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Introduction

e Applied stochastic programming models in finance, production and energy
often contain random vectors of high dimension d.

e Computational methods for solving stochastic programs require a discretiza-
tion of the underlying probability distribution induced by a numerical inte-
gration scheme for computing expectations.

e Discretization means scenario or sample generation.

e Standard approach: Variants of Monte Carlo (MC) methods, but the con-
vergence rate O(ﬁ) for sample size n is impossibly slow and the dimensions
of the Monte Carlo approximations grow by the factor n d.

e Two recently considered alternative approaches to scenario generation:

(a) Quasi-Monte Carlo methods
(Koivu-Pennanen 05, Pennanen 09, Homem-de-Mello 08, Ledvey-Romisch 15).

(b) Sparse grid quadrature rules (Chen-Mehrotra 08).



Quadrature rules with sparse grids
We consider the unit cube [0, 1]? in RY. Let a sequence of nested grids in [0, 1]
be given, i.e.,

= ={g,....&,CcET C0,1] (ieN),

for example, the dyadic grid

E@':{%:j:m,...,?} (i € N).

Then the point set in [0, 1]? suggested by Smolyak (Smolyak 63) is
H(q,d):= |J EZ'x---xEZ4 (qeN)
2?21 1j=q

and called a sparse grid in [0, 1]%. Let n = n(q, d) denote the number of points
in H(q,d). In case of dyadic grids in [0, 1] the set H(q,d) consists of all d-
dimensional dyadic grids with product of mesh sizes given by %
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The corresponding tensor product quadrature rule for n > d on [0, 1]¢ (with the
Lebesgue measure \%) is of the form

miy m, d
Quagaad =D (1" (q_| ) S S Len ] ol
q—d+1<]i|<q J1=1 Ja=1 =1
where [i| = 320 i, n (q,d) is the number of quadrature knots and the co-
efficients a (j =1,....,my, 1l = 1,...,d) are weights of d one-dimensional

quadrature rules

W

/f e ~ QU(f) = Z dFED (1=1,....d).

The product weights are denoted by wy, k =1,...,n(q, d), and with the bijective
mapping
{gkk:L Q7 }H{ ]17"' ]lzlaamzlaq_d—i_lg‘”SQ}

the tensor product quadrature rule (4.4 7d(f) may be rewritten as

n(q,d)
() =D wef(€")
k=1



Even if the one-dimensional weights are positive, some of the weights w; become
negative. Hence, an interpretation as discrete probability measure is not possible!

Example: Consider the classical Clenshaw-Curtis rule Q* with m; = 1,
m; =21 +1,i=2,....d, & =0 and

g=11—-cos™) (j=1,...,m;i=2,...,d)

mi—l
and the weights aé-, j=1,...,my be defined such that Q' is exact for all uni-
variate polynomials of degree at most m;, 2 = 1, ..., d (Novak-Ritter 96).

Proposition: [|Q,,(,.4) 4]/« < ca(logn(g,d))”* for some ¢q > 0 and fixed d.

To present a convergence result for sparse grid quadratures we consider the
Sobolev space with dominating mixed smoothness

ollel £ ;
: < :
g € La(0.1%, lallo < 7}

W (0, 1]4) = { f:[0,1¢ = R

2,mix

It is a tensor product space and a kernel reproducing Hilbert space for several
variants of inner products.



For example, in case 7 = 1, one may consider the weighted kernel K ,

Kdv X y HKlyL xuyz ZC » Y S [Oa 1]d)

For the linear space W, _ ([0, 1]) of all absolutely continuous functions on [0, 1]
with derivatives belonging to Lo(]0, 1]) a weighted inner product is

<f,g>7=/1f(x)d:c/ 2)ds + /f

with the corresponding kernel (Thomas-Agnan 96)

Kialw,) = 14758l = o) + Bu(e) Balw)

where Bj(z) = x — 5 and Bs(z) = 2 —  + ¢ are Bernoulli polynomials.

Theorem: (Gerstner Grlebel 98, Novak-Ritter 96)
If f belongs to W2 """ 0, 1]9), it holds

F(€)de — Zwkf < Crall fllann " (log ) @O+

[0,1]




Quasi-Monte Carlo methods

We consider the approximate computation of
Io(f) = f(&)d¢
[0,1]¢
by a Quasi-Monte Carlo (QMC) algorithm

Qulf) == 1€

with (non-random) points ¢/, i = 1,...,n, from [0, 1]%.
We assume that f belongs to a linear normed space IF; of functions on [0, 1]¢
with norm ||-||; and unit ball B, such that I, is a linear bounded functionals on IF,.

