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Introduction

(Quantitative) stability analysis for stochastic optimization problems is developed

for finite-dimensional spaces so far. It may serve as theoretical justification for ap-

proximation schemes.

The latter require a combination of discretization and sampling techniques and spe-

cific solution methods.

Nowadays, infinite-dimensional optimization problems under uncertainty motivated

by economic and engineering applications attracted more interest.

Partial differential equations (PDEs) with random coefficients are within the reach

of efficient computational methods.



PDE constrained optimization under uncertainty

Let D ⊂ Rm be an open bounded domain with Lipschitz boundary, V = H1
0(D)

the classical Sobolev space with inner product (·, ·)V , V ? = H−1(D) its dual with

norm ‖ · ‖? und dual pairing 〈·, ·〉 and H = L2(D) with inner product (·, ·)H . Let

Ξ be a metric space and P be a Borel probability measure on Ξ.

We consider the bilinear form a(·, ·; ξ) : V × V → R defined by

a(u, v; ξ) =

∫
D

n∑
i,j=1

bij(x, ξ)
∂u(x)

∂xi

∂v(x)

∂xj
dx (ξ ∈ Ξ).

We impose the condition that the functions bij : D × Ξ → R are measurable on

D × Ξ and there exist L > γ > 0 such that

γ

n∑
i=1

y2
i ≤

n∑
i,j=1

bij(x, ξ)yiyj ≤ L

n∑
i=1

y2
i (∀y ∈ Rn)

for a.e. x ∈ D and P-a.e. ξ ∈ Ξ. This implies that each bij is essentially bounded

on D × Ω from both sides with respect to the associated product measure.



We consider the optimization problem: Minimize the functional

J (u, z) :=
1

2

∫
Ξ

∫
D

|u(x, ξ)− ũd(x)|2 dxdP(ξ) +
α

2

∫
D

|z(x)|2 dx

=
1

2
EP[‖u− ũd‖2

H ] +
α

2
‖z‖2

H

subject to z ∈ Zad with Zad ⊂ H denoting a closed convex bounded set and u

solving the random elliptic PDE

a(u, v; ξ) =

∫
D

(z(x) + g(x, ξ))v(x)dx for P-a.e. ξ ∈ Ξ

and all test functions v ∈ C∞0 (D), where α > 0, ũd ∈ H and g : D × Ξ → R is

measurable on D × Ξ and at least square integrable on D.

For each ξ ∈ Ξ we define the mapping A(ξ) : V → V ? by means of the Riesz

representation theorem

〈A(ξ)u, v〉 = a(u, v; ξ) (u, v ∈ V ).



Then A(ξ) is linear, uniformly positive definite (with γ > 0) and uniformly bounded

(with L > 0) and the random PDE may be written in the form

A(ξ)u = z + g(ξ) (P-a.e. ξ ∈ Ξ).

Let J the duality mapping J : V → V ? given by

〈Ju, v〉 = (u, v)V (u, v ∈ V ).

For any b ∈ V ? and t > 0 we consider the mapping

Kt(ξ)u = u− tJ−1(A(ξ)u− b) (v ∈ V ).

Then Kt(ξ) is a contraction of V with constant

0 < κ(t) =
√

1− 2γt + L2t2 < 1 iff t ∈
(

0,
2γ

L2

)
.

The unique fixed point of Kt(ξ) is the unique solution of A(ξ)u = b and belongs

to the closed ball B
(
0, t

1−κ(t)‖b‖?
)

in V .

Hence, the inverse mapping A(ξ)−1 : V ? → V exists and is linear, uniformly positive

definite (with 1
L) and uniformly bounded (with 1

γ).



Existence and quadratic growth

Abstract optimization problem: We consider the integrand

f (z, ξ) =
1

2

∥∥A(ξ)−1(z + g(ξ))− ũd
∥∥2

H
+
α

2
‖z‖2

H

=
1

2

∥∥A(ξ)−1z − (ũd − A(ξ)−1g(ξ))
∥∥2

H
+
α

2
‖z‖2

H

for any z ∈ Zad and ξ ∈ Ξ, and the infinite-dimensional stochastic optimization

problem

min

{
F (z) =

∫
Ξ

f (z, ξ)dP(ξ) : z ∈ Zad

}
, (1)

where g ∈ L2(Ξ,P;H) and A(ξ)−1 as defined earlier.

