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1. Introduction

We consider a typical German municipal power utility, which has

to serve an electricity demand and a heat demand of customers in

a city and its vicinity.
Power 
Exchange
(e.g, EEX)

Spot Market

Future Market

Municipal Power Utility

Mid­term
Contract
with large

Power
ProducerCHP
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Scheme of the optimization model components

The power utility owns a combined heat and power (CHP) produc-

tion facility that can serve the heat demand completely and the

electricity demand partly. Further electricity can be obtained by

purchasing volumes for each hour at the (day-ahead) spot market

of the European Energy Exchange (EEX), and by signing a supply

contract for a medium term horizon with a larger power producer.



Home Page

Title Page

Contents

JJ II

J I

Page 3 of 27

Go Back

Full Screen

Close

Quit

Portfolio:

• own power production,

• (mid-term) supply contract (no, fix, flexible),

• (day-ahead) spot market (EEX),

• electricity futures.

Objective:

Maximize mean overall revenue (and minimize risk)

Time horizon:

One year with hourly time discretization
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Uncertainty:

electricity demand, heat demand, spot market prices, (future prices)

over time (represented by a variety of scenarios with their probabil-

ities)

Modeling requirement:
recursive observation and decision (represented by branchings of

scenarios at prescribed time points)

Tree of scenarios for the future
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2. Mathematical Model

Let {ξt}T
t=1 be a discrete-time stochastic data process defined on

some probability space (Ω,F , IP ) and with ξ1 deterministic. The

stochastic decision xt at period t is assumed to be measurable with

respect to Ft := σ(ξ1, . . . , ξt) (nonanticipativity).

Multistage stochastic optimization model:

min

IE

[
T∑

t=1

〈bt(ξt), xt〉

]∣∣∣∣∣∣
xt ∈ Xt, t = 1, . . . , T, A1,0x1 = h1(ξ1),

xt is Ft −measurable, t = 1, . . . , T,

At,0xt + At,1xt−1 = ht(ξt), t = 2, ., T


where the sets Xt, t = 1, . . . , T , are polyhedral cones, the vectors

bt(·) and ht(·) depend affine linearly on ξt.

If the process {ξt}T
t=1 has a finite number of scenarios, they exhibit

a scenario tree structure.
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3. Data process approximation by scenario trees

The process {ξt}T
t=1 is approximated by a process forming a scenario

tree being based on a finite set N ⊂ IN of nodes.
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Scenario tree with T = 5, N = 22 and 11 leaves

n = 1 root node, n− unique predecessor of node n, path(n) =

{1, . . . , n−, n}, t(n) := |path(n)|, N+(n) set of successors to n,

NT := {n ∈ N : N+(n) = ∅} set of leaves, path(n), n ∈ NT ,

scenario with (given) probability πn, πn :=
∑

ν∈N+(n) π
ν probability

of node n, ξn realization of ξt(n).
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Tree representation of the optimization model

min

{∑
n∈N

πn〈bt(n)(ξ
n), xn〉

∣∣∣∣xn ∈ Xt(n), n ∈ N , A1,0x
1 = h1(ξ

1)

At(n),0x
n + At(n),1x

n− =ht(n)(ξ
n), n ∈ N

}

How to solve the optimization model ?

- Standard software (e.g., CPLEX)

- Decomposition methods for (very) large scale models

(Ruszczynski/Shapiro (Eds.): Stochastic Programming, Handbook, 2003)

Open questions:

- How to model and incorporate risk ?

- How to generate (multivariate) scenario trees ?
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4. Generation of scenario trees

(i) Development of a statistical model for the stochastic process

ξ (parametric [e.g. time series model], nonparametric [e.g.

resampling]) and generation of simulation scenarios;

(ii) Construction of a scenario tree out of the statistical model or

of the simulation scenarios.
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Approaches for (ii):

(1) Bound-based approximation methods,

(Frauendorfer 96, Edirisinghe 99, Casey/Sen 05).

(2) Monte Carlo-based schemes (inside or outside decomposition

methods) (e.g. Shapiro 03, 06, Higle/Rayco/Sen 01, Chiralaksanakul/Morton 04).

(3) the use of Quasi Monte Carlo integration quadratures

(Pennanen 05, 06).

(4) EVPI-based sampling schemes (inside decomposition schemes)

(Dempster/Thompson 99).

(5) Moment-matching principle (Høyland/Wallace 01, Høyland/Kaut/Wallace 03).

(6) (Nearly) best approximations based on probability metrics

(Pflug 01, Hochreiter/Pflug 02, Gröwe-Kuska/Heitsch/Römisch 01, Heitsch/Römisch 05).

Survey: Dupačová/Consigli/Wallace 00



Home Page

Title Page

Contents

JJ II

J I

Page 10 of 27

Go Back

Full Screen

Close

Quit

5. Stability of multistage models

Stability studies the behavior of the optimization problem if the

input ξ is approximated.

