

Introduction

What is Stochastic Programming ?

- Mathematics for Decision Making under Uncertainty
- subfield of Mathematical Programming (MSC 90C15)

Stochastic programs are optimization models

- having special properties and structures,
- depending on the underlying probability distribution,
- requiring specific approximation and numerical approaches,
- having close relations to practical applications.

Selected recent monographs:

P. Kall, S.W. Wallace 1994, A. Prekopa 1995, J.R. Birge, F. Louveaux 1997

A. Ruszczynski, A. Shapiro (eds.): Stochastic Programming, Handbook, Elsevier, 2003

S.W. Wallace, W.T. Ziemba (eds.): Applications of Stochastic Programming, MPS-SIAM, 2005,

- P. Kall, J. Mayer: Stochastic Linear Programming, Kluwer, 2005,
- A. Shapiro, D. Dentcheva, A. Ruszczyński: Lectures on Stochastic Programming, MPS-SIAM, 2009.
- G. Infanger (ed.): Stochastic Programming The State-of-the-Art, Springer, 2010.

Home Page
Title Page
Contents
••
Page 2 of 69
Go Back
Full Screen
Close
Quit

Contents (Part I)

- (1) Motivating example: Newsboy
- (2) Approaches to optimization under stochastic uncertainty
- (3) Properties of expectation functionals
- (4) Two-stage stochastic programs
- (5) Mixed-integer two-stage stochastic programs
- (6) Stochastic programs with probabilistic constraints
- (7) Optimization problems with stochastic dominance constraints
- (8) Stochastic programs with equilibrium constraints
- (9) Multi-stage stochastic programs
- (10) Risk functionals and risk averse stochastic programs

Home Page
Title Page
Contents
••
•
Page 3 of 69
Go Back
Full Screen
Close
Quit

Motivating example: Newsvendor problem

- ξ uncertain daily demand for a (daily) newspaper
- $\bullet\ x$ decision about the quantity of newspapers to be purchased from a distributor
- $\bullet\ c$ cost to be paid by the newsvendor for one newspaper at the beginning of the day
- \bullet s selling price for one newspaper
- $\bullet\ r$ return price for one unsold newspaper at the end of the day

Revenue function: (Assumption: $0 \le r < c < s$)

$$f(x,\xi) = \begin{cases} (s-c)x & , x \leq \xi, \\ s\xi + r(x-\xi) - cx & , x > \xi \end{cases}$$

Expected revenue:

$$\mathbb{E}\left[f(x,\xi)\right] = \int_0^\infty f(x,\xi)dF(\xi) = \sum_{k=1}^\infty p_k f(x,k),$$

Home Page
Title Page
Contents
••
Page 4 of 69
Go Back
Full Screen
Close
Quit

where $F(w) = \mathbb{P}(\xi \le w) = \sum_{k=1,k\le w} p_k$ is the piecewise constant (cumulative) probability distribution function of the demand ξ .

Maximization of the expected revenue:

$$\max\left\{\sum_{k=1,k\leq x} p_k[(r-c)x + (s-r)k] + \sum_{k>x}^{\infty} p_k(s-c)x : x \ge 0\right\}$$

or

$$\max\left\{\sum_{k=1,k\leq x} p_k \left[(s-c)x + (s-r)(k-x) \right] + \sum_{k>x}^{\infty} p_k (s-c)x : x \ge 0 \right\}$$

or

$$\max\left\{ (s-c)x + (s-r)\sum_{k=1,k \le x} p_k(k-x) : x \ge 0 \right\}$$

or

$$\max\left\{(s-c)x - (s-r)\mathbb{E}\left[\max\{0, x-\xi\}\right] : x \ge 0\right\}$$

or

$$\max\left\{ [(s-c) - (s-r)F(x)]x + (s-r)\sum_{k=1,k \le x} kp_k : x \ge 0 \right\}$$

Home Page
Title Page
Contents
••
•
Page 5 of 69
Go Back
Full Screen
Close
Quit

Hence, x can be maximized as long as $\left[(s-c)-(s-r)F(x)\right]\geq 0$, i.e.,

$$F(x) \le \frac{s-c}{s-r}.$$

Hence, the optimal decision x_* is the minimal $n \in \mathbb{N}$ such that

$$F(n) = \sum_{k=1}^{n} p_k \ge \frac{s-c}{s-r}.$$

The latter model will be called two-stage stochastic program with first-stage decision x and optimal recourse $\max\{0, x - \xi\}$.

Of course, the newsvendor needs knowledge on the distribution function F (at least, approximately).

Basic assumption in stochastic programming: The probability distribution is independent on the decision.

The problem may occur that the random variable $f(x_*,\xi)$ has a high variance $\mathbb{V}[f(x_*,\xi)] = \mathbb{E}[f(x_*,\xi)^2] - [\mathbb{E}[f(x_*,\xi)]]^2$. Then the decision x_* has high risk and one should be interested in a risk averse decision whose expected revenue is still close to $\mathbb{E}[f(x_*,\xi)]$.

An alternative is to consider the risk averse optimization problem

 $\max\left\{\mathbb{E}[f(x,\xi)] - \gamma \mathbb{V}[f(x,\xi)] : x \ge 0\right\}$

with a risk aversion parameter $\gamma \geq 0$.

In general, one might be interested in a risk averse alternative with certain risk functional \mathbb{F} instead of the variance \mathbb{V} in order to maintain good properties of the optimization problem.

Home Page
Title Page
Contents
•• ••
Page 7 of 69
Go Back
Full Screen
Close
Quit

The newsvendor may also be interested in making a specific amount of money b with high probability, but minimal work.

Optimization model with probabilistic constraints:

 $\min\left\{x \in \mathbb{R} : \mathbb{P}(f(x,\xi) \ge b) \ge p\right\}$

with $p\in (0,1)$ close to 1. The model is equivalent to

$$\min\left\{x \in \mathbb{R} : (s-c)x \ge b, \mathbb{P}\left(\xi \ge \frac{b+(c-r)x}{s-r}\right) \ge p\right\}$$

or

$$\min\left\{x\in\mathbb{R}:(s-c)x\geq b,\frac{b+(c-r)x}{s-r}\leq F^{-1}(1-p)\right\}$$

A feasible solution of the optimization model exists if

$$b \le (s-c)F^{-1}(1-p)$$
,

leading to the optimal solution $\hat{x} = \frac{b}{s-c}$.

Home Page
Title Page
Contents
••
• •
Page 8 of 69
Go Back
Full Screen
Close

Quit

Approaches to optimization models under stochastic uncertainty

Let us consider the optimization model

 $\min\{f(x,\xi) \, : \, x \in X, \, g(x,\xi) \le 0\}\,,$

where $\xi : \Omega \to \Xi$ is a random vector defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P}), \Xi$ and X are closed subsets of \mathbb{R}^s and \mathbb{R}^m , respectively, $f: X \times \Xi \to \mathbb{R}$ and $g: X \times \Xi \to \mathbb{R}^d$ are lower semicontinuous.

Aim: Finding optimal decisions before knowing the random outcome of ξ (here-and-now decision).

Main approaches:

Replace the objective by E[f(x, ξ)] or by F[f(x, ξ)], where E denotes expectation (w.r.t. P) and F some functional on the space of real random variables (e.g., playing the role of a risk functional).

Home Page
Title Page
Contents
••
Page 9 of 69
Go Back
Full Screen
Close
Quit

• (i) Replace the random constraints by the constraint

 $\mathbb{P}(\{\omega\in\Omega:g(x,\xi(\omega))\leq 0\})=\mathbb{P}(g(x,\xi)\leq 0)\geq p$

where $p \in [0, 1]$ denotes a probability level, **or** (ii) go back to the *modeling stage* and introduce a recourse action to compensate constraint violations and add the optimal recourse cost to the objective.

The first variant leads to stochastic programs with probabilistic or chance constraints:

$$\min\{\mathbb{E}[f(x,\xi)] : x \in X, \ \mathbb{P}(g(x,\xi) \le 0) \ge p\}$$

The second variant leads to two-stage stochastic programs with recourse:

 $\min\{\mathbb{E}[f(x,\xi)] + \mathbb{E}[q(y,\xi)] : x \in X, \ y \in Y, \ g(x,\xi) + h(y,\xi) \le 0\}.$

or $\mathbb E$ replaced by a risk functional $\mathbb F.$

Properties of expectation functions

We consider analytical properties of functions having the form

 $\mathbb{E}[f(x,\xi)] = \int_{\mathbb{R}^s} f(x,\xi) P(d\xi), \quad (x \in \mathbb{R}^m)$

where $f : \mathbb{R}^m \times \mathbb{R}^s \to \overline{\mathbb{R}}$, $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$ denoting the extended real numbers, is an integrand such that

 $f(x, \cdot)$ is measurable and $\mathbb{E}[[f(x, \xi)]_{\pm}] < +\infty$

and P is a (Borel) probability measure on \mathbb{R}^s .

Aim: Properties of the expectation function

 $x\mapsto \mathbb{E}[f(x,\xi)] \quad (\text{on } \mathbb{R}^s)$

under reasonable assumptions on the integrand f.

Home Page
Title Page
Contents
••
Page 11 of 69
Go Back
Full Screen
Close
Quit
Quit

Proposition 1: Assume that

(i) $f(\cdot,\xi)$ is lower semicontinuous at $x_0 \in \mathbb{R}^m$ for P-almost all $\xi \in \mathbb{R}^s$,

(ii) there exists a *P*-integrable function $z : \mathbb{R}^s \to \overline{\mathbb{R}}$, such that $f(x,\xi) \ge z(\xi)$ for *P*-almost all $\xi \in \mathbb{R}^s$ and all x in a neighborhood of x_0 .

Then the function $x \mapsto \mathbb{E}[f(x,\xi)]$ is lower semicontinuous at x_0 .

Proof: follows by applying Fatou's Lemma.

Proposition 2: Assume that

(i) $f(\cdot,\xi)$ is continuous at $x_0 \in \mathbb{R}^m$ for *P*-almost all $\xi \in \mathbb{R}^s$, (ii) there exists a *P*-integrable function $z : \mathbb{R}^s \to \overline{\mathbb{R}}$, such that $|f(x,\xi)| \leq z(\xi)$ for *P*-almost all $\xi \in \mathbb{R}^s$ and all x in a neighborhood of x_0 .