Proposition 1:
The functional F is finite, strongly convex and lower semicontinuous, hence, weakly

lower semicontinuous on the weakly compact set Zad. Hence, there exists a unique

minimizer z(P) ∈ Zad of (1) and it holds

‖z − z(P)‖2 ≤ 8

α
(F (z)− F (z(P))) (∀z ∈ Zad).



Quantitative stability

Weak convergence in P(Ξ): (PN) converges weakly to P iff

lim
N→∞

∫
Ξ

f (ξ)dPN(ξ) =

∫
Ξ

f (ξ)dP(ξ) (∀f ∈ Cb(Ξ,R)).

The topology of weak convergence is metrizable if Ξ is separable.

Distance on P(Ξ): (Zolotarev 83)

dF(P,Q) = sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)dP(ξ)−
∫

Ξ

f (ξ)dQ(ξ)

∣∣∣∣,
where F is a family of real-valued Borel measurable functions on Ξ.

A number of important probability metrics are of the form dF, for example, the

bounded Lipschitz metric (metrizing the topology of weak convergence) and the

Fortet-Mourier type metrics.

Whether convergence with respect to dF implies or is implied by weak convergence

depends on the richness and on analytical properties of F.



Lemma: (Topsøe 67)

Let F be uniformly bounded and P({ξ ∈ Ξ : F is not equicontinuous at ξ}) = 0

holds. Then F is a P-uniformity class, i.e., weak convergence of (PN) to P implies

lim
N→∞

dF(PN ,P) = 0.

Compared with classical probability metrics we consider a much smaller family F of

functions, namely,

F = {f (z, ·) : z ∈ Zad}.
In this case we arrive at a semi-metric which we call problem-based or minimal in-

formation (m.i.) distance and F the m.i. family, respectively.

Theorem 1:
Under the standing assumptions and with F = {f (z, ·) : z ∈ Zad} we obtain the

following estimates for the optimal values v(P) and solutions z(P) of (1):

|v(Q)− v(P)| ≤ dF(Q,P)

‖z(Q)− z(P)‖H ≤ 2

√
2

α
dF(Q,P)

1
2

for any Q ∈ P(Ξ).



Properties of the integrands

Theorem 2:
Assume that all functions bij(x, ·), i, j = 1, . . . , n, and g(x, ·) are Lipschitz con-

tinuous on Ξ uniformly with respect to x ∈ D. Furthermore, assume that g ∈
L∞(Ξ,P;V ?).

Then the m.i. family F = {f (z, ·) : z ∈ Zad} is uniformly bounded and equi-

Lipschitz continuous on Ξ. In particular, F is a P-uniformity class.

Moreover, the family {f (·, ξ) : ξ ∈ Ξ} is Lipschitz continuous on each bounded

subset of H (with a constant not depending on ξ).

Remark:
Here, we consider more general PDE models under weaker assumptions than, for

example, in Cohen-Devore-Schwab 11 and subsequent work on computational ran-

dom PDEs in which regularity properties of solutions with respect to parameters

play a central role.



Monte Carlo approximations

Let ξ1, ξ2, . . . , ξn, . . . be independent identically distributed Ξ-valued random vari-

ables on some probability space (Ω,F , P ) having the common distribution P, i.e.,

P = Pξ−1
1 . We consider the empirical measures

Pn(·) =
1

n

n∑
i=1

δξi(·) (n ∈ N)

and the empirical or Monte Carlo approximation of the stochastic program (1) with

sample size n, i.e.,

min

{
1

n

n∑
i=1

f (z, ξi(·)) : z ∈ Zad

}
. (2)

The optimal value v(Pn(·)) of (2) is a real random variable and the solution z(Pn(·))
an H-valued random element.

Qualitative and quantitative results on the asymptotic behavior of optimal values

and solutions to (2) are known in finite-dimensional settings so far (see Dupačová-

Wets 88, and the surveys by Shapiro 03 and Pflug 03).



It is known that (Pn(·)) converges weakly to P P -almost surely.

Corollary:
The sequences (v(Pn(·))) and (z(Pn(·))) of empirical optimal values and solutions

converge P -almost surely to the true optimal values and solutions v(P) and z(P),

respectively.