We assume that the stochastic input process ξ = {ξt}T
t=1 belongs

to the linear space ×T
t=1Lr(Ω,F , IP ; IRd) for some r > 1. The op-

timization model is regarded in the space ×T
t=1Lr′(Ω,F , IP ; IRmt)

for some r′ > 1, where both spaces are endowed with the norms

‖ξ‖r := (

T∑
t=1

IE[|ξt|r])
1
r

‖x‖r′ := (

T∑
t=1

IE[|xt|r
′
])

1
r′

respectively. Here, |·| denotes some norm on the relevant Euclidean

spaces and r′ is defined by

r′ :=

{
r

r−1 , if costs are random ,

r , if only right-hand sides are random.
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Let v(ξ) denote the optimal value of the stochastic optimization

model.

Assumptions:
(A1) IE[|ξ|r] < ∞,

(A2) The optimization model has relatively complete recourse,

(A3 The objective function is level-bounded locally uniformly at ξ.

Theorem: (Heitsch/Römisch/Strugarek 05)

Let (A1), (A2) and (A3) be satisfied.

There exist constants L > 0 and δ > 0 such that the estimate

|v(ξ)− v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + Df(ξ, ξ̃))

holds for all ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ.

Here, Df is the filtration distance

Df(ξ, ξ̃)=inf

T−1∑
t=2

max{‖xt − IE[xt|Ft(ξ̃)]‖r′, ‖x̃t − IE[x̃t|Ft(ξ)]‖r′},

where x and x̃ are solutions of the stochastic optimization problem.
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6. Constructing scenario trees

Let ξ be the original stochastic process and ξf a stochastic pro-

cess consisting of a fan of (multivariate) scenarios (paths) ξi =

(ξi
1, . . . , ξ

i
T ) with probabilities πi, i = 1, . . . , N , i.e., all scenarios

coincide at t = 1, i.e., ξ1
1 = . . . = ξN

1 =: ξ∗1 .

The fan may be regarded as a scenario tree with 1+N(T−1) nodes.

We assume that r ∈ IN is adapted to the underlying stochastic pro-

gram with input process {ξt}T
t=1 by stability arguments.

Idea: Recursive scenario reduction and bundling on [1, t], t =

2, . . . , T .
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 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

Illustration of the forward tree construction for an example including T=5 time periods starting

with a scenario fan containing N=58 scenarios

<Start Animation>

file:C:/anim05/animation.html
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 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

a) Forward tree construction with filtration level 0.35

 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

b) Forward tree construction with filtration level 0.45

Yearly demand-price scenario trees with relative tolerance 0.25
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 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

a) Modified forward tree construction with filtration level 0.6

 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

b) Modified forward tree construction with filtration level 0.7

Yearly demand-price scenario trees with relative reduction level 0.5 (Heitsch/Römisch 05)
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7. Risk functionals

Let z be a real random variable on some probability space (Ω,F , IP ).

Assume that z is the revenue depending on a decision in some

stochastic optimization model. The traditional objective of such

models consists in maximizing the expected revenue, i.e.,

max IE[z].

However, the revenue z of some or many decisions might have fat

tails, in particular, to the left. Looking only at the expectation of

z hides any tail information.

Examples of risk functionals:

Upper semivariance:

sV+(z) := IE[[IE[z]− z]2+] = IE[max{IE[z]− z, 0}2]

Value-at-Risk:

V aRp(z) := − inf{r ∈ IR : IP (z ≤ r) ≥ p} (p ∈ (0, 1))
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Conditional Value-at-risk:

CV aRp(z) := mean of the tail distribution function Fp

where Fp(t) :=

{
1 t ≥ −V aRp(z),

F (t)
p t < −V aRp(z)

and

F (t) := IP ({z ≤ t}) is the distribution function of z.

-CVaR -VaR
0

1

p

V aRp(z) and CV aRp(z) for a continuously distributed z



Home Page

Title Page

Contents

JJ II

J I

Page 18 of 27

Go Back

Full Screen

Close

Quit

Axiomatic characterization of risk:
Let Z denote a linear space of real random variables on some prob-

ability space (Ω,F , IP ). We assume that Z contains the constants.

A functional ρ : Z → IR is called a risk measure if it satisfies the

following two conditions for all z, z̃ ∈ Z :

(i) If z ≤ z̃, then ρ(z) ≥ ρ(z̃) (monotonicity).

(ii) For each r ∈ IR we have ρ(z + r) = ρ(z)− r

(equivariance).

A risk measure ρ is called convex if it satisfies the condition

ρ(λz + (1− λ)z̃) ≤ λρ(z) + (1− λ)ρ(z̃)

for all z, z̃ ∈ Z and λ ∈ [0, 1].

A convex risk measure is called coherent if it is positively homoge-

neous, i.e., ρ(λz) = λρ(z) for all λ ≥ 0 and z ∈ Z .