Then the function $x \mapsto \mathbb{E}[f(x,\xi)]$ is finite in a neighborhood of x_0 and continuous at x_0 .

Proof: follows by applying Lebesgue's dominated convergence theorem.

Home Page
Title Page
Contents
•• ••
Page 12 of 69
Go Back
Full Screen
Close
0.14

Example:

For $f(x,\xi) = -\mathbb{1}_{(-\infty,x]}(\xi)$, $(x,\xi) \in \mathbb{R} \times \mathbb{R}$, where $\mathbb{1}_A$ denotes the characteristic function of $A \subset \mathbb{R}$, the function $x \to \mathbb{E}[f(x,\xi)]$ is lower semicontinuous on \mathbb{R} , but continuous at $x_0 \in \mathbb{R}$ only if $P(\{x_0\}) = 0$.

Proposition 3: Assume

(i) $\mathbb{E}[|f(x_0,\xi)|] < +\infty$ for some $x_0 \in \mathbb{R}^m$, (ii) there exists a *P*-integrable function $L : \mathbb{R}^s \to \mathbb{R}$ such that

 $|f(x,\xi) - f(\tilde{x},\xi)| \le L(\xi) ||x - \tilde{x}||$

holds for all x and \tilde{x} in a neighborhood U of x_0 in \mathbb{R}^m and P-almost all $\xi \in \mathbb{R}^s$.

Then the function $x \mapsto \mathbb{E}[f(x,\xi)]$ is Lipschitz continuous on U. (iii) Assume, in addition, $f(\cdot,\xi)$ is differentiable at x_0 for P-almost all $\xi \in \mathbb{R}^s$.

Then the function $F(x) = \mathbb{E}[f(x,\xi)]$ is differentiable at x_0 and

 $\nabla F(x_0) = \mathbb{E}[\nabla_x f(x_0, \xi)].$

Home Page
Title Page
Contents
•• ••
Page 13 of 69
Go Back
Full Screen
Close
Quit

Proposition 4: Assume that

(i) the function $x \mapsto \mathbb{E}[f(x,\xi)]$ is finite on some neighborhood U of x_0 ,

(ii) $f(\cdot,\xi) : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ is convex for *P*-almost all $\xi \in \mathbb{R}^s$. Then the function $F(x) = \mathbb{E}[f(x,\xi)]$ from \mathbb{R}^m to $\mathbb{R} \cup \{+\infty\}$ is convex and directionally differentiable at x_0 with

 $F'(x_0;h) = \mathbb{E}[f'(x_0,\xi;h)] \quad (\forall h \in \mathbb{R}^m).$

(iii) Assume, in addition, that f is a normal integrand and dom F has nonempty interior.

Then F is subdifferentiable at x_0 and

$$\partial F(x_0) = \int_{\mathbb{R}^s} \partial f(x_0,\xi) P(d\xi) + N_{\operatorname{dom} F}(x_0).$$

(Ruszczyński/Shapiro, Handbook, 2003)

Home Page
Title Page
Contents
••
Page 14 of 69
Go Back
Full Screen
Close

Quit

Two-stage stochastic programming models with recourse

Consider a linear program with stochastic parameters of the form

 $\min\{\langle c, x \rangle : x \in X, \, T(\xi)x = h(\xi)\},\$

where $\xi : \Omega \to \Xi$ is a random vector defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P}), c \in \mathbb{R}^m$, Ξ and X are polyhedral subsets of \mathbb{R}^s and \mathbb{R}^m , respectively, and the $d \times m$ -matrix $T(\cdot)$ and vector $h(\cdot) \in \mathbb{R}^d$ are affine functions of ξ .

Idea: Introduce a recourse variable $y \in \mathbb{R}^{\overline{m}}$, recourse costs $q(\xi) \in \mathbb{R}^{\overline{m}}$, a fixed recourse $d \times \overline{m}$ -matrix W, a polyhedral cone $Y \subseteq \mathbb{R}^{\overline{m}}$, and solve the second-stage or recourse program

 $\min\{\langle q(\xi), y \rangle : y \in Y, Wy = h(\xi) - T(\xi)x\}.$

Add the expected minimal recourse costs $\mathbb{E}[\Phi(x,\xi)]$ (depending on the first-stage decision x) to the original objective and consider

$$\min\left\{\langle c, x \rangle + \mathbb{E}[\Phi(x,\xi)] : x \in X\right\},$$

where $\Phi(x,\xi) := \inf\{\langle q(\xi), y \rangle : y \in Y, Wy = h(\xi) - T(\xi)x\}.$

Home Page
Title Page
Contents
•• ••
•
Page 15 of 69
Go Back
Full Screen
Close
Quit

Two formulations of two-stage models

Deterministic equivalent of the two-stage model:

$$\min\Big\{\langle c, x\rangle + \int_{\Xi} \Phi(x,\xi) P(d\xi) : x \in X\Big\},\$$

where $P := \mathbb{P}\xi^{-1} \in \mathcal{P}(\Xi)$ is the probability distribution of the random vector ξ and $\Phi(\cdot, \cdot)$ is the infimum function of the second-stage program.

Infinite-dimensional optimization model:

$$\min\left\{ \langle c, x \rangle + \int_{\Xi} \langle q(\xi), y(\xi) \rangle P(d\xi) : x \in X, \ y \in L_r(\Xi, \mathcal{B}(\Xi), P), \\ y(\xi) \in Y, \ Wy(\xi) = h(\xi) - T(\xi)x \right\},$$

where $r\in [1,+\infty]$ is selected properly.

If the probability distribution P of ξ is assumed to have p-th order moments, i.e., $\int_{\Xi} ||\xi||^p P(d\xi) < \infty$, with p > 1, r should be chosen such that the constraints of y are consistent with these moment conditions and $\mathbb{E}[\langle q(\xi), y(\xi) \rangle]$ is finite. For example, $r = \frac{p}{p-1}$ is consistent.

Structural properties of two-stage models

We consider the infimum function $v(\cdot, \cdot)$ of the parametrized linear (second-stage) program, namely,

$$v(u,t) = \inf \left\{ \langle u, y \rangle : Wy = t, y \in Y \right\} ((u,t) \in \mathbb{R}^{\overline{m}} \times \mathbb{R}^{d}$$
$$= \sup \left\{ \langle t, z \rangle : W^{\top}z - u \in Y^{*} \right\}$$
$$\mathcal{D} = \left\{ u : \left\{ z \in \mathbb{R}^{r} : W^{\top}z - u \in Y^{*} \right\} \neq \emptyset \right\}$$

where W^{\top} is the transposed of W and Y^* the polar cone of Y. Hence, we have

 $\Phi(x,\xi)=v(q(\xi),h(\xi)-T(\xi)x).$

Theorem: (Walkup/Wets 69)

The function $v(\cdot, \cdot)$ is finite and continuous on the polyhedral cone $\mathcal{D} \times W(Y)$. Furthermore, the function $v(u, \cdot)$ is piecewise linear convex on the polyhedral set W(Y) for fixed $u \in \mathcal{D}$, and $v(\cdot, t)$ is piecewise linear concave on \mathcal{D} for fixed $t \in W(Y)$.

Assumptions:

(A1) relatively complete recourse: for any $(\xi, x) \in \Xi \times X$, $h(\xi) - T(\xi)x \in W(Y)$;

(A2) dual feasibility: $q(\xi) \in \mathcal{D}$ holds for all $\xi \in \Xi$.

(A3) finite second order moment: $\int_{\Xi} ||\xi||^2 P(d\xi) < \infty$. Note that (A1) is satisfied if $W(Y) = \mathbb{R}^d$ (complete recourse). In general, (A1) and (A2) impose a condition on the support of P.

Proposition:

Assume (A1) and (A2). Then the deterministic equivalent of the two-stage model represents a convex program (with polyhedral constraints) if the integrals $\int_{\Xi} v(q(\xi), h(\xi) - T(\xi)x)P(d\xi)$ are finite for all $x \in X$. For the latter it suffices to assume (A3). An element $x \in X$ minimizes the convex program if and only if

$$0 \in \int_{\Xi} \partial \Phi(x,\xi) P(d\xi) + N_X(x) ,$$

$$\partial \Phi(x,\xi) = c - T(\xi)^{\top} \arg \max_{z \in D(\xi)} z^{\top}(h(\xi) - T(\xi)x).$$

Home Page
Title Page
Contents
•• ••
•
Page <u>18</u> of <u>69</u>
Go Back
Full Screen
Close
Quit

Discrete approximations of two-stage stochastic programs

Replace the (original) probability measure P by measures P_n having (finite) discrete support $\{\xi_1, \ldots, \xi_n\}$ $(n \in \mathbb{N})$, i.e.,

$$P_n = \sum_{i=1}^n p_i \delta_{\xi_i},$$

and insert it into the infinite-dimensional stochastic program:

V

$$\min\{\langle c, x \rangle + \sum_{i=1}^{n} p_i \langle q(\xi_i), y_i \rangle : x \in X, y_i \in Y, i = 1, \dots, n,$$

$$Vy_1 +T(\xi_1)x = h(\xi_1) +T(\xi_2)x = h(\xi_2)$$

$$\vdots = \vdots$$

$$Wy_n +T(\xi_n)x = h(\xi_n)$$

Hence, we arrive at a (finite-dimensional) large scale block-structured linear program which allows for specific decomposition methods. (Ruszczyński/Shapiro, Handbook, 2003)

Home Page Title Page Contents Page 19 of 69 Go Back Full Screen Close

Quit

Mixed-integer two-stage stochastic programs

Applied optimization models often contain continuous and integer decisions (e.g. on/off decisions, quantities). If such decisions enter the second-stage program, its optimal value function is no longer continuous and/or convex in general.

