and uniformly bounded (in a neighborhood of \bar{x}).
Then the objective $x \mapsto \mathbb{E}[\theta(x, \xi)]$ is (at least) lower semicontinuous at \bar{x}.

Under stronger assumptions (Lipschitz) continuity and directional differentiability of the objective may be derived, too.

Multistage stochastic programs

New constraints: Measurability or information constraints Let $\left\{\xi_{t}\right\}_{t=1}^{T}$ be a discrete-time stochastic data process defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and with ξ_{1} deterministic. The stochastic decision x_{t} at period t is assumed to be measurable with respect to $\mathcal{F}_{t}:=\sigma\left(\xi_{1}, \ldots, \xi_{t}\right)$ (nonanticipativity).

Multistage stochastic optimization model:
$\min \left\{\mathbb{E}\left[\sum_{t=1}^{T}\left\langle b_{t}\left(\xi_{t}\right), x_{t}\right\rangle\right] \begin{array}{l}x_{t} \in X_{t}, t=1, \ldots, T, A_{1,0} x_{1}=h_{1}\left(\xi_{1}\right), \\ x_{t} \text { is } \mathcal{F}_{t} \text {-measurable, } t=1, \ldots, T, \\ A_{t, 0} x_{t}+A_{t, 1}\left(\xi_{t}\right) x_{t-1}=h_{t}\left(\xi_{t}\right), t=2, ., T\end{array}\right\}$
where the sets $X_{t}, t=1, \ldots, T$, are polyhedral cones, the vectors $b_{t}(\cdot), h_{t}(\cdot)$ and $A_{t, 1}(\cdot)$ are affine functions of ξ_{t}, where ξ varies in a polyhedral set Ξ.

If the process $\left\{\xi_{t}\right\}_{t=1}^{T}$ has a finite number of scenarios, they exhibit a scenario tree structure.

To have the model well defined, we assume $x_{t} \in L_{r^{\prime}}\left(\Omega, \mathcal{F}_{t}, \mathbb{P} ; \mathbb{R}^{m_{t}}\right)$ and $\xi_{t} \in L_{r}\left(\Omega, \mathcal{F}_{t}, \mathbb{P} ; \mathbb{R}^{d}\right)$, where $r \geq 1$ and
$r^{\prime}:=\left\{\begin{array}{cl}\frac{r}{r-1}, & \text { if only costs are random } \\ r, & \text { if only right-hand sides are random } \\ \infty, & \text { if all technology matrices are random and } r=T .\end{array}\right.$
Then nonanticipativity may be expressed as

$$
\begin{gathered}
x \in \mathcal{N}_{n a} \\
\mathcal{N}_{n a}=\left\{x \in \times_{t=1}^{T} L_{r^{\prime}}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{m_{t}}\right): x_{t}=\mathbb{E}\left[x_{t} \mid \mathcal{F}_{t}\right], \forall t\right\},
\end{gathered}
$$

i.e., as a subspace constraint, by using the conditional expectation $\mathbb{E}\left[\cdot \mid \mathcal{F}_{t}\right]$ with respect to the σ-algebra \mathcal{F}_{t}.

For $T=2$ we have $\mathcal{N}_{n a}=\mathbb{R}^{m_{1}} \times L_{r^{\prime}}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{m_{2}}\right)$.
\rightarrow infinite-dimensional (linear) optimization problem

Data process approximation by scenario trees

The process $\left\{\xi_{t}\right\}_{t=1}^{T}$ is approximated by a process forming a scenario tree based on a finite set of scenarios and nodes $\mathcal{N} \subset \mathbb{N}$.

Scenario tree with $T=5, N=22$ and 11 leaves
$n=1$ root node, n_{-}unique predecessor of node $n, \operatorname{path}(n)=$ $\left\{1, \ldots, n_{-}, n\right\}, \quad t(n):=|\operatorname{path}(n)|, \mathcal{N}_{+}(n)$ set of successors to n, $\mathcal{N}_{T}:=\left\{n \in \mathcal{N}: \mathcal{N}_{+}(n)=\emptyset\right\}$ set of leaves, path $(n), n \in \mathcal{N}_{T}$, scenario with (given) probability $\pi^{n}, \pi^{n}:=\sum_{\nu \in \mathcal{N}_{+}(n)} \pi^{\nu}$ probability of node n, ξ^{n} realization of $\xi_{t(n)}$.