References: Artzner/Delbaen/Eber/Heath 99, Föllmer/Schied 02
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8. Multiperiod polyhedral risk functionals

When (real) random variables z1, ..., zT with zt ∈ Lp(Ω,Ft, IP ),

1 ≤ p ≤ +∞, are considered that evolve over time and unveil the

available information with the passing of time, it may become nec-

essary to use multiperiod risk functionals. We consider the filtration

of σ-fields Ft = σ{z1, . . . , zT}, t = 1, ..., T , i.e., Ft ⊆ Ft+1 ⊆ F ,

and F1 = {∅, Ω}, i.e. that z1 is always deterministic.

Definition: (Artzner et al. 01, 02)

A functional ρ on ×T
t=1Lp(Ω,Ft, IP ) is called multiperiod risk func-

tional if

(i) If zt ≤ z̃t a.s., t = 1, ..., T , then ρ(z1, ..., zT ) ≥ ρ(z̃1, ..., z̃T )

(monotonicity),

(ii) For each r ∈ IR we have ρ(z1 + r, ..., zT + r) = ρ(z) − r

(equivariance),

are satisfied. It is called a multiperiod coherent risk measure, if

ρ is convex and positively homogeneous on ×T
t=1Lp(Ω,Ft, IP ) in

addition.
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It is a natural idea to introduce risk functionals as optimal values

of certain multistage stochastic programs.

Definition: A multiperiod risk functional ρ on ×T
t=1Lp(Ω,Ft, IP )

is called polyhedral if there are kt ∈ IN , ct ∈ IRkt, t = 1, . . . , T ,

wtτ ∈ IRkt−τ , t = 1, . . . , T , τ = 0, ..., t− 1, and polyhedral cones

Yt ⊂ IRkt, t = 1, . . . , T , such that

ρ(z) = inf

{
IE

[
T∑

t=1

〈ct, yt〉

]∣∣∣∣ yt ∈ Lp(Ω,Ft, IP ; IRkt), yt ∈ Yt∑t−1
τ=0〈wt,τ , yt−τ〉 = zt, t = 1, . . . , T

}
.

Remark: A convex combination of (negative) expectation and of

a multiperiod polyhedral risk functional is again a multiperiod poly-

hedral risk functional.

Polyhedral risk functionals preserve linearity and decomposition struc-

tures of optimization models.

(Eichhorn/Römisch 05)
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Theory: Characterization of coherent multiperiod polyhedral risk

functionals based on duality results.

Example: (Multiperiod extensions of CVaR)

A first idea is to incorporate the Conditional-Value-at-Risk at all

time periods and to consider the weighted sum

ρ1(z) :=

T∑
t=2

γtCV aRαt(zt) =

T∑
t=2

γt inf
r∈IR

{
r +

1

αt
IE

[
(r + z)−

]}
with some weights γt ≥ 0,

∑T
t=1 γt = 1, and some confidence

levels α2, α3, ..., αT ∈ (0, 1). Here, a− = max {0,−a}.
Then ρ is a coherent multiperiod polyhedral risk functional.

By interchanging sum and minimization one arrives at the variant

ρ2(z) = inf
r∈IR

{
r +

T∑
t=2

βtIE
[
(zt + r)−

]}
.

It is also coherent and polyhedral.
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9. Electricity portfolio management: statistical models
and scenario trees

For the stochastic input data of the optimization model here (elec-

tricity demand, heat demand, and electricity spot prices), a very

heterogeneous statistical model is employed. It is adapted to his-

torical data in the following way:

- cluster classification for the intra-day (demand and price) profiles

- 3-dimensional time series model for the daily average values (de-

terministic trend functions, a trivariate ARMA model for the (sta-

tionary) residual time series)

- simulation of an arbitrary number of three dimensional sample

paths (scenarios) by sampling the white noise processes for the

ARMA model and by adding on the trend functions and matched

intra-day profiles from the clusters afterwards.

- generation of scenario trees by the forward tree construction tech-

nique
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10. Electricity portfolio management: Results

Test runs were performed on real-life data of the utility DREWAG

Stadtwerke Dresden GmbH leading to three different linear pro-

grams (supply contract: no, flexible, fix) containing T = 365 ·24 =

8760 time steps, a scenario tree with 40 demand-price scenarios and

about N = 150.000 nodes. The objective function is of the form

Minimize γρ(z)− (1− γ)IE[zT ]

with a (multiperiod) risk functional ρ with coefficient γ ∈ [0, 1]

(γ = 0 corresponds to no risk). IE[zT ] denotes the overall expected

revenue.

Result:
No contract is the best alternative in terms of expected revenue

and, surprisingly, in terms of risk!

The model is implemented and solved with ILOG CPLEX 9.1 on a 2 GHz Linux PC with 1 GB

memory.
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