We consider

$$\min\left\{\langle c, x\rangle + \int_{\Xi} \Phi(q(\xi), h(\xi) - T(\xi)x) P(d\xi) : x \in X\right\}$$

where Φ is given by

$$\Phi(u,t) := \inf \left\{ \langle u_1, y_1 \rangle + \langle u_2, y_2 \rangle \left| \begin{array}{c} W_1 y_1 + W_2 y_2 \leq t \\ y_1 \in \mathbb{R}^{m_1}_+, y_2 \in \mathbb{Z}^{m_2}_+ \end{array} \right\}$$

for all pairs $(u,t) \in \mathbb{R}^{m_1+m_2} \times \mathbb{R}^d$, and $c \in \mathbb{R}^m$, X is a closed subset of \mathbb{R}^m , Ξ a polyhedron in \mathbb{R}^s , $T \in \mathbb{R}^{d \times m}$, $W_1 \in \mathbb{R}^{d \times m_1}$, $W_2 \in \mathbb{R}^{d \times m_2}$, and $q(\xi) \in \mathbb{R}^{m_1+m_2}$ and $h(\xi) \in \mathbb{R}^d$ are affine functions of ξ , and P is a Borel probability measure.

Home Page Title Page Contents Page 20 of 69 Go Back Full Screen Close Quit

Assumptions:

(C1) The matrices W_1 and W_2 have rational elements. (C2) For each pair $(x,\xi) \in X \times \Xi$ it holds that $h(\xi) - T(\xi)x \in \mathcal{T}$ (relatively complete recourse), where

$$\mathcal{T} := \left\{ t \in \mathbb{R}^d | \exists y = (y_1, y_2) \in \mathbb{R}^{m_1} \times \mathbb{Z}^{m_2} \text{ with } W_1 y_1 + W_2 y_2 \leq t \right\}$$

(C3) For each $\xi \in \Xi$ the recourse cost $q(\xi)$ belongs to the dual feasible set (dual feasibility)

$$\mathcal{U} := \left\{ u = (u_1, u_2) \in \mathbb{R}^{m_1 + m_2} | \exists z \in \mathbb{R}^d_- \text{ with } W_j^\top z = u_j, j = 1, 2 \right\}$$

(C4) $P \in \mathcal{P}_r(\Xi)$, i.e., $\int_{\Xi} \|\xi\|^r P(d\xi) < +\infty, r \in \{1, 2\}.$

Condition (C2) means that a feasible second stage decision always exists. Both (C2) and (C3) imply $\Phi(u,t)$ to be finite for all $(u,t) \in \mathcal{U} \times \mathcal{T}$. Clearly, it holds $(0,0) \in \mathcal{U} \times \mathcal{T}$ and $\Phi(0,t) = 0$ for every $t \in \mathcal{T}$.

r = 1 holds if either $q(\xi)$ is the only quantity depending on ξ or $q(\xi)$ does not depend on ξ . Otherwise, we set r = 2.

Home Page
Title Page
Contents
•• ••
•
Page 21 of 69
Go Back
Full Screen
Close

Quit

With the convex polyhedral cone

 $\mathcal{K} := \left\{ t \in \mathbb{R}^d \mid \exists y_1 \in \mathbb{R}^{m_1} \text{ such that } t \geq W_1 y_1 \right\} = W_1(\mathbb{R}^{m_1}) + \mathbb{R}^d_+$

one obtains the representation

$$\mathcal{T} = \bigcup_{z \in \mathbb{Z}^{m_2}} (W_2 z + \mathcal{K}).$$

The set \mathcal{T} is always (path) connected (i.e., there exists a polygon connecting two arbitrary points of \mathcal{T}) and condition (C1) implies that \mathcal{T} is closed. If, for each $t \in \mathcal{T}$, Z(t) denotes the set

 $Z(t) := \{ z \in \mathbb{Z}^{m_2} \mid \exists y_1 \in \mathbb{R}^{m_1} \text{ such that } W_1 y_1 + W_2 z \le t \},\$

the representation of ${\mathcal T}$ implies that it is decomposable into subsets of the form

$$\mathcal{T}(t_0) := \{ t \in \mathcal{T} \mid Z(t) = Z(t_0) \}$$

=
$$\bigcap_{z \in Z(t_0)} (W_2 z + \mathcal{K}) \setminus \bigcup_{z \in \mathbb{Z}^{m_2} \setminus Z(t_0)} (W_2 z + \mathcal{K})$$

for every $t_0 \in \mathcal{T}$.

Home Page
Title Page
Contents
44
Page 22 of 69
Go Back
Full Screen
Close
Quit

In general, the set $Z(t_0)$ is finite or countable, but condition (C1) implies that there exist countably many elements $t_i \in \mathcal{T}$ and $z_{ij} \in \mathbb{Z}^{m_2}$ for j belonging to a finite subset N_i of \mathbb{N} , $i \in \mathbb{N}$, such that

$$\mathcal{T} = \bigcup_{i \in \mathbb{N}} \mathcal{T}(t_i) \quad \text{with} \quad \mathcal{T}(t_i) = (t_i + \mathcal{K}) \setminus \bigcup_{j \in N_i} (W_2 z_{ij} + \mathcal{K}).$$

The sets $\mathcal{T}(t_i)$, $i \in \mathbb{N}$, are nonempty and star-shaped, but nonconvex in general.

Illustration of $\mathcal{T}(t_i)$ for $W_1 = 0$ and d = 2, i.e., $\mathcal{K} = \mathbb{R}^2_+$, with $N_i = \{1, 2, 3\}$ and its decomposition into the sets B_j , j = 1, 2, 3, 4, whose closures are rectangular.

If for some $i \in \mathbb{N}$ the set $\mathcal{T}(t_i)$ is nonconvex, it can be decomposed into a finite number of subsets.

This leads to a countable number of subsets B_j , $j \in \mathbb{N}$, of \mathcal{T} whose closures are convex polyhedra with facets parallel to $W_1(\mathbb{R}^{m_1})$ or to suitable facets of \mathbb{R}^r_+ and form a partition of \mathcal{T} .

Since the sets Z(t) of feasible integer decisions do not change if t varies in some B_j , the function $(u, t) \mapsto \Phi(u, t)$ from $\mathcal{U} \times \mathcal{T}$ to \mathbb{R} has the (local) Lipschitz continuity regions $\mathcal{U} \times B_j$, $j \in \mathbb{N}$ and the estimate

 $|\Phi(u,t) - \Phi(\tilde{u},\tilde{t})| \le L(\max\{1, \|t\|, \|\tilde{t}\|\} \|u - \tilde{u}\| + \max\{1, \|u\|, \|\tilde{u}\|\} \|t - \tilde{t}\|)$

holds for all pairs $(u, t), (\tilde{u}, \tilde{t}) \in \mathcal{U} \times B_j$ and some (uniform) constant L > 0.

(Blair-Jeroslow 77, Bank-Guddat-Kummer-Klatte-Tammer 1982)

Home Page
Title Page
Contents
••
Page 24 of 69
Go Back
Full Screen
Close
Quit

For the integrand

 $f_0(x,\xi) = \langle c,x\rangle + \Phi(q(\xi),h(\xi)-T(\xi)x) \quad ((x,\xi)\in X\times\Xi)$ it holds

 $|f_0(x,\xi) - f_0(x,\tilde{\xi})| \le \hat{L} \max\{1, \|\xi\|^{r-1}, \|\tilde{\xi}\|^{r-1}\} \|\xi - \tilde{\xi}\| \ (\xi,\tilde{\xi}\in\Xi_{x,j}) + \|f_0(x,\xi)\| \le C \max\{1, \|x\|\} \max\{1, \|\xi\|^r\} \ (\xi\in\Xi)$

for all $x \in X$ with some constants \hat{L} and C and

 $\Xi_{x,j} = \{\xi \in \Xi \mid h(\xi) - T(\xi)x \in B_j\} \quad (j \in \mathbb{N})$

Proposition: (Schultz 93, 95) Assume (C1)-(C4). Then the objective function

$$F_P(x) = \langle c, x \rangle + \int_{\Xi} \Phi(q(\xi), h(\xi) - T(\xi)x) P(d\xi)$$

is lower semicontinuous on X and solutions exist if X is compact. If the probability distribution P has a density, the objective function is continuous, but nonconvex in general.

If the support of P is finite, the objective function is piecewise continuous with a finite number of continuity regions, whose closures are polyhedral.

	Home Page
	Title Page
)	Contents
	••
	• •
	Page 25 of 69
	Go Back
	Full Screen
	Close
	Quit

Example: (Schultz-Stougie-van der Vlerk 98)

$$\begin{split} m &= d = s = 2, \ m_1 = 0, \ m_2 = 4, \ c = (0,0), \ X = [0,5]^2, \\ h(\xi) &= \xi, \ q(\xi) \equiv q = (-16, -19, -23, -28), \ y_i \in \{0,1\}, \ i = 1, 2, 3, 4, \ P \sim \mathcal{U}\{5, 10, 15\}^2 \ \text{(discrete)} \end{split}$$

Second stage problem: MILP with 36 binary variables and 18 constraints.

$$T = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \qquad W = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 6 & 1 & 3 & 2 \end{pmatrix}$$

Home Page Title Page Contents Page 26 of 69 Go Back Full Screen Close Quit

Optimal value function

Example: (Schultz-Stougie-van der Vlerk 98)

Stochastic multi-knapsack problem:

 $m = d = s = 2, m_1 = 0, m_2 = 4, c = (1.5, 4), X = [-5, 5]^2,$ $h(\xi) = \xi, q(\xi) \equiv q = (16, 19, 23, 28), y_i \in \{0, 1\}, i = 1, 2, 3, 4,$ $P \sim \mathcal{U}\{5, 5.5, \dots, 14.5, 15\}^2 \text{ (discrete)}$

Second stage problem: MILP with 1764 Boolean variables and 882 constraints.

$$T = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \qquad W = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 6 & 1 & 3 & 2 \end{pmatrix}$$

Home Page Title Page Contents Page 27 of 69 Go Back Full Screen Close Quit

Stochastic programs with probabilistic constraints

We consider the stochastic program

 $\min\left\{f(x): x \in X, P(g(x,\xi) \le 0) \ge p\right\},\$

where X is a closed subset of \mathbb{R}^m , $f : \mathbb{R}^m \to \mathbb{R}$, $g : \mathbb{R}^m \times \mathbb{R}^s \to \mathbb{R}^r$, ξ a random vector with probability distribution P and $p \in (0.1)$.

Problem: If the original optimization problem is smooth, convex or even linear, the probabilistic constraint function

$$G(x) := P(g(x,\xi) \le 0)$$

may be non-differentiable, non-Lipschitzian and non-convex.