Tree representation of the optimization model

$\min \left\{\sum_{n \in \mathcal{N}} \pi^{n}\left\langle b_{t(n)}\left(\xi^{n}\right), x^{n}\right\rangle \left\lvert\, \begin{array}{l}x^{n} \in X_{t(n)}, n \in \mathcal{N}, A_{1,0} x^{1}=h_{1}\left(\xi^{1}\right) \\ A_{t(n), 0} x^{n}+A_{t(n), 1} x^{n-}=h_{t(n)}\left(\xi^{n}\right), n \in \mathcal{N}\end{array}\right.\right\}$
How to solve the optimization model ?

- Standard software (e.g., CPLEX)
- Decomposition methods for (very) large scale models
(Ruszczynski/Shapiro (Eds.): Stochastic Programming, Handbook, 2003)
Open question:
How to generate (multivariate) scenario trees ?

Dynamic programming

Theorem: (Evstigneev 76, Rockafellar/Wets 76)
Under weak assumptions the multistage stochastic program is equivalent to the (first-stage) convex minimization problem

$$
\min \left\{\int_{\Xi} f\left(x_{1}, \xi\right) P(d \xi): x_{1} \in \mathcal{X}_{1}\left(\xi_{1}\right)\right\}
$$

where f is an integrand on $\mathbb{R}^{m_{1}} \times \Xi$ given by

$$
\begin{aligned}
& f\left(x_{1}, \xi\right):=\left\langle b_{1}\left(\xi_{1}\right), x_{1}\right\rangle+\Phi_{2}\left(x_{1}, \xi^{2}\right), \\
& \Phi_{t}\left(x_{1}, \ldots, x_{t-1}, \xi^{t}\right):=\inf \left\{\left\langle b_{t}\left(\xi_{t}\right), x_{t}\right\rangle+\mathbb{E}\left[\Phi_{t+1}\left(x_{1}, \ldots, x_{t}, \xi^{t+1}\right) \mid \mathcal{F}_{t}\right]\right. \\
&\left.x_{t} \in X_{t}, A_{t, 0} x_{t}+A_{t, 1}\left(\xi_{t}\right) x_{t-1}=h_{t}\left(\xi_{t}\right)\right\}
\end{aligned}
$$

for $t=2, \ldots, T$, where $\Phi_{T+1}\left(x_{1}, \ldots, x_{T}, \xi^{T+1}\right):=0, \mathcal{X}_{1}\left(\xi_{1}\right):=$ $\left\{x_{1} \in X_{1}: A_{1,0} x_{1}=h_{1}\left(\xi_{1}\right)\right\}$ and $P \in \mathcal{P}(\Xi)$ is the probability distribution of ξ.
\rightarrow The integrand f depends on the probability measure \mathbb{P} in a nonlinear way!

Risk Functionals

A risk functional or risk measure ρ assigns a real number to any (real) random variable Y (possibly satisfying certain moment conditions). Recently, it was suggested that ρ should satisfy the following axioms for all random variables $Y, \tilde{Y}, r \in \mathbb{R}, \lambda \in[0,1]$:
(A1) $\rho(Y+r)=\rho(Y)-r$ (translation-invariance),
(A2) $\rho(\lambda Y+(1-\lambda) \tilde{Y}) \leq \lambda \rho(Y)+(1-\lambda) \rho(\tilde{Y})$ (convexity),
(A3) $Y \leq \tilde{Y}$ implies $\rho(Y) \geq \rho(\tilde{Y})$ (monotonicity).
A risk functional ρ is called coherent if it is, in addition, positively homogeneous, i.e., $\rho(\lambda Y)=\lambda \rho(Y)$ for all $\lambda \geq 0$ and random variables Y.
Given a risk functional ρ, the mapping $\mathcal{D}=\mathbb{E}+\rho$ is also called deviation risk functional.