Worst-case error of (), over By:

e(Qn) = sup |Is(f) — Qu(f)]

JEBy

If IF; is a kernel reproducing Hilbert space, there exists h, € IF; such that

e(Qn) = [[n]la.



There are two main groups of QMC methods:
(Dick-Pillichshammer 10, Dick-Kuo-Sloan 13, Leobacher-Pillichshammer 14)

(1) Digital nets and sequences,

(2) Lattice rules.

Specific digital sequences:

Sobol" sequence (Sobol’ 67);

Faure sequence (Faure 82);

classical Niederreiter sequences (Niederreiter 87);

generalized Niederreiter sequences (Niederreiter 05)

include both Sobol’ and Faure constructions as special cases;
Niederreiter-Xing sequences (Niederreiter-Xing 95-02).

Specific rank-1 lattices:

{(i—1>

g}, 1=1,...,n,
n

where g € Z% is the generator of the lattice and the braces {-} mean taking
componentwise the fractional part.



Randomized QMC methods

A randomized version of a QMC point set has the properties that

(i) each point in the randomized point set has a uniform distribution over [0, 1)¢
(uniformity),

(i) the QMC properties are preserved under the randomization with probability
one (equidistribution).

(Owen 95, L'Ecuyer-Lemieux 02, Dick-Pillichshammer 10)

Examples of such techniques are

(a) random shifts of lattice rules,

(b) scrambling, i.e., random permutations of the integers Z; = {0,1,...,b— 1}
applied to the digits in b-adic representations,

(c) affine matrix scrambling which generates random digits by random linear
transformations of the original digits, where the elements of all matrices and vec-
tors are chosen randomly, independently and uniformly over Z,.

The two properties (i) and (ii) allow for error estimates and may lead to improved convergence
properties compared to the original QMC method.
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Comparison of n = 27 Monte Carlo Mersenne Twister points and randomly binary shifted Sobol’ points in
dimension d = 500, projection (8,9)
Randomly scrambled Sobol’ sequences admit the following root mean-
1,...,1
square quadrature error convergence rate for f € Iy = Wik )([O, 1]%)

2,7y, mix

sup /E[Qu(@)(f) — Li(f)? < Can2(logn) = .

feByg
(Dick-Pillichshammer 10, Theorem 13.25)



Randomly shifted lattice rules

If /A is a random vector having uniform distribution on [0, 1]%, put

LS (Y sa))

Theorem:

(1,...,1)
Let 7 be prime, Fy = W, 71.([0,1)7).
Then g € Z¢ can be constructed component-by-component such that for any
5 € (0 ,2] there exists a constant C'(6) > 0 such that the root mean-square
worst-case quadrature error attains the optimal convergence rate

sup v/ E[Q,(w)(f) — Lu(f)]? < C(6)n 1,

JE€By

where the constant C(¢§) increases when § decreases, but does not depend on
the dimension d, if the sequence (v;) satisfies the condition

o0 1
d "V <0 (eg = )

(Sloan-Kuo-Joe 02, Kuo 03, Nuyens-Cools 06)



ANOVA decomposition of multivariate functions and effective
dimension

Idea: Use decompositions of f, where most of the terms are smooth, but hope-
fully only some of them relevant.

Let ® = {1,...,d} and f € Ly ,(R?) with p(&) =[], p; (&), where

FeLyl®) [ IFOPOE <0 (21

Let the projection P, k € 3, be defined by

(Pof)(E) = / FEns- oy, 6oty E)pu(s)ds (€ € R,

Clearly, P f is constant with respect to &;.. For u C ® we write

P.f = (T12) ),

keu
where the product means composition, and note that the ordering within the
product is not important because of Fubini's theorem. The function P,f is
constant with respect to all x, k € wu.



ANOVA-decomposition of f:

F=> fu,

where fq) = Id(f) = P@(f) and recur5|ve|y (Kuo-Sloan-Wasilkowski-Wozniakowski 10)
o= Y HHP £ = PLf) + DR (P,
vCu vCU

where P_, and P,_, mean integration with respect to {;, 7 € ®\uwand j € u\v,
respectively. The second representation motivates that f, is essentially as smooth

as P_,(f).

If f belongs to Ly ,(R?), its ANOVA terms { f, }.co are orthogonal in Ly ,(R%).