Special forms of probabilistic constraints:

•
$$g(x,\xi) := \xi - h(x)$$
, where $h : \mathbb{R}^m \to \mathbb{R}^s$, i.e.,
 $G(x) = P(\xi \le h(x)) = F_P(h(x)) \ge p$,

where $F_P(y) := P(\{\xi \leq y\}) \ (y \in \mathbb{R}^s)$ denotes the (multivariate) probability distribution function of ξ .

Home Page
Title Page
Contents
••
Page 28 of 69
Go Back
Full Screen
Close
Quit

• $g(x,\xi) := b(\xi) - A(\xi)x$, where the matrix $A(\cdot)$ and the vector $b(\cdot)$ are affine functions of ξ . Then

 $G(x) := P(\{\xi : A(\xi)x \ge b(\xi)\})$

corresponds to the probability of a polyhedron depending on x.

Proposition: (Prekopa)

If $H : \mathbb{R}^m \to \mathbb{R}^s$ is a set-valued mapping with closed graph, the function $G : \mathbb{R}^m \to \mathbb{R}$ defined by G(x) := P(H(x)) $(x \in \mathbb{R}^m)$ is upper semicontinuous for every probability distribution P on \mathbb{R}^s . Hence, the feasible set

$$\mathcal{X}_p(P) = \{ x \in X : G(x) = P(H(x)) \ge p \}$$

is closed.

(In particular, H is of the form $H(x) = \{\xi \in \mathbb{R}^s : g(x,\xi) \le 0\}$, gph $H = \{(x,\xi) \in \mathbb{R}^m \times \mathbb{R}^s : g(x,\xi) \le 0\}$.)

Proposition: (Henrion 02)

For any $i = 1, \ldots, r$ let $g_i(\cdot, \xi)$ be quasiconvex for all $\xi \in \mathbb{R}^s$ and min stable w.r.t. X, i.e., for any $x, \tilde{x} \in X$ there exists $\bar{x} \in X$ such that

 $g_i(\bar{x},\xi) \le \min\{g_i(x,\xi), g_i(\tilde{x},\xi)\} \quad \forall \xi \in \mathbb{R}^s.$

Then the set $\mathcal{X}_p(P) = \{x \in X : P(g(x,\xi) \leq 0) \geq p\}$ is (path) connected for any $p \in [0,1]$ and probability distribution P on \mathbb{R}^s .

Corollary:

Let A be a (s, m)-matrix and ξ a s-dimensional random vector with distribution P. If the rows of A are positively linear independent, the set $\mathcal{X}_p(P) = \{x \in \mathbb{R}^m : P(Ax \ge \xi) \ge p\}$ is path connected for any $p \in [0, 1]$ and probability distribution P on \mathbb{R}^s .

Problem:

Which conditions imply continuity and differentiability properties of G(x) = P(H(x)) or convexity of $\mathcal{X}_p(P) = \{x \in X : P(H(x)) \ge p\}$?

Home Page Title Page Contents Page 30 of 69 Go Back Full Screen Close Quit

Examples:

(i) Let $H(x) = x + \mathbb{R}^s_-$ ($\forall x \in \mathbb{R}^s$) and P have finite support, i.e., $P = \sum_{i=1}^n p_i \delta_{\xi_i},$

where δ_{ξ} denotes the Dirac measure placing unit mass at ξ and $p_i > 0, i = 1, ..., n, \sum_{i=1}^n p_i = 1$. Then $\mathcal{X}_p(P) = X \cap (\bigcup_{i \in I} (\xi_i + \mathbb{R}^s_+))$

holds for some index set $I \subset \{1, \ldots, n\}$ and, hence, is non-convex in general. Moreover, $G = F_P$ is discontinuous with jumps at $\operatorname{bd}(\xi_i + \mathbb{R}^s_{-})$.

(ii) Let $H(x) = x + \mathbb{R}^s_-$ ($\forall x \in \mathbb{R}^s$) and P have a density f_P with respect to the Lebesgue measure on \mathbb{R}^s , i.e.,

$$G(x) = F_P(x) = \int_{-\infty}^x f_P(y) dy = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_s} f_P(y_1, \dots, y_s) dy_s \cdots dy_1$$

Conjecture: $G = F_P$ is Lipschitz continuous if the density f_P is continuous and bounded.

Answer: The conjecture is true for s = 1, but wrong for s > 1 in general.

Example: (Wakolbinger)

$$f_P(x_1, x_2) = \begin{cases} 0 & x_1 < 0\\ c x_1^{1/4} e^{-x_1 x_2^2} & x_1 \in [0, 1]\\ c e^{-x_1^4 x_2^2} & x_1 > 1, \end{cases}$$

where c is chosen such that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_P(x_1, x_2) dx_1 dx_2 = 1$.

The density f_P is continuous and bounded. However, F_P is not locally Lipschitz continuous (as the marginal density functions are not bounded).

Home Page Title Page

▲
 ▶
 Page 32 of 69
 Go Back

Contents

Full Screen

Close

Quit

Proposition:

A probability distribution function F_P with density f_P is locally Lipschitz continuous if its (one-dimensional) marginal density functions f_P^i , i = 1, ..., s, are locally bounded. F_P is (globally) Lipschitz continuous iff its marginal density functions are bounded.

$$f_P^i(x_i) := \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f_P(x_1, \dots, x_s) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_s$$

Question: Is there a reasonable class of probability distributions to which the proposition applies?

Definition:

A probability measure P on \mathbb{R}^s is called quasi-concave whenever

 $P(\lambda B + (1 - \lambda)\tilde{B}) \ge \min\{P(B), P(\tilde{B})\}$

holds true for all Borel measurable convex subsets $B, \tilde{B} \subseteq \mathbb{R}^s$ and all $\lambda \in [0, 1]$ such that $\lambda B + (1 - \lambda)\tilde{B}$ is Borel measurable.

Proposition: (Prekopa)

Let $H : \mathbb{R}^m \to \mathbb{R}^s$ be a set-valued mapping with closed convex graph and P be quasi-concave on \mathbb{R}^s . Then the function G(x) := P(H(x)) $(x \in \mathbb{R}^m)$ is quasi-concave on \mathbb{R}^m . Hence, if X is closed and convex, the feasible set

 $\mathcal{X}_p(P) = \{x \in X : G(x) = P(H(x)) \ge p\}$

is closed and convex.

Proof: Let $x, \tilde{x} \in \mathbb{R}^m$, $\lambda \in [0, 1]$.

 $\begin{aligned} G(\lambda x + (1-\lambda)\tilde{x}) &= P(H(\lambda x + (1-\lambda)\tilde{x})) \ge P(\lambda H(x) + (1-\lambda)H(\tilde{x})) \\ &\ge \min\{P(H(x)), P(H(\tilde{x}))\} = \min\{G(x), G(\tilde{x})\}. \end{aligned}$

Home Page
Title Page
Contents
•• ••
Page 34 of 69
Go Back
Full Screen
Close
Quit

Theorem: (Borell 75) Assume that the probability distribution on \mathbb{R}^s has a density f_P . Then P is quasi-concave iff $f_P^{-\frac{1}{s}} : \mathbb{R}^s \to \overline{\mathbb{R}}$ is convex.

Examples: (of quasi-concave probability measures) Multivariate normal distributions N(m, C) (with mean $m \in \mathbb{R}^s$ and $s \times s$ symmetric, positive semidefinite covariance matrix C; nondegenerate or singular), uniform distributions on convex compact subsets of \mathbb{R}^s , Dirichlet-, Pareto-, Gamma-distributions etc.

Theorem: (Henrion/Römisch 10) The probability distribution function F_P of a quasi-concave probability measure P on \mathbb{R}^s is Lipschitz continuous iff the support $\operatorname{supp} P$ is not contained in a (s-1)-dimensional hyperplane.

Home Page Title Page Contents Page 35 of 69 Go Back Full Screen Close Quit

Question: Are distribution functions of quasi-concave measures differentiable, too?

Example: (singular normal distributions) The probability distribution functions F_P of 2-dimensional normal distributions N(0, C) with

$$C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

are not differentiable on \mathbb{R}^2 .

Home Page
Title Page
Contents
•• ••
•
Page <u>36</u> of <u>69</u>
Go Back
Full Screen
Close
Quit

Theorem: (Henrion/Römisch 10)

Let ξ be an *s*-dimensional normal random vector whose covariance matrix is nonsingular. Let F_{η} denote the probability distribution function of the random vector $\eta = A\xi + b$ where A is an $m \times s$ matrix and $b \in \mathbb{R}^m$.

Then F_{η} is infinitely many times differentiable at any $\bar{x} \in \mathbb{R}^m$ for which the system $(A, \bar{x} - b)$ satisfies the *Linear Independence Constraint Qualification* (LICQ), i.e., the rows $a_i, i = 1, \ldots, m$, of A satisfy the condition rank $\{a_i : i \in I\} = \#I$ for every index set $I \in \{1, \ldots, m\}$ such that there exists $z \in \mathbb{R}^s$ with

$$a_i^T z = \bar{x}_i - b_i \quad (i \in I), \quad a_i^T z < \bar{x}_i - b_i \quad (i \in \{1, \dots, m\} \setminus I).$$

Example:

Our second example of singular normal distributions corresponds to the probability distribution function F_{η} of

$$\eta = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \xi, \quad \xi \sim N(0, 1).$$

The result implies the C^{∞} -property of F_{η} on $R^2 \setminus \{(x, x) : x \in \mathbb{R}\}$.

Home Page
Title Page
Contents
•• ••
•
Page 37 of 69
Go Back
Full Screen
Close
Quit

Let us consider the chance constraint set

 $\mathcal{X}_p(P) = \{ x \in \mathbb{R}^m : P(\Xi x \le a) \ge p \}$

where Ξ is a stochastic matrix whose rows ξ_i have multivariate normal distributions with mean μ_i and covariance matrix Σ_i , $i = 1, \ldots, r$, and P is the distribution of (ξ_1, \ldots, ξ_r) . For r = 1 convexity of $\mathcal{X}_p(P)$ for $p \in [\frac{1}{2}, 1)$ is a classical result. (van de Panne/Popp 63)

Proposition: (Henrion/Strugarek 08)

Assume that the rows ξ_i of Ξ are pairwise independent. Then \mathcal{X}_p is convex for $p > \Phi(u^*)$, where Φ is the one-dimensional standard normal distribution function and $u^* \ge \sqrt{3}$ is computable and depends on the means μ_i and the eigenvalues of Σ_i .