Examples:

(a) Conditional Value-at-Risk or Average Value-at-Risk $\mathbb{A V @ R}{ }_{\alpha}$:

$$
\begin{aligned}
\mathbb{A V @ R}_{\alpha}(Y) & :=\frac{1}{\alpha} \int_{0}^{\alpha} \operatorname{V@R}_{u}(Y)(u) d u=\frac{1}{\alpha} \int_{0}^{\alpha} G^{-1}(u) d u \\
& =\inf \left\{x+\frac{1}{\alpha} \mathbb{E}\left([Y+x]_{-}\right): x \in \mathbb{R}\right\} \\
& =\sup \left\{-\mathbb{E}(Y Z): \mathbb{E}(Z)=1,0 \leq Z \leq \frac{1}{\alpha}\right\}
\end{aligned}
$$

where $\alpha \in(0,1], \mathbb{V}_{\alpha}:=\inf \{y \in \mathbb{R}: \mathbb{P}(Y \leq y) \geq \alpha\}$ is the Value-at-Risk, $[a]_{-}:=-\min \{0, a\}$ and G the distribution function of Y.

Reference: Rockafellar-Uryasev 02
(b) Lower semi standard deviation corrected expectation:

$$
\rho(Y):=-\mathbb{E}(Y)+\left(\mathbb{E}\left([Y-\mathbb{E}(Y)]_{-}\right)^{2}\right)^{\frac{1}{2}}
$$

Reference: Markowitz 52

Multiperiod risk measurement

Let $\mathfrak{F}=\left\{\mathcal{F}_{t}: t=1, \ldots, T\right\}$ be a filtration generated by some stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathcal{F}_{1}=\{\emptyset, \Omega\}$.
A functional $\rho_{\mathfrak{F}}$ on $\mathcal{Z}=\times_{t=1}^{T} L_{p}(\Omega, \mathcal{F}, \mathbb{P})$ is called a multiperiod risk measure if the following conditions (i)-(iii) hold:
(i) Monotonicity: if $z_{t} \leq \tilde{z}_{t}$ a.s, $t=1, \ldots, T$, then

$$
\rho_{\mathfrak{F}}\left(z_{1}, \ldots, z_{T}\right) \geq \rho_{\mathfrak{F}}\left(\tilde{z}_{1}, \ldots, \tilde{z}_{T}\right) ;
$$

(ii) Translation invariance: for each $r \in \mathbb{R}$ we have

$$
\rho_{\mathfrak{F}}\left(z_{1}+r, \ldots, z_{T}+r\right)=\rho_{\mathfrak{F}}\left(z_{1}, \ldots, z_{T}\right)-r ;
$$

(iii) Convexity: for each $\lambda \in[0,1]$ and $z, \tilde{z} \in \mathcal{Z}$ we have

$$
\rho_{\widetilde{F}}(\lambda z+(1-\lambda) \tilde{z}) \leq \lambda \rho_{\mathfrak{F}}(z)+(1-\lambda) \rho_{\mathfrak{F}}(\tilde{z}) .
$$

It is called coherent if in addition condition (iv) holds:
(iv) Positive homogeneity: for each $\lambda \geq 0$ we have

$$
\rho_{\mathfrak{F}}\left(\lambda z_{1}, \ldots, \lambda z_{T}\right)=\lambda \rho_{\mathfrak{F}}\left(z_{1}, \ldots, z_{T}\right) .
$$

A multiperiod risk measure $\rho_{\mathfrak{F}}$ is called information monotone if $\mathfrak{F} \subseteq \mathfrak{F}^{\prime}\left(\right.$ i.e. $\left.\mathcal{F}_{t} \subseteq \mathcal{F}_{t}^{\prime}, t=1, \ldots, T\right)$ implies

$$
\rho_{\mathfrak{s}^{\prime}}(z) \leq \rho_{\mathfrak{F}}(z) \quad \forall z \in \mathcal{Z} .
$$