We set o*(f) = || f — Id(f)HQL2 and o2(f) = Hqu% , and have
a*(f) = 1%, - = ) o
DAuCD

oa(f)
o2(f)

The normalized ratios serve as indicators for the importance of £“ in f.



Owen's superposition (truncation) dimension distribution of f: Probability mea-
sure vg (vr) defined on the power set of D

vs(s) ;:Z% (VT(S): > ‘;Eg) (s €D).

lu|=s max{j:jEu}=s

Effective superposition (truncation) dimension dg(e) (dr(e)) of f is the (1 —¢)-
quantile of vg (v7):

lu|<s
dr(e) =min{s€D: > ol(f) > (1-9o’())}
uC{1,...,s}
It holds
mac{[7= 30 Al |- X A, )< Ve
lu|<dg(e) uC{l,....dp(e ’

(Caflisch-Morokoff-Owen 97, Owen 03, Wang-Fang 03)



Integrands of two-stage linear stochastic programs

We consider the linear two-stage stochastic program

min { / flx,E)P(dE) : x € X},
where f is extended real-valued defined on R™ x R? given by

fl@,&) = (¢, x) + D(q(&), h(§) — T(§x), (z,§) € X X E,
c € R™, X C R™ and = C R? are convex polyhedral, W is an (r, 77)-matrix, P
is a Borel probability measure on =, and the vectors ¢(£) € R™, h(§) € R” and

the (r, m)-matrix T'(&) are affine functions of &, ® is the second-stage optimal
value function

O(u,t) = inf{(u,y) : Wy =t,y 2 0} ((u,t) € R™ xR),
Let posW =W (R"), D={u e R™":{z e R": W'z < u} # 0}

Assumptions:
(A1) (&) —T(&)x € posW and q(&) € D for all (z,£) € X x =
(A2) [ [[E]PP(d€) < oo



Lemma: (Walkup-Wets 69, NoZitka-Guddat-Hollatz-Bank 74)

® is finite, polyhedral and continuous on the (724 r)-dimensional convex polyhe-
dral cone D x pos W and there exist (7, m)-matrices C'; and (m+1)-dimensional
convex polyhedral cones KC;, 7 =1, ..., ¢, such that

(
UICj = DxposW and int/C;NintK; =0, i # j,

j=1
d(u,t) = (Cju,t), foreach (u,t) €k, j=1,..,¢,
d(u,t) = max, (Cju,t) .

j=1,...,

The function ®(u, -) is convex on pos W for each u € D, and (-, ) is concave
on D for each ¢t € posW. The intersection C; N K;, ¢ # j, is either equal to
{0} or contained in a (m+r — 1)-dimensional subspace of R"*" if the two cones
are adjacent.

Hence, the two-stage integrands are of the form

f(@,€) = {c;x) + max (Cjq(§), (&) = T(E)z) ((#,§) € X x =).

.....

f@,8) = (¢, x) + (Cjq(€), h(&) = T(&)x) if (q(&), h(&) — T(€)z) € K.



ANOVA decomposition of two-stage integrands

Assumptions: (Al), (A2) and

(A3) P has a density of the form p(¢) =[], pi(&) (€ € R?) with continuous
marginal densities p;, i € 3.

(A4) All common faces of adjacent convex polyhedral sets

Zj(@) ={§ €= (a6, ME) —T()r) e K} (G=1,....,0)

do not parallel any coordinate axis for all x € X (geometric condition).

Proposition:
(A1) implies that two-stage integrands

fo(&) = f(x, &) = {¢, ) + ®(q(£), h(&) = T(€)z) (v € X,£€EF)
are continuous and piecewise linear-quadratic.
For each z € X, f(z,-) is linear-quadratic on each convex polyhedral set =;(x),
j=1,...,0 ltholds int=;(x) # 0, int =;(x) N int =;(z) = 0, ¢ # 7, and the
sets Ej(x) 73 =1,...,f, decompose =. Furthermore, the intersection of two
adjacent sets =;(z) and Z;(x), ¢ # j, is contained in some (d — 1)-dimensional
affine subspace.



To compute projections Py f for k € ©,let § € R, ¢ =1,...,d, @ # k, be
given' We set 5/{ - (517 cee 7€k—17 gk‘—{—l) st 7€d) and

Eu(s) = (&1, ..., 661,85, &hs1, ..., &) €ERYT (s €R).