Furthermore, the function $G(x) = P(\Xi x \le a)$ is differentiable and the gradients of G can be explicitly computed if Ξ is Gaussian. (van Ackooij/Henrion/Möller/Zorgati 11)

Home Page
Title Page
Contents
••
Page 38 of 69
Go Back
Full Screen
Close
Quit

Example: (Henrion)

Let P be the standard normal (N(0,1)) distribution with probability distribution function

$$F(x) = \frac{1}{(2\pi)^{\frac{1}{2}}} \int_{-\infty}^{x} \exp(-\frac{\xi^2}{2}) d\xi,$$

$$\begin{aligned} A &= \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ and } b(\xi) = \begin{pmatrix} \xi \\ \xi \end{pmatrix} \text{ for each } \xi \in \mathbb{R}. \text{ Then we have} \\ G(x) &= P(\{\xi \in \mathbb{R} : Ax \ge b(\xi)\}) \\ &= P(\{\xi \in \mathbb{R} : x \ge \xi, -x \ge \xi\}) = F(\min\{-x, x\}). \end{aligned}$$

Hence, although F is in $C^{\infty}(\mathbb{R})$, G is non-differentiable.

Hence, tools from nonsmooth analysis should be used for studying the behavior of constraints sets, in general.

Home Page
Title Page
Contents
•• >>
Page 39 of 69
Go Back
Full Screen
Close
Quit

Metric regularity of chance constraints

Let $H : \mathbb{R}^m \to \mathbb{R}^s$ be a set-valued mapping with closed graph, $X \subseteq \mathbb{R}^m$ be closed and P be a probability distribution on \mathbb{R}^s . We consider the set-valued mapping (from \mathbb{R} to \mathbb{R}^m)

 $y \mapsto \mathcal{X}_y(P) = \{ x \in X : P(H(x)) \ge y \}.$

Definition:

The chance constraint function $P(H(\cdot)) - p$ is metrically regular with respect to X at $\bar{x} \in \mathcal{X}_p(P)$ if there exist positive constants aand ε such that

 $d(x, \mathcal{X}_y(P)) \le a \max\{0, y - P(H(x))\}$

holds for all $x \in X \cap \mathbb{B}(\bar{x}, \varepsilon)$ and $|p - y| \leq \varepsilon$.

Motivation: Continuity properties of the feasible set $\mathcal{X}_p(P)$ with respect to perturbations of P measured in terms of a suitable distance on the space of all probability distributions on \mathbb{R}^s .

Home Page Title Page Contents Page 40 of 69 Go Back Full Screen Close

Quit

The convex case

Proposition: (Römisch/Schultz 91)

Let the set-valued mapping H have closed and convex graph, X be closed and convex, $p \in (0, 1)$ and the probability distribution P on \mathbb{R}^s be *r*-concave for some $r \in (-\infty, +\infty]$. Suppose there exists a Slater point $\bar{x} \in X$ such that $P(H(\bar{x}) > p$.

Then $P(H(\cdot)) - p$ is metrically regular with respect to X at each $x \in \mathcal{X}_p(P)$.

The proof is based on the Robinson-Ursescu theorem applied to the set-valued mapping $\Gamma(x) := \{v \in \mathbb{R} : x \in X, p^r - (P(H(x)))^r \ge v\}$ for some r < 0 (w.l.o.g.).

The proposition applies to $H(x) = \{\xi \in \mathbb{R}^s : h(x) \ge \xi\}$, i.e., $P(H(x)) = F_P(h(x))$, where h has concave components. However, even for linear h, i.e., h(x) = Ax the matrix A has to be non-stochastic.

Home Page
Title Page
Contents
◄ ◀ ▶
Page 41 of 69
Go Back
Full Screen
Close

Quit

Definition:

A probability measure P on \mathbb{R}^s is called r- concave for some $r\in [-\infty,+\infty]$ if the inequality

 $P(\lambda B + (1 - \lambda)\tilde{B}) \ge m_r(P(B), P(\tilde{B}); \lambda)$

holds for all $\lambda \in [0,1]$ and all convex Borel subsets B, \tilde{B} of \mathbb{R}^s such that $\lambda B + (1-\lambda)\tilde{B}$ is Borel.

Here, the generalized mean function m_r on $\mathbb{R}_+ \times \mathbb{R}_+ \times [0,1]$ for $r \in [-\infty,\infty]$ is given by

$$m_r(a,b;\lambda) := \begin{cases} (\lambda a^r + (1-\lambda)b^r)^{1/r} &, r > 0 \text{ or } r < 0, ab > 0\\ 0 &, ab = 0, r < 0,\\ a^\lambda b^{1-\lambda} &, r = 0,\\ \max\{a,b\} &, r = \infty,\\ \min\{a,b\} &, r = -\infty. \end{cases}$$

Notice that $r = -\infty$ corresponds to quasi-concavity.

Optimization problems with stochastic dominance constraints

Optimization model with kth order stochastic dominance constraint

 $\min\{f(x) : x \in D, \ G(x,\xi) \succeq_{(k)} Y\},\$

where $k \in \mathbb{N}$, D is a nonempty convex closed subset of \mathbb{R}^m , Ξ a closed subset of \mathbb{R}^s , $f : \mathbb{R}^m \to \mathbb{R}$ is convex, ξ is a random vector with support Ξ and Y a real random variable on some probability space both having finite moments of order k - 1, and $G : \mathbb{R}^m \times \mathbb{R}^s \to \mathbb{R}$ is continuous, concave with respect to the first argument and satisfies the linear growth condition

 $|G(x,\xi)| \le C(B) \max\{1, \|\xi\|\} \quad (x \in B, \xi \in \Xi)$

for every bounded subset $B \subset \mathbb{R}^m$ and some constant C(B) (depending on B). The random variable Y plays the role of a benchmark outcome.

D. Dentcheva, A. Ruszczyński: Optimization with stochastic dominance constraints, *SIAM J. Optim.* 14 (2003), 548–566.

Home Page
Title Page
Contents
44 >>
Page 43 of 69 Go Back
Full Screen
Close
0

Stochastic dominance relation $\succeq_{(k)}$

 $X \succeq_{(1)} Y \quad \Leftrightarrow \quad F_X(\eta) \le F_Y(\eta) \quad (\forall \eta \in \mathbb{R})$

where X and Y are real random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. P_X denotes the probability distribution of X and F_X its distribution function, i.e.,

$$F_X(\eta) = \mathbb{P}(\{X \le \eta\}) = \int_{-\infty}^{\eta} P_X(d\xi) \quad (\forall \eta \in \mathbb{R})$$

Equivalent characterization:

 $X \succeq_{(1)} Y \quad \Leftrightarrow \quad \mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)]$

for each nondecreasing $u : \mathbb{R} \to \mathbb{R}$ such that the expectations are finite.

Expected utility hypotheses: (von Neumann-Morgenstern) Outcome X is preferred over outcome Y if and only if

 $\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$

for some utility $u(\cdot)$.

Home Page
Title Page
Contents
•• ••
Page 44 of 69
Go Back
Full Screen
Close
Quit

$X \succeq_{(k)} Y \quad \Leftrightarrow \quad F_X^{(k)}(\eta) \le F_Y^{(k)}(\eta) \quad (\forall \eta \in \mathbb{R})$

where X and Y are real random variables having moments of order k-1 and we define $F_X^{(1)} = F_X$ and recursively

$$F_X^{(k+1)}(\eta) = \int_{-\infty}^{\eta} F_X^{(k)}(\xi) d(\xi) = \int_{-\infty}^{\eta} \frac{(\eta - \xi)^k}{k!} P_X(d\xi)$$

= $\frac{1}{k!} \| \max\{0, \eta - X\} \|_k^k \quad (\forall \eta \in \mathbb{R}),$

where

$$||X||_{k} = \left(\mathbb{E}(|X|^{k})\right)^{\frac{1}{k}} \quad (\forall k \ge 1).$$

Equivalent characterization of $\succeq_{(2)}$:

 $X \succeq_{(2)} Y \quad \Leftrightarrow \quad \mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)]$

for each nondecreasing concave $u:\mathbb{R}\to\mathbb{R}$ such that the expectations are finite.

A. Müller and D. Stoyan: *Comparison Methods for Stochastic Models and Risks*, Wiley, Chichester, 2002.

Home Page Title Page Contents Page 45 of 69 Go Back Full Screen

Close

Relaxation, theory and discretization

We consider the relaxed kth order stochastic dominance (SD) constrained optimization model

$$\min\left\{f(x): x \in D, F_{G(x,\xi)}^{(k)}(\eta) \le F_Y^{(k)}(\eta), \,\forall \eta \in I\right\},\$$

where $I \subset \mathbb{R}$ is a compact interval. Split-variable formulation:

$$\min\left\{f(x): x \in D, \ G(x,\xi) \ge X, \ F_X^{(k)}(\eta) \le F_Y^{(k)}(\eta), \ \forall \eta \in I\right\}$$

Since the function $F_X^{(k)} : \mathbb{R} \to \mathbb{R}$ is nondecreasing for $k \ge 1$ and convex for $k \ge 2$, the SD constrained optimization model is a convex semi-infinite program.

Constraint qualification:

kth order uniform dominance condition: There exists $\bar{x}\in D$ such that

$$\min_{\eta \in I} \left(F_Y^{(k)}(\eta) - F_{G(\bar{x},\xi)}^{(k)}(\eta) \right) > 0$$

Home Page
Title Page
Contents
••
Page 46 of 69
Go Back
Full Screen
Close
Quit

Optimality conditions and duality results can be derived when imposing the kth order uniform dominance condition.

Let X_j and Y_j the scenarios of X and Y with probabilities p_j , $j = 1, \ldots, n$. Then the second order dominance constraints can be expressed as

$$\sum_{j=1}^{n} p_j [\eta - X_j]_+ \le \sum_{j=1}^{n} p_j [\eta - Y_j]_+ \quad \forall \eta \in I.$$

The latter condition can be shown to be equivalent to

$$\sum_{j=1}^{n} p_j [Y_k - X_j]_+ \le \sum_{j=1}^{n} p_j [Y_k - Y_j]_+ \quad \forall k = 1, \dots, n.$$

if $Y_k \in I$, k = 1, ..., n. Here, $[\cdot]_+ = \max\{0, \cdot\}$. Hence, the second order dominance constraints may be reformulated as linear constraints.