A multiperiod risk measure $\rho_{\mathfrak{F}}$ is time consistent if it is constructed by conditional risk mappings $\rho_{t}\left(\cdot \mid \mathfrak{F}^{(t)}\right)$ from $\times_{\tau=t}^{T} L_{p}\left(\Omega, \mathcal{F}_{t}, \mathbb{P}\right)$ to $L_{p}\left(\Omega, \mathcal{F}_{t}, \mathbb{P}\right)$ with $\mathfrak{F}^{(t)}=\left\{\mathcal{F}_{t}, \ldots, \mathcal{F}_{T}\right\}, t=1, \ldots, T$, such that $\rho_{\mathfrak{F}}(z)=\rho_{1}\left(z \mid \mathfrak{F}^{(1)}\right)$ and if the conditions

$$
\rho_{t}\left(z^{(t)} \mid \mathfrak{F}^{(t)}\right) \geq \rho_{t}\left(\tilde{z}^{(t)} \mid \mathfrak{F}^{(t)}\right) \text { and } z_{t-1} \leq \tilde{z}_{t-1}
$$

imply $\rho_{t-1}\left(z^{(t-1)} \mid \mathfrak{F}^{(t-1)}\right) \geq \rho_{t-1}\left(\tilde{z}^{(t-1)} \mid \mathfrak{F}^{(t-1)}\right)$ for all $t=2, \ldots, T$.

Remark:

There appear different requirements in the literature instead of the translation invariance (ii).

Theorem: (dual representation)

Let $\rho_{\mathfrak{F}}: \times_{t=1}^{T} L_{p}(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \overline{\mathbb{R}}$ be proper (i.e. $\rho_{\mathfrak{F}}(z)>-\infty$ and $\left.\operatorname{dom} \rho_{\mathfrak{F}}=\{z: \rho(z)<\infty\} \neq \emptyset\right)$ and lower semicontinuous. Then $\rho_{\mathfrak{F}}$ is a multiperiod convex risk measure if and only if it admits the representation

$$
\rho_{\mathfrak{F}}(z)=\sup \left\{-\mathbb{E}\left[\sum_{t=1}^{T} \lambda_{t} z_{t}\right]-\rho_{\mathfrak{F}}^{*}(\lambda): \lambda \in \mathcal{P}_{\rho}(\mathfrak{F})\right\}
$$

where

$$
\mathcal{P}_{\rho}(\mathfrak{F}) \subseteq \mathcal{D}_{T}=\left\{\lambda \in \times_{t=1}^{T} L_{q}\left(\Omega, \mathcal{F}_{t}, \mathbb{P}\right): \lambda_{t} \geq 0, \sum_{t=1}^{T} \mathbb{E}\left[\lambda_{t}\right]=1\right\}
$$

with $\frac{1}{p}+\frac{1}{q}=1$ is closed and convex, and $\rho_{\mathfrak{F}}^{*}$ is the conjugate of $\rho_{\mathfrak{F}}$. The functional $\rho_{\mathfrak{F}}$ is a multiperiod coherent risk measure if and only if the conjugate $\rho_{\mathfrak{F}}^{*}$ is the indicator function of $\mathcal{P}_{\rho}(\mathfrak{F})$.

Multiperiod extended polyhedral risk measures

A multiperiod risk measure $\rho_{\mathfrak{F}}$ on \mathcal{Z} is called extended polyhedral if there exist matrices $A_{t}, B_{t, \tau}$, vectors a_{t}, c_{t}, and functions $h_{t}(z)=$ $\left(h_{t, 1}(z), \ldots, h_{t, n_{t, 2}}(z)\right)^{\top}$ with $h_{t, i}: \mathcal{Z} \rightarrow \mathcal{Z}$ such that
$\rho_{\mathfrak{F}}(z)=\inf \left\{\begin{array}{l|l}\mathbb{E}\left[\sum_{t=1}^{T} c_{t}^{\top} y_{t}\right] & \begin{array}{l}y_{t} \in L_{p}\left(\Omega, \mathcal{F}_{t}, \mathbb{P} ; \mathbb{R}^{k_{t}}\right), A_{t} y_{t} \leq a_{t} \\ \sum_{\tau=0}^{t-1} B_{t, \tau} y_{t-\tau}=h_{t}\left(z_{t}\right) \\ (t=1, \ldots, T)\end{array}\end{array}\right\}$
(Guigues-Römisch, SIOPT 12)
Motivation: Characterizing the largest class of multiperiod risk measures that maintains important theoretical and algorithmic properties when incorporated into (linear) multistage stochastic programs instead of the expectation functional. Most important case: h_{t} affine.