We fix x € X and consider the one-dimensional affine subspace {{;(s) : s € R}:

=3(x)

€1(s)

S1 S92

EQ($) El($>

Example with d = 2 = p, where the polyhedral sets are cones

It meets the nontrivial intersections of two adjacent polyhedral sets =;(z) and
=;(z), i # j, at finitely many points s;, ¢ = 1,...,p if all (d — 1)-dimensional
subspaces containing the intersections do not parallel the kth coordinate axis.



The s; = 5,(€%), i = 1,..., p, are affine functions of £*. It holds

p
S; = — gdfﬁ—al (t=1,...,p)

=12k I
for some a; € R and g; € R? belonging to an intersection of polyhedral sets.
Proposition:

Let £k € ®, © € X and assume (Al1)—(A4).
For every £ the kth projection P f at & has the explicit representation

PG+ 2 si6w)
Ppf(€ szj(f; ) / s’ pr(s)ds,
i=1 j=0 si—1(&;)
where sy = —00, Sp+1 = +00 and p;;(+; ) are polynomials in ¥ of degree 2 — 7,

7 = 0,1,2, with coefficients depending on x, and is continuously differentiable
on RY. P, f is s-times continuously differentiable almost everywhere on R? if the
marginal density p; belongs to C*"1(R).



Theorem:
Let x € X, assume (Al)—(A4) and f = f(x,-) be the two-stage integrand.
Then the second order ANOVA approximation of f

d
fP=>"f.  where  f=fP4>"Ff,

lu|<2 |u|=3

belongs to W, 1)(Rd) if all marginal densities p;, k € ©, belong to C''(R).

2,p,mix

Remark:
The second order ANOVA approximation %) is a good approximation of f if the
effective superposition dimension dg(e) is at most 2. Then

d d
|32 4], = 32 16l < o'

|u|=3 7 |u|=3

1,..., 1) (Rd)

,mix
Hence, a favorable behavior of randomly shifted lattice rules may be expected.

and f belongs essentially to the tensor product Sobolev space WQ(



Example: Let m = 3, d = 2, P satisfy (A2) and (A3), h(§) =&, ¢ and T be
fixed and W be given such that (Al) is satisfied and the dual feasible set is

{ZERQZ—Zl—FZQSl,Zl—i—ZQS1,—22§0}.

ICy Ky

Dual feasible set, its vertices v/ and the normal cones K; to its vertices

The function ® and the integrand are of the form

O(t) = :12 (v t) = max{ty, —t1, to} = max{|t1|, {2}

f(&) = (¢, x) + B(§ = Tx) = (¢, x) + max{|& — [Tz]s, & — [Tz]2}

and the convex polyhedral sets are =(z) = Tx + K;, j = 1,2,3.
The ANOVA projection P f is in C1, but P, f is not differentiable.



Quasi-Monte Carlo error estimates

If the assumptions of the theorem are satisfied, one may argue for randomly
shifted lattice rules as follows

RCCEE o R Ve )
Z /01u dtu__ZQUt]

0<|ul<d

S _1+6+ZH/ gu dt__zgu tj

jul=3

< C()n~ + O(V/E)

IA

if the effective superposition dimension of f satisfies dg(e) < 2 and the trans-
formed functions g,, |u| = 1,2, belong to the weighted tensor product Sobolev
space on [0, 1]%. The functions ¢ and g, are defined by

g=fop™ ' on(0,1)" and g,=fuow," on (0,1,



where ;

o=(or- 0 wl)= [ pilo)ds (i€D)
Since f,, |u| = 1,2, is first and mixed second order partially differentiable in the
sense of Sobolev and gp‘l can be assumed to be smooth, g,, |u| = 1,2, is also
first and mixed second order partially differentiable in the sense of Sobolev.

However, in general, the mixed derivatives of ¢, are not quadratically integrable.
Hence the Sobolev spaces have to be modified by introducing weight functions.
(Kuo-Sloan-Wasilkowski-Waterhouse 10).

Here, we assume for simplicity that the mixed derivatives of g, |u| = 1,2, belong
to the mixed Sobolev spaces.

Since the constants involved in our estimates may be chosen to be uniform with
respect to the first-stage decision = varying in a compact set X, the final es-
timate carries over to the Lo-distance of the optimal values of the original and
approximate two-stage program.



Question: How restrictive is the geometric condition (A4) ?

Partial answer: If P is normal with nonsingular covariance matrix, (A4) is a
generic property. Namely, it holds

Proposition: Let x € X, (Al) be satisfied, P be a normal distribution with
nonsingular covariance matrix > and assume that X is transformed to a diagonal
matrix by an orthogonal transformation.