D. Dentcheva, A. Ruszczyński: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints, *Mathematical Programming* 99 (2004), 329-350.

Stochastic programs with equilibrium constraints

Such optimization models are extensions of two-stage stochastic programs. We consider the SMPEC

 $\min\left\{\inf\{\mathbb{E}[f(x,y,\xi)]: y \in S(x,\xi)\}: x \in X\right\},\$

where $S(x,\xi)$ is the solution set of the variational inequality

 $g(x, y, \xi) \in N_{C(x,\xi)}(y),$

 $f, g: \mathbb{R}^m \times \mathbb{R}^{\bar{m}} \times \mathbb{R}^s \to \mathbb{R}$, C is a set-valued mapping from $\mathbb{R}^m \times \mathbb{R}^s$ to $R^{\bar{m}}$ and $N_C(y)$ denotes the normal cone to the set C at y. If we assume that $C(x, \xi)$ is of the form

 $C(x,\xi) = \{y \in \mathbb{R}^{\bar{m}} : h(x,y,\xi) \in V\}$

with a closed convex cone V in \mathbb{R}^r and a mapping h which is differentiable with respect to y, the variational inequality may be rewritten as

$$-g(x, y, \xi) + \nabla_y h(x, y, \xi)^\top \lambda = 0, \quad \lambda \in N_V(h(x, y, \xi)).$$

Home Page
Title Page
Contents
••
Page 48 of 69
Go Back
Full Screen
Close
Quit

The condition $\lambda \in N_V(h(x,y,\xi))$ is equivalent to

 $\lambda \in V^*, \ h(x, y, \xi) \in V, \ \lambda^\top h(x, y, \xi) = 0.$

or equivalently

 $h(x, y, \xi) \in N_{V^*}(\lambda)$

Hence, the introduction of the *new variable* λ allows to rewrite the original variational inequality into (Robinson 80)

 $H(x,(y,\lambda),\xi) \in N_K(\lambda),$

where H maps from $\mathbb{R}^m \times \mathbb{R}^{\bar{m}+r} \times \mathbb{R}^s$ to $\mathbb{R}^{\bar{m}+r}$ and a (fixed) closed convex cone K in $\mathbb{R}^{\bar{m}+r}$ given by

$$H(x,(y,\lambda),\xi) = \begin{pmatrix} -g(x,y,\xi) + \nabla_y h(x,y,\xi)^\top \lambda \\ h(x,y,\xi) \end{pmatrix}, \ K = \mathbb{R}^{\bar{m}} \times V^*$$

Let $\bar{S}(x,\xi) \subset \mathbb{R}^{\bar{m}+r}$ denote the solution set of the previous variational inequality. Then $S(x,\xi)$ equals the projection of $\bar{S}(x,\xi)$ to the first component.

Home Page Title Page Contents Page 49 of 69 Go Back Full Screen Close Quit

The original SMPEC is equivalent to

 $\min\left\{\mathbb{E}[f(x,y,\xi)]:(y,\lambda)\in\bar{S}(x,\xi),x\in X\right\}$

Proposition: (Shapiro, JOTA 06)

Let the functions $f,g,h,\nabla_y h$ be continuous and there exist a P- integrable function w such that

 $\theta(x,\xi) = \inf\{f(x,y,\xi) : (y,\lambda) \in \bar{S}(x,\xi)\} \ge w(\xi)$

holds for all ξ and all x in a neighborhood of some $\bar{x} \in X$. Assume that the solution set $\bar{S}(x,\xi)$ is nonempty and uniformly bounded (in a neighborhood of \bar{x}). Then the objective $x \mapsto \mathbb{E}[\theta(x,\xi)]$ is (at least) lower semicontinuous at \bar{x} .

Under stronger assumptions (Lipschitz) continuity and directional differentiability of the objective may be derived, too.

Home Page
Title Page
Contents
•• >>
Page 50 of 69
Go Back
Full Screen
Close
Quit

Multistage stochastic programs

New constraints: Measurability or information constraints Let $\{\xi_t\}_{t=1}^T$ be a discrete-time stochastic data process defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and with ξ_1 deterministic. The stochastic decision x_t at period t is assumed to be measurable with respect to $\mathcal{F}_t := \sigma(\xi_1, \ldots, \xi_t)$ (nonanticipativity).

Multistage stochastic optimization model:

$$\min \left\{ \mathbb{E} \left[\sum_{t=1}^{T} \langle b_t(\xi_t), x_t \rangle \right] \middle| \begin{array}{l} x_t \in X_t, t = 1, \dots, T, A_{1,0} x_1 = h_1(\xi_1), \\ x_t \text{ is } \mathcal{F}_t \text{-measurable}, t = 1, \dots, T, \\ A_{t,0} x_t + A_{t,1}(\xi_t) x_{t-1} = h_t(\xi_t), t = 2, ., T \end{array} \right\}$$

where the sets X_t , t = 1, ..., T, are polyhedral cones, the vectors $b_t(\cdot)$, $h_t(\cdot)$ and $A_{t,1}(\cdot)$ are affine functions of ξ_t , where ξ varies in a polyhedral set Ξ .

If the process $\{\xi_t\}_{t=1}^T$ has a finite number of scenarios, they exhibit a scenario tree structure.

Home Page Title Page Contents Page 51 of 69 Go Back Full Screen Close Quit

To have the model well defined, we assume $x_t \in L_{r'}(\Omega, \mathcal{F}_t, \mathbb{P}; \mathbb{R}^{m_t})$ and $\xi_t \in L_r(\Omega, \mathcal{F}_t, \mathbb{P}; \mathbb{R}^d)$, where $r \ge 1$ and

$$r' := \left\{ \begin{array}{l} \frac{r}{r-1} &, \mbox{ if only costs are random} \\ r &, \mbox{ if only right-hand sides are random} \\ \infty &, \mbox{ if all technology matrices are random and } r = T. \end{array} \right.$$

Then nonanticipativity may be expressed as

 $x \in \mathcal{N}_{na}$

 $\mathcal{N}_{na} = \{ x \in \times_{t=1}^{T} L_{r'}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^{m_t}) : x_t = \mathbb{E}[x_t | \mathcal{F}_t], \forall t \},\$

i.e., as a subspace constraint, by using the conditional expectation $\mathbb{E}[\cdot | \mathcal{F}_t]$ with respect to the σ -algebra \mathcal{F}_t .

For
$$T = 2$$
 we have $\mathcal{N}_{na} = \mathbb{R}^{m_1} \times L_{r'}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^{m_2}).$

 \rightarrow infinite-dimensional (linear) optimization problem

Data process approximation by scenario trees

The process $\{\xi_t\}_{t=1}^T$ is approximated by a process forming a scenario tree based on a finite set of scenarios and nodes $\mathcal{N} \subset \mathbb{N}$.

Scenario tree with T = 5, N = 22 and 11 leaves

 $n = 1 \text{ root node, } n_- \text{ unique predecessor of node } n, \text{ path}(n) = \{1, \ldots, n_-, n\}, \quad t(n) := |\text{path}(n)|, \mathcal{N}_+(n) \text{ set of successors to } n, \mathcal{N}_T := \{n \in \mathcal{N} : \mathcal{N}_+(n) = \emptyset\} \text{ set of leaves, } \text{path}(n), n \in \mathcal{N}_T, \text{ scenario with (given) probability } \pi^n, \pi^n := \sum_{\nu \in \mathcal{N}_+(n)} \pi^{\nu} \text{ probability } \text{of node } n, \xi^n \text{ realization of } \xi_{t(n)}.$

Tree representation of the optimization model

$$\min\left\{\sum_{n\in\mathcal{N}}\pi^{n}\langle b_{t(n)}(\xi^{n}),x^{n}\rangle \left| \begin{array}{l} x^{n}\in X_{t(n)},n\in\mathcal{N},A_{1,0}x^{1}=h_{1}(\xi^{1})\\ A_{t(n),0}x^{n}+A_{t(n),1}x^{n-}=h_{t(n)}(\xi^{n}),n\in\mathcal{N} \right\} \right.$$
 Title Page

How to solve the optimization model ?

- Standard software (e.g., CPLEX)
- Decomposition methods for (very) large scale models (Ruszczynski/Shapiro (Eds.): Stochastic Programming, Handbook, 2003)

Open question: How to generate (multivariate) scenario trees ?

Dynamic programming

Theorem: (Evstigneev 76, Rockafellar/Wets 76) Under weak assumptions the multistage stochastic program is equivalent to the (first-stage) convex minimization problem

$$\min\left\{\int_{\Xi} f(x_1,\xi) P(d\xi) : x_1 \in \mathcal{X}_1(\xi_1)\right\},\$$

where f is an integrand on $\mathbb{R}^{m_1} \times \Xi$ given by

$$f(x_1,\xi) := \langle b_1(\xi_1), x_1 \rangle + \Phi_2(x_1,\xi^2),$$

$$\Phi_t(x_1,\dots,x_{t-1},\xi^t) := \inf \left\{ \langle b_t(\xi_t), x_t \rangle + \mathbb{E} \left[\Phi_{t+1}(x_1,\dots,x_t,\xi^{t+1}) | \mathcal{F}_t \right] \right\}$$

$$x_t \in X_t, A_{t,0}x_t + A_{t,1}(\xi_t)x_{t-1} = h_t(\xi_t)$$

for $t = 2, \ldots, T$, where $\Phi_{T+1}(x_1, \ldots, x_T, \xi^{T+1}) := 0$, $\mathcal{X}_1(\xi_1) := \{x_1 \in X_1 : A_{1,0}x_1 = h_1(\xi_1)\}$ and $P \in \mathcal{P}(\Xi)$ is the probability distribution of ξ .

 $\rightarrow \mathsf{The}$ integrand f depends on the probability measure $\mathbb P$ in a non-linear way !