First version: $a_{t}=0, B_{t, \tau}$ row vectors, h_{t} identity
(Eichhorn-Römisch 05)

Examples of multiperiod extended polyhedral risk measures Let increasing risk measuring time steps $t_{j}, j=1, \ldots, J$, with $t_{J}=T$, and weights $\gamma_{j} \geq 0, j=1, \ldots, J$, with $\sum_{j=1}^{J} \gamma_{j}=1$ be given.
(a) Weighted sum of Average Value-at-Risk at risk measuring time steps:

$$
\rho_{s}(z):=\sum_{j=1}^{J} \gamma_{j} \mathbb{A} \bigvee @ \mathbb{R}_{\alpha}\left(z\left(t_{j}\right)\right),
$$

(c) Average Value-at-Risk of the weighted average at risk measuring time steps:

$$
\rho_{a}(z):=\mathbb{A} \mathbb{V R}_{\alpha}\left(\sum_{j=1}^{J} \gamma_{j} z\left(t_{j}\right)\right)
$$

(d) Average Value-at-Risk of the minimum at risk measuring time steps:

Risk-averse multistage stochastic optimization model:

$$
\min _{x}\left\{\begin{array}{l|l}
\rho(z) & \begin{array}{l}
z_{t}=\sum_{\tau=1}^{t} b_{\tau}\left(\xi_{\tau}\right)^{\top} x_{\tau} \\
x_{t} \in X_{t}, x_{t} \in L_{p}\left(\Omega, \mathcal{F}_{t}, \mathbb{P} ; \mathbb{R}^{m_{t}}\right) \\
\sum_{\tau=0}^{t-1} A_{t, \tau}\left(\xi_{t}\right) x_{t-\tau}=g_{t}\left(\xi_{t}\right) \\
(t=1, \ldots, T)
\end{array}
\end{array}\right\}
$$

Multiperiod extended polyhedral risk functional:

$$
\rho(z)=\inf \left\{\begin{array}{l|l}
\mathbb{E}\left[\sum_{t=1}^{T} c_{t}^{\top} y_{t}\right] & \begin{array}{l}
y_{t} \in L_{p}\left(\Omega, \mathcal{F}_{t}, \mathbb{P} ; \mathbb{R}^{k_{t}}\right) \\
A_{t} y_{t} \leq a_{t} \\
\sum_{\tau=0}^{t-1} B_{t, \tau} y_{t-\tau}=h_{t}\left(z_{t}\right) \\
(t=1, \ldots, T)
\end{array}
\end{array}\right\}
$$

Equivalent risk-neutral multistage stochastic optimization model:
$\min _{(y, x)}\left\{\begin{array}{l|l}\mathbb{E}\left[\sum_{t=1}^{T} c_{t}^{\top} y_{t}\right] & \begin{array}{l}y_{t} \in L_{p}\left(\Omega, \mathcal{F}_{t}, \mathbb{P} ; \mathbb{R}^{k_{t}}\right), x_{t} \in L_{p}\left(\Omega, \mathcal{F}_{t}, \mathbb{P} ; \mathbb{R}^{m_{t}}\right) \\ A_{t} y_{t} \leq a_{t}, x_{t} \in X_{t} \\ \sum_{\tau=0}^{t-1} B_{t, \tau} y_{t-\tau}=h_{t}\left(\sum_{\tau=1}^{t} b_{\tau}\left(\xi_{\tau}\right)^{\top} x_{\tau}\right) \\ \sum_{\tau=0}^{t-1} A_{t, \tau}\left(\xi_{t}\right) x_{t-\tau}=g_{t}\left(\xi_{t}\right) \\ (t=1, \ldots, T)\end{array}\end{array}\right\}$

Conditional risk mappings

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let \mathcal{F}_{1} be a σ-field contained in \mathcal{F}. Let $\mathcal{Y}=L_{p}(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{Y}_{1}=L_{p}\left(\Omega, \mathcal{F}_{1}, \mathbb{P}\right)$ for some $p \in\left[1,+\infty\right.$), hence $\mathcal{Y}_{1} \subseteq \mathcal{Y}$. All (in)equalities between random variables in \mathcal{Y} are intended to hold \mathbb{P}-almost surely.