Then for almost all covariance matrices Y the second order ANOVA approxima-

tion £ of f belongs to the mixed Sobolev space Wz(l""’l)(Rd).

Y, mix

Question: For which two-stage stochastic programs is the effective superposi-
tion dimension dg(¢) of f is less than or equal to 27

Partial answer: In case of a (log)normal probability distribution P the effective
dimension depends on the mode of decomposition of the covariance matrix in
order to transform the random vector to one with independent components.



Dimension reduction in case of (log)normal distributions

Let P be the normal distribution with mean 1 and nonsingular covariance matrix
>. Let A be a matrix satisfying ¥ = A A'". Then 1 defined by £ = An + p is
standard normal.

The (lower triangular) standard Cholesky matrix A = L¢ performing the facto-
rization © = Lo L/, seems to assign the same importance to every variable and,
hence, is not suitable to reduce the effective dimension.

A universal principle is principal component analysis (PCA). Here, one uses
A = (VMug, ..., v/ Aug), where A\; > -+ > Xy > 0 are the eigenvalues
of Y in decreasing order and the corresponding orthonormal eigenvectors u;,
? = 1,...,d. (Wang-Fang 03, Wang-Sloan 05) report an enormous reduction of the ef-
fective truncation dimension in financial models if PCA is used. Our numerical
results confirm this observation.

However, there is no consistent dimension reduction effect for any such matrix
A (Papageorgiou 02, Wang-Sloan 11).



Computational experience

We consider a stochastic production planning problem which consists in minimiz-
ing the expected costs of a company during a certain time horizon. The model
contains stochastic demands &5 and prices &. as components of

5 = (55’1, c e ,557]’7 Sc,lp o0 7£C,T)T‘

The company aims to satisfy stochastic demands 5 in a time horizon {1,..., T},
but its production capacity based on their own units does eventually not suffice to
cover the demand. Hence, it has to buy the necessary extra amounts on markets
or from other providers. The model is of the form

T
max{ 3 (cjxt +/ qt(g)TytP(d§)> Wy + Ve =h(€),y> 0,z X}
t=1 RT
We assume that the stochastic demands and prices &5, .+ may be modeled as

a multivariate ARMA(1,1) process, i.e.,

& t) (55 t) (E1 t)
=] + "), fort=1,...,T, and
(gc,t fc,t EQ,t
(55,1) _ B, (’Y1,1> | (fé,t) 4 (55,t1> LB (71,15) "B, (71,751)
fc,l V2.1 fc,t fc,t—1 V2.t V2,t—1
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fort =2,...,T, where 714,72 ~ N(0,1) and i.i.d. and 7" = 100.

We used PCA and CH for decomposing the covariance matrix of £&. PCA has
led to effective truncation dimension dp(0.01) = 2 while for CH d7(0.01) = 200.
As QMC methods we used a randomly scrambled Sobol sequence (SOB) and
a randomly shifted lattice rule (LAT) with weights v, = ]% and for MC the
Mersenne-Twister.

We used n = 128, 256, 512 for the Mersenne Twister and for Sobol’ points. For
randomly shifted lattices we used n = 127,257,509. The random shifts were
generated using the Mersenne Twister. We estimated the relative root mean
square errors (RMSE) of the optimal costs by taking 10 runs for each experiment,
and repeated the process 30 times for the box plots in the figures.

The average of the estimated rates of convergence under PCA was approximately
—0.9 for randomly shifted lattice rules, and —1.0 for the randomly scrambled
Sobol’ points. This is clearly superior compared to the MC rate —0.5.

The box-plots show the first quartile as lower bound of the box, the third quartile as upper bound and the
median as line between the bounds, Outliers are marked as plus signs and the rest of the results lie between the
brackets.
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Conclusions

e Our analysis provides a theoretical basis for applying sparse grid quadra-
tures and modern randomized Quasi-Monte Carlo methods accompanied by
dimension reduction techniques to two-stage stochastic programs.

e The analysis confirms our numerical experience that modern randomized
QMC methods are often superior compared to Monte Carlo and never worse.
They allow for a distinct reduction of sample sizes from n to almost /7.

e Of course, the implementation effort increases for QMC compared to MC.

e The analysis appears to be extendable to mixed-integer two-stage models and
to multi-stage situations. This is supported by our numerical experience, too.
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