Home Page
Title Page
Contents
•• ••
Page 55 of 69
Go Back
Full Screen
Close
Quit

Risk Functionals

A risk functional or risk measure ρ assigns a real number to any (real) random variable Y (possibly satisfying certain moment conditions). Recently, it was suggested that ρ should satisfy the following axioms for all random variables $Y, \tilde{Y}, r \in \mathbb{R}, \lambda \in [0, 1]$:

(A1)
$$\rho(Y + r) = \rho(Y) - r$$
 (translation-invariance),
(A2) $\rho(\lambda Y + (1 - \lambda)\tilde{Y}) \leq \lambda \rho(Y) + (1 - \lambda)\rho(\tilde{Y})$ (convexity)
(A3) $Y \leq \tilde{Y}$ implies $\rho(Y) \geq \rho(\tilde{Y})$ (monotonicity).

A risk functional ρ is called coherent if it is, in addition, positively homogeneous, i.e., $\rho(\lambda Y) = \lambda \rho(Y)$ for all $\lambda \ge 0$ and random variables Y.

Given a risk functional ρ , the mapping $\mathcal{D} = \mathbb{E} + \rho$ is also called deviation risk functional.

References: Artzner-Delbaen-Eber-Heath 99, Föllmer-Schied 02, Fritelli-Rosazza Gianin 02

Examples:

(a) Conditional Value-at-Risk or Average Value-at-Risk $\mathbb{A}V@R_{\alpha}$:

$$\begin{split} \mathbb{A} \mathbb{V} \mathbb{Q} \mathbb{R}_{\alpha}(Y) &:= \frac{1}{\alpha} \int_{0}^{\alpha} \mathbb{V} \mathbb{Q} \mathbb{R}_{u}(Y)(u) du = \frac{1}{\alpha} \int_{0}^{\alpha} G^{-1}(u) du \\ &= \inf \left\{ x + \frac{1}{\alpha} \mathbb{E}([Y + x]_{-}) : x \in \mathbb{R} \right\} \\ &= \sup \left\{ - \mathbb{E}(YZ) : \mathbb{E}(Z) = 1, 0 \le Z \le \frac{1}{\alpha} \right\} \end{split}$$

where $\alpha \in (0, 1]$, $\mathbb{VQR}_{\alpha} := \inf\{y \in \mathbb{R} : \mathbb{P}(Y \leq y) \geq \alpha\}$ is the Value-at-Risk, $[a]_{-} := -\min\{0, a\}$ and G the distribution function of Y.

Reference: Rockafellar-Uryasev 02

(b) Lower semi standard deviation corrected expectation:

 $\rho(Y) := -\mathbb{E}(Y) + (\mathbb{E}([Y - \mathbb{E}(Y)]_{-})^2)^{\frac{1}{2}}$

Reference: Markowitz 52

Multiperiod risk measurement

Let $\mathfrak{F} = \{\mathcal{F}_t : t = 1, \dots, T\}$ be a filtration generated by some stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathcal{F}_1 = \{\emptyset, \Omega\}$. A functional $\rho_{\mathfrak{F}}$ on $\mathcal{Z} = \times_{t=1}^T L_p(\Omega, \mathcal{F}, \mathbb{P})$ is called a multiperiod risk measure if the following conditions (i)–(iii) hold:

- (i) Monotonicity: if $z_t \leq \tilde{z}_t$ a.s, t = 1, ..., T, then $\rho_{\mathfrak{F}}(z_1, ..., z_T) \geq \rho_{\mathfrak{F}}(\tilde{z}_1, ..., \tilde{z}_T)$;
- (ii) Translation invariance: for each $r \in \mathbb{R}$ we have $\rho_{\mathfrak{F}}(z_1 + r, \dots, z_T + r) = \rho_{\mathfrak{F}}(z_1, \dots, z_T) r;$
- (iii) Convexity: for each $\lambda \in [0, 1]$ and $z, \tilde{z} \in \mathcal{Z}$ we have $\rho_{\mathfrak{F}}(\lambda z + (1 \lambda)\tilde{z}) \leq \lambda \rho_{\mathfrak{F}}(z) + (1 \lambda)\rho_{\mathfrak{F}}(\tilde{z}).$
- It is called coherent if in addition condition (iv) holds:
- (iv) Positive homogeneity: for each $\lambda \ge 0$ we have $\rho_{\mathfrak{F}}(\lambda z_1, \ldots, \lambda z_T) = \lambda \rho_{\mathfrak{F}}(z_1, \ldots, z_T).$

Quit

(Artzner-Delbaen-Eber-Heath-Ku 07)

A multiperiod risk measure $\rho_{\mathfrak{F}}$ is called information monotone if $\mathfrak{F} \subseteq \mathfrak{F}'$ (i.e. $\mathcal{F}_t \subseteq \mathcal{F}'_t$, t = 1, ..., T) implies

 $\rho_{\mathfrak{F}'}(z) \le \rho_{\mathfrak{F}}(z) \quad \forall z \in \mathcal{Z}.$

A multiperiod risk measure $\rho_{\mathfrak{F}}$ is time consistent if it is constructed by conditional risk mappings $\rho_t(\cdot|\mathfrak{F}^{(t)})$ from $\times_{\tau=t}^T L_p(\Omega, \mathcal{F}_t, \mathbb{P})$ to $L_p(\Omega, \mathcal{F}_t, \mathbb{P})$ with $\mathfrak{F}^{(t)} = \{\mathcal{F}_t, \dots, \mathcal{F}_T\}$, $t = 1, \dots, T$, such that $\rho_{\mathfrak{F}}(z) = \rho_1(z|\mathfrak{F}^{(1)})$ and if the conditions

$$\rho_t(z^{(t)}|\mathfrak{F}^{(t)}) \ge \rho_t(\tilde{z}^{(t)}|\mathfrak{F}^{(t)}) \text{ and } z_{t-1} \le \tilde{z}_{t-1}$$

imply $\rho_{t-1}(z^{(t-1)}|\mathfrak{F}^{(t-1)}) \ge \rho_{t-1}(\tilde{z}^{(t-1)}|\mathfrak{F}^{(t-1)})$ for all $t = 2, \ldots, T$.

Remark:

There appear different requirements in the literature instead of the translation invariance (ii).

(e.g. Fritelli-Scandalo 06, Pflug-Römisch 07)

Quit

Theorem: (dual representation) Let $\rho_{\mathfrak{F}} : \times_{t=1}^{T} L_p(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be proper (i.e. $\rho_{\mathfrak{F}}(z) > -\infty$ and $\operatorname{dom} \rho_{\mathfrak{F}} = \{z : \rho(z) < \infty\} \neq \emptyset$) and lower semicontinuous. Then $\rho_{\mathfrak{F}}$ is a multiperiod convex risk measure if and only if it admits the representation

$$\rho_{\mathfrak{F}}(z) = \sup \left\{ -\mathbb{E} \left[\sum_{t=1}^{T} \lambda_t z_t \right] - \rho_{\mathfrak{F}}^*(\lambda) : \lambda \in \mathcal{P}_{\rho}(\mathfrak{F}) \right\},\$$

where

$$\mathcal{P}_{\rho}(\mathfrak{F}) \subseteq \mathcal{D}_{T} = \left\{ \lambda \in \times_{t=1}^{T} L_{q}(\Omega, \mathcal{F}_{t}, \mathbb{P}) : \lambda_{t} \geq 0, \sum_{t=1}^{T} \mathbb{E}[\lambda_{t}] = 1 \right\}$$

with $\frac{1}{p} + \frac{1}{q} = 1$ is closed and convex, and $\rho_{\mathfrak{F}}^*$ is the conjugate of $\rho_{\mathfrak{F}}$. The functional $\rho_{\mathfrak{F}}$ is a multiperiod coherent risk measure if and only if the conjugate $\rho_{\mathfrak{F}}^*$ is the indicator function of $\mathcal{P}_{\rho}(\mathfrak{F})$.

Multiperiod extended polyhedral risk measures

A multiperiod risk measure $\rho_{\mathfrak{F}}$ on \mathcal{Z} is called extended polyhedral if there exist matrices $A_t, B_{t,\tau}$, vectors a_t, c_t , and functions $h_t(z) = (h_{t,1}(z), \ldots, h_{t,n_{t,2}}(z))^{\top}$ with $h_{t,i} : \mathcal{Z} \to \mathcal{Z}$ such that

$$\rho_{\mathfrak{F}}(z) = \inf \left\{ \mathbb{E} \left[\sum_{t=1}^{T} c_t^{\mathsf{T}} y_t \right] \middle| \begin{array}{l} y_t \in L_p(\Omega, \mathcal{F}_t, \mathbb{P}; \mathbb{R}^{k_t}), A_t y_t \leq a_t \\ \sum_{\tau=0}^{t-1} B_{t,\tau} y_{t-\tau} = h_t(z_t) \\ (t = 1, \dots, T) \end{array} \right\}$$

(Guigues-Römisch, SIOPT 12)

Motivation: Characterizing the largest class of multiperiod risk measures that maintains important theoretical and algorithmic properties when incorporated into (linear) multistage stochastic programs instead of the expectation functional. Most important case: h_t affine.

<u>First version</u>: $a_t = 0$, $B_{t,\tau}$ row vectors, h_t identity (Eichhorn-Römisch 05)

Home Page Title Page Contents Page 61 of 69 Go Back Full Screen Close Quit

Examples of multiperiod extended polyhedral risk measures

Let increasing risk measuring time steps t_j , $j = 1, \ldots, J$, with $t_J = T$, and weights $\gamma_j \ge 0$, $j = 1, \ldots, J$, with $\sum_{j=1}^J \gamma_j = 1$ be given.