A mapping $\rho: \mathcal{Y} \rightarrow \mathcal{Y}_{1}$ is called conditional risk mapping (with observable information \mathcal{F}_{1}) if the following conditions are satisfied for all $Y, \tilde{Y} \in \mathcal{Y}, Y^{(1)} \in \mathcal{Y}_{1}, \lambda \in[0,1]$:
(i) $\rho\left(Y+Y^{1}\right)=\rho(Y)-Y^{(1)}$ (predictable translation-invariance),
(ii) $\rho(\lambda Y+(1-\lambda) \tilde{Y}) \leq \lambda \rho(Y)+(1-\lambda) \rho(\tilde{Y})$ (convexity),
(iii) $Y \leq \tilde{Y}$ implies $\rho(Y) \geq \rho(\tilde{Y})$ (monotonicity).

The conditional risk mapping ρ is called positively homogeneous if $\rho(\lambda Y)=\lambda \rho(Y), \forall \lambda>0$.
lower semicontinuous if $\mathbb{E}\left(\rho(\cdot) \mathbb{1}_{B}\right): \mathcal{Y} \rightarrow \overline{\mathbb{R}}$ is lower semicontinuous for every $B \in \mathcal{F}_{1}$.

Examples:

(a) Conditional expectation: The defining equation for the conditional expectation $\mathbb{E}\left(\cdot \mid \mathcal{F}_{1}\right)$ is

$$
\mathbb{E}\left(\mathbb{E}\left(Y \mid \mathcal{F}_{1}\right) \mathbb{1}_{B}\right)=\mathbb{E}\left(Y \mathbb{1}_{B}\right) \quad\left(\forall B \in \mathcal{F}_{1}\right)
$$

It is a mapping from $L_{p}(\mathcal{F})$ onto $L_{p}\left(\mathcal{F}_{1}\right)$ for $p \in[1, \infty)$.
(b) Conditional average value-at-risk: $\rho\left(Y \mid \mathcal{F}_{1}\right)=\mathbb{A} \vee @ \mathrm{R}_{\alpha}\left(Y \mid \mathcal{F}_{1}\right)$ is defined on $L_{1}(\mathcal{F})$ by the relation

$$
\mathbb{E}\left(\rho\left(Y \mid \mathcal{F}_{1}\right) \mathbb{1}_{B}\right)=\sup \left\{-\mathbb{E}(Y Z): 0 \leq Z \leq \frac{1}{\alpha} \mathbb{1}_{B}, \mathbb{E}\left(Z \mid \mathcal{F}_{1}\right)=\mathbb{1}_{B}\right\}
$$ positively homogeneous, continuous and satisfies (i)-(iii).

Composition of conditional risk mappings

Let a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a filtration $\mathfrak{F}=\left(\mathcal{F}_{0}, \ldots, \mathcal{F}_{T}\right)$ of σ-fields $\mathcal{F}_{t}, t=0, \ldots, T$, with $\mathcal{F}_{T}=\mathcal{F}$ be given. We consider the Banach spaces $\mathcal{Y}_{t}:=L_{p}\left(\mathcal{F}_{t}\right)$ of \mathcal{F}_{t}-measurable (real) random variables for $t=1, \ldots, T$ and some $p \in[1,+\infty)$.