Quantitative information on the asymptotic behavior of v(Pn(·)) and z(Pn(·)) is

closely related to uniform convergence properties of the empirical process{√
n(Pn(·)− P)f =

1√
n

n∑
i=1

(f (ξi(·))− Pf )
}
f∈F

indexed by F = {f (z, ·) : z ∈ Z} and, hence, to quantitative estimates of
√
n dF(Pn(·),P) =

√
n sup

f∈F
|Pn(·)f − Pf |. (3)

Here, we set Pf =
∫

Ξ f (ξ)dP(ξ) for any probability distribution P and any f ∈
F. Since the supremum in (3) is non-measurable in general, the outer probability

P ?(A) = inf{P (B) : A ⊆ B,B ∈ F} is used in the following.



The empirical process is called uniformly bounded in outer probability with tail CF(·)
if the function CF(·) is defined on (0,∞), decreasing to 0, and the estimate

P ?({ω ∈ Ω :
√
n dF(Pn(ω),P) ≥ ε}) ≤ CF(ε)

holds for all ε > 0 and n ∈ N.

Whether such a property is satisfied depends on the size of the class F measured

in terms of so-called bracketing numbers. To introduce the latter concept, let F be

a subset of the linear normed space Lp(Ξ,P) (for some p ≥ 1) equipped with the

usual norm

‖f‖P, p = (P|f |p)
1
p =

(∫
Ξ

|f (ξ)|pdP(ξ)
)1

p
.

The bracketing number N[ ](ε,F, ‖ · ‖P,p) is the minimal number of brackets [l, u] =

{f ∈ Lp(Ξ,P) : l ≤ f ≤ u} with l, u ∈ Lp(Ξ,P) and ‖l − u‖P, p < ε needed to

cover F.

The following results provide criteria for the uniform boundedness of the empirical

process.



Lemma: (Talagrand 94)

Let F be a class of real-valued measurable functions on Ξ. If F is uniformly bounded

and there exist constants r ≥ 1 and R ≥ 1 such that

N[ ](ε,F, ‖ · ‖P,2) ≤
(R
ε

)r
holds for every ε > 0, then the empirical process indexed by F is uniformly bounded

in outer probability with exponential tail, i.e.,

P ?({ω ∈ Ω :
√
n dF(Pn(ω),P) ≥ ε}) ≤ (K(R)r−

1
2ε)r exp(−2ε2)

with some constant K(R) depending only on R.

Lemma: (van der Vaart–Wellner 96)

Let Z denote a subset of a linear normed space with norm ‖ · ‖ and

F = {f (z, ·) : z ∈ Z} be a subset of Lp(Ω,P) having the property

|f (z, ξ)− f (z′, ξ)| ≤ ‖z − z′‖Φ(ξ) (∀z, z′ ∈ Z; ξ ∈ Ξ),

where Φ belongs to Lp(Ω,P). Then it holds

N[ ](2ε‖Φ‖P,p,F, ‖ · ‖P,p) ≤ N(ε, Z, ‖ · ‖),
where the covering number N(ε, Z, ‖ · ‖) denotes the minimal number of balls with

respect to the norm ‖ · ‖ and radius ε needed to cover Z.



If Z is a bounded subset of a k-dimensional space, there exists K > 0 such that

N(ε, Z, ‖ · ‖) ≤ Kε−k.

Since Zad belongs to the infinite-dimensional space H, an intermediate step is

needed to apply the second lemma.

Let Zk, k ∈ N, denote a sequence of piecewise constant subspaces of H = L2(D)

such that Z
(k)
ad = Zk ∩ Zad has the property

d(z, Z
(k)
ad ) = O(hk) for any z ∈ Zad,

where hk → 0 is the diameter of the cells of D.

Proposition:
Under the standing assumptions, there exists a constant C > 0 such that

|v(P)− v(Pn(·))| ≤ C(d(z(P), Z
(k)
ad ) + dFk(Pn(·),P)),

where Fk = {f (z, ·) : z ∈ Z(k)
ad }. Let k(n) be a sequence such that

√
nhk(n) → 0.

Then for all ε > 0 and n ∈ N

P ?({ω :
√
n|v(P)− v(Pn(ω)| ≥ ε} ≤ (Ĉε)k(n) exp(−2ε2).



Conclusions

• Quantitative stability results can be used to justify scenario reduction heuristics.

• Monte Carlo methods have a very slow convergence rate and require a very

large sample size and, thus, a huge number of PDE solves.

• Randomized Quasi-Monte Carlo methods could be a viable alternative due to

better convergence rates and the possibility of effective dimension reduction.

However, their justification requires a completely different methodology.
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