(a) Weighted sum of Average Value-at-Risk at risk measuring time steps:

$$\rho_s(z) := \sum_{j=1}^J \gamma_j \mathbb{A} \mathsf{VOR}_\alpha(z(t_j)),$$

where $\mathbb{AVOR}_{\alpha}(z) = \inf_{r \in \mathbb{R}} [r + \frac{1}{\alpha} \mathbb{E}[z + r]^{-}].$

(c) Average Value-at-Risk of the weighted average at risk measuring time steps:

$$\rho_a(z) := \mathbb{A} \mathsf{VOR}_{\alpha} \Big(\sum_{j=1}^J \gamma_j z(t_j) \Big)$$

(d) Average Value-at-Risk of the minimum at risk measuring time steps:

$$\rho_m(z) := \mathbb{A} \mathsf{VOR}_\alpha\Big(\min_{j=1,\dots,J} z(t_j)\Big)$$

Home Page
Title Page
Contents
•• ••
Page 62 of 69
Go Back
Full Screen
Close
Quit

Risk-averse multistage stochastic optimization model:

$$\min_{x} \left\{ \rho(z) \left| \begin{array}{c} z_{t} = \sum_{\tau=1}^{t} b_{\tau}(\xi_{\tau})^{\top} x_{\tau} \\ x_{t} \in X_{t}, x_{t} \in L_{p}(\Omega, \mathcal{F}_{t}, \mathbb{P}; \mathbb{R}^{m_{t}}) \\ \sum_{\tau=0}^{t-1} A_{t,\tau}(\xi_{t}) x_{t-\tau} = g_{t}(\xi_{t}) \\ (t = 1, ..., T) \end{array} \right\} \right\}$$

Multiperiod extended polyhedral risk functional:

$$\rho(z) = \inf \left\{ \mathbb{E} \left[\sum_{t=1}^{T} c_t^\top y_t \right] \middle| \begin{array}{l} y_t \in L_p(\Omega, \mathcal{F}_t, \mathbb{P}; \mathbb{R}^{k_t}) \\ A_t y_t \leq a_t \\ \sum_{\tau=0}^{t-1} B_{t,\tau} y_{t-\tau} = h_t(z_t) \\ (t = 1, \dots, T) \end{array} \right\}$$

Equivalent risk-neutral multistage stochastic optimization model:

$$\min_{(y,x)} \left\{ \mathbb{E} \left[\sum_{t=1}^{T} c_t^\top y_t \right] \left| \begin{array}{l} y_t \in L_p(\Omega, \mathcal{F}_t, \mathbb{P}; \mathbb{R}^{k_t}), x_t \in L_p(\Omega, \mathcal{F}_t, \mathbb{P}; \mathbb{R}^{m_t}) \\ A_t y_t \leq a_t, x_t \in X_t \\ \sum_{\tau=0}^{t-1} B_{t,\tau} y_{t-\tau} = h_t(\sum_{\tau=1}^t b_\tau(\xi_\tau)^\top x_\tau) \\ \sum_{\tau=0}^{t-1} A_{t,\tau}(\xi_t) x_{t-\tau} = g_t(\xi_t) \\ (t = 1, \dots, T) \end{array} \right\} \right\}$$

Title Page Contents Page 63 of 69 Go Back Full Screen

Close

Quit

Home Page

Conditional risk mappings

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let \mathcal{F}_1 be a σ -field contained in \mathcal{F} . Let $\mathcal{Y} = L_p(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{Y}_1 = L_p(\Omega, \mathcal{F}_1, \mathbb{P})$ for some $p \in [1, +\infty)$, hence $\mathcal{Y}_1 \subseteq \mathcal{Y}$. All (in)equalities between random variables in \mathcal{Y} are intended to hold \mathbb{P} -almost surely.

A mapping $\rho : \mathcal{Y} \to \mathcal{Y}_1$ is called conditional risk mapping (with observable information \mathcal{F}_1) if the following conditions are satisfied for all $Y, \tilde{Y} \in \mathcal{Y}, Y^{(1)} \in \mathcal{Y}_1, \lambda \in [0, 1]$:

(i) $\rho(Y+Y^1) = \rho(Y) - Y^{(1)}$ (predictable translation-invariance), (ii) $\rho(\lambda Y + (1-\lambda)\tilde{Y}) \leq \lambda \rho(Y) + (1-\lambda)\rho(\tilde{Y})$ (convexity),

(iii) $Y \leq \tilde{Y}$ implies $\rho(Y) \geq \rho(\tilde{Y})$ (monotonicity).

The conditional risk mapping ρ is called positively homogeneous if $\rho(\lambda Y) = \lambda \rho(Y)$, $\forall \lambda > 0$. lower semicontinuous if $\mathbb{E}(\rho(\cdot)\mathbf{1}_B) : \mathcal{Y} \to \mathbb{R}$ is lower semicontinuous for every $B \in \mathcal{F}_1$.

Home Page Title Page Contents Page 64 of 69 Go Back Full Screen Close Quit

Examples:

(a) Conditional expectation: The defining equation for the conditional expectation $\mathbb{E}(\cdot | \mathcal{F}_1)$ is

 $\mathbb{E}(\mathbb{E}(Y|\mathcal{F}_1) \mathbb{1}_B) = \mathbb{E}(Y\mathbb{1}_B) \quad (\forall B \in \mathcal{F}_1).$

It is a mapping from $L_p(\mathcal{F})$ onto $L_p(\mathcal{F}_1)$ for $p \in [1, \infty)$.

(b) Conditional average value-at-risk: $\rho(Y|\mathcal{F}_1) = \mathbb{A} \mathsf{VOR}_{\alpha}(Y|\mathcal{F}_1)$ is defined on $L_1(\mathcal{F})$ by the relation

$$\mathbb{E}(\rho(Y|\mathcal{F}_1)\mathbf{1}_B) = \sup\{-\mathbb{E}(YZ) : 0 \le Z \le \frac{1}{\alpha}\mathbf{1}_B, \mathbb{E}(Z|\mathcal{F}_1) = \mathbf{1}_B\}$$

for every $B \in \mathcal{F}_1$. The mapping $Y \mapsto \mathbb{A} V @ \mathsf{R}_{\alpha}(Y | \mathcal{F}_1)$ is positively homogeneous, continuous and satisfies (i)–(iii).

Composition of conditional risk mappings

Let a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a filtration $\mathfrak{F} = (\mathcal{F}_0, \ldots, \mathcal{F}_T)$ of σ -fields \mathcal{F}_t , $t = 0, \ldots, T$, with $\mathcal{F}_T = \mathcal{F}$ be given. We consider the Banach spaces $\mathcal{Y}_t := L_p(\mathcal{F}_t)$ of \mathcal{F}_t -measurable (real) random variables for $t = 1, \ldots, T$ and some $p \in [1, +\infty)$.

Let conditional risk mappings $\rho_{t-1} := \rho(\cdot | \mathcal{F}_{t-1})$ from \mathcal{Y}_T to \mathcal{Y}_{t-1} be given for each $t = 1, \ldots, T$. We introduce a multi-period risk functional ρ on $\mathcal{Y} := \times_{t=1}^T \mathcal{Y}_t$ by nested compositions and a family $(\rho^{(t)})_{t=1}^T$ of single-period risk functionals $\rho^{(t)}$ by compositions of the conditional risk mappings $\rho_{t-1}, t = 1, \ldots, T$, namely,

$$\rho(Y;\mathfrak{F}) := \rho_0[Y_1 + \dots + \rho_{T-2}[Y_{T-1} + \rho_{T-1}(Y_T)] \cdots]
\rho^{(t)}(Y_T) := \rho_0 \circ \rho_1 \circ \dots \circ \rho_{t-1}(Y_T)$$

for every $Y \in \mathcal{Y}$ and $Y_T \in \mathcal{Y}_T$.

Proposition: (Ruszczyński-Shapiro)

Then $\rho(\cdot; \mathfrak{F}) : \mathcal{Y} \to \mathbb{R}$ is a multi-period risk functional and every $\rho^{(t)} : \mathcal{Y}_T \to \mathbb{R}$ is a (single-period) risk functional. Moreover, it holds

 $\rho(Y;\mathfrak{F}) = \rho^{(T)}(Y_1 + \dots + Y_T).$

The functionals ρ and $\rho^{(t)}$, $t = 1, \ldots, T$, are positively homogeneous if all ρ_t are positively homogeneous.

Example:

We consider the conditional average value-at-risk (of level $\alpha \in (0,1])$ as conditional risk mapping

$$\rho_{t-1}(Y_t) := \mathbb{A} \mathsf{VOR}_{\alpha}(\cdot | \mathcal{F}_{t-1})$$

for every $t = 1, \ldots, T$. Then

 $n \mathbb{A} \mathsf{VOR}_{\alpha}(Y; \mathfrak{F}) = \mathbb{A} \mathsf{VOR}_{\alpha}(\cdot | \mathcal{F}_{0}) \circ \cdots \circ \mathbb{A} \mathsf{VOR}_{\alpha}(\cdot | \mathcal{F}_{T-1}) \left(\sum_{t=1}^{T} Y_{t} \right)$

is a multi-period risk functional and is called nested average valueat-risk.

Proposition: (Pflug-Römisch 07)

The nested $n \mathbb{A} \vee \mathbb{Q} \mathbb{R}$ has the following dual representation:

$$n\mathbb{A} \mathsf{VOR}_{\alpha}(Y;\mathfrak{F}) = \sup\{-\mathbb{E}[(Y_1 + \dots + Y_T)Z_T] : 0 \le Z_t \le \frac{1}{\alpha}Z_{t-1} \\ \mathbb{E}(Z_t|\mathcal{F}_{t-1}) = Z_{t-1}, Z_0 = 1, t = 1, \dots, T\}$$

The (dual) process (Z_t) is a martingale and nAV@R is not polyhedral and not information monotone, but given by a linear stochastic program (with functional constraints).

Risk-averse multistage stochastic programs: Replace the conditional expectation in the dynamic programming representation by conditional risk mappings $\rho(\cdot | \mathcal{F}_t)$

$$\Phi_t(x_1, \dots, x_{t-1}, \xi^t) := \inf \left\{ \langle b_t(\xi_t), x_t \rangle + \rho \left(\Phi_{t+1}(x_1, \dots, x_t, \xi^{t+1}) | \mathcal{F}_t \right) \\ x_t \in X_t, A_{t,0} x_t + A_{t,1}(\xi_t) x_{t-1} = h_t(\xi_t) \right\}$$

for $t = 2, \ldots, T$, where $\Phi_{T+1}(x_1, \ldots, x_T, \xi^{T+1}) := 0$.

Home Page Title Page Contents Page 68 of 69 Go Back Full Screen Close Quit

Contents (Part II)

- (11) Stability of stochastic programs
- (12) Monte Carlo approximations of stochastic programs
- (13) Generation and handling of scenarios
- (14) Numerical solution of stochastic programs
- (15) Practical Application
- (16) Future research directions

Home Page
Title Page
Contents
•• >>
Page 69 of 69
Go Back
Full Screen
Close
Quit