Let conditional risk mappings $\rho_{t-1}:=\rho\left(\cdot \mid \mathcal{F}_{t-1}\right)$ from \mathcal{Y}_{T} to \mathcal{Y}_{t-1} be given for each $t=1, \ldots, T$.
We introduce a multi-period risk functional ρ on $\mathcal{Y}:=\times_{t=1}^{T} \mathcal{Y}_{t}$ by nested compositions and a family $\left(\rho^{(t)}\right)_{t=1}^{T}$ of single-period risk functionals $\rho^{(t)}$ by compositions of the conditional risk mappings $\rho_{t-1}, t=1, \ldots, T$, namely,

$$
\begin{aligned}
\rho(Y ; \mathfrak{F}) & :=\rho_{0}\left[Y_{1}+\cdots+\rho_{T-2}\left[Y_{T-1}+\rho_{T-1}\left(Y_{T}\right)\right] \cdots\right] \\
\rho^{(t)}\left(Y_{T}\right) & :=\rho_{0} \circ \rho_{1} \circ \cdots \circ \rho_{t-1}\left(Y_{T}\right)
\end{aligned}
$$

for every $Y \in \mathcal{Y}$ and $Y_{T} \in \mathcal{Y}_{T}$.

Proposition: (Rusczyýski-Shapiro)

Then $\rho(\cdot ; \mathfrak{F}): \mathcal{Y} \rightarrow \overline{\mathbb{R}}$ is a multi-period risk functional and every $\rho^{(t)}: \mathcal{Y}_{T} \rightarrow \mathbb{R}$ is a (single-period) risk functional. Moreover, it holds

$$
\rho(Y ; \mathfrak{F})=\rho^{(T)}\left(Y_{1}+\cdots+Y_{T}\right)
$$

The functionals ρ and $\rho^{(t)}, t=1, \ldots, T$, are positively homogeneous if all ρ_{t} are positively homogeneous.

Example:

We consider the conditional average value-at-risk (of level $\alpha \in$ $(0,1])$ as conditional risk mapping

$$
\rho_{t-1}\left(Y_{t}\right):=\mathbb{A V @ R _ { \alpha } (\cdot | \mathcal { F } _ { t - 1 }) , ~}
$$

for every $t=1, \ldots, T$. Then

is a multi-period risk functional and is called nested average value-at-risk.

Proposition: (Pflug-Römisch 07)

The nested $n \mathbb{A} \bigvee @ R$ has the following dual representation:

$$
\begin{aligned}
& n \mathbb{A V @ R _ { \alpha } (Y ; \mathfrak { F }) = \operatorname { s u p } \{ - \mathbb { E } [(Y _ { 1 } + \cdots + Y _ { T }) Z _ { T }] : 0 \leq Z _ { t } \leq \frac { 1 } { \alpha } Z _ { t - 1 } , ~ , ~ , ~ , ~} \\
& \left.\mathbb{E}\left(Z_{t} \mid \mathcal{F}_{t-1}\right)=Z_{t-1}, Z_{0}=1, t=1, \ldots, T\right\} .
\end{aligned}
$$

The (dual) process $\left(Z_{t}\right)$ is a martingale and $n \mathbb{A V Q R}$ is not polyhedral and not information monotone, but given by a linear stochastic program (with functional constraints).

Risk-averse multistage stochastic programs:
Replace the conditional expectation in the dynamic programming representation by conditional risk mappings $\rho\left(\cdot \mid \mathcal{F}_{t}\right)$
$\Phi_{t}\left(x_{1}, \ldots, x_{t-1}, \xi^{t}\right):=\inf \left\{\left\langle b_{t}\left(\xi_{t}\right), x_{t}\right\rangle+\rho\left(\Phi_{t+1}\left(x_{1}, \ldots, x_{t}, \xi^{t+1}\right) \mid \mathcal{F}_{t}\right):\right.$

$$
\left.x_{t} \in X_{t}, A_{t, 0} x_{t}+A_{t, 1}\left(\xi_{t}\right) x_{t-1}=h_{t}\left(\xi_{t}\right)\right\}
$$

for $t=2, \ldots, T$, where $\Phi_{T+1}\left(x_{1}, \ldots, x_{T}, \xi^{T+1}\right):=0$.

Contents (Part II)

(11) Stability of stochastic programs
(12) Monte Carlo approximations of stochastic programs
(13) Generation and handling of scenarios
(14) Numerical solution of stochastic programs
(15) Practical Application
(16) Future research directions

Title Page

Conts

