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Mathematical Model

0&D Revenue Management has become standard in the airline industry.
The entire airline network is considered because costumers often require
multiple flights.

Literature: K. Talluri, G. van Ryzin: Revenue Management, Kluwer 2004.

We present an optimization model for O&D RM that
e models the dynamic booking control process consisting of recursive
decisions and observations,

e incorporates the stochastic nature of the passenger behaviour,

e determines protection levels for all origin destination itineraries, fare
classes, points of sale and data collection points (dcp’s),

e represents a multi-stage stochastic program where its stages corre-
spond to the dcp’s of the booking horizon,

e reduces to a specially structured large scale MILP if the stochastic
demand and cancellations processes are represented by a scenario
tree.
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Notation:

Input data
¥ - probability of scenario s
stochastic

i ikt - bassenger demands
Vijkt - cancellation rates
deterministic
fijke - fares
Ci.m - leg capacities

Variables

B}, .+ - protection levels

B}, .+ - cumulative bookings

bj j k1 - bOOKings

C? .., - cumulative cancelations

c; ;.4 - cancelations
b,s P;s
i gkt? Zigokt

~S . :
Z} ;4 - binary variables

- slack variables

For node variables superscript n is
used instead of s.

Indices

s=1,...,5 - scenarios

t=20,...,T - data collection points
(dep’s)

v = 1,...,1 - Origin-Destination-
[tineraries

jg=1,...,J - fare classes
k=1,..., K - points of sale
[=1,...,L-legs

I, C A{1,...,I} - index set of
itineraries containing leg [

m =1,...,M(l) - compartments on
leg [

In(l) C{1,...,J} - index set of fare
classes of compartment m on leg [
n=20,...,N - nodes
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Stochastic Optimization Model

Objective
s T I J K
max DY >0 >0 figka [ ighkt Cf,j,k,t]
(Plike) | s=1  t=1i=1j=1k=1
Constraints
Cumulative bookings
=T
BS?]ak (Un BZ.uj?k’ 87] k t Bi]7k7t_1 + bfujukat
Cumulative cancelations (¢ € (0, 0.5]) Cancelations

S S S S S S — S _ S
VigktBigkt =0 S Cine < VijuaBigre TV Cine = Cijne — Cojre—t
Passenger demands Protection levels
S S S S
O e T Z irj, i t = ikt Bkt = Cijee + Z id, 5 5=

Number of bookings (disjunctive constraints) (w > 0, adequately large)
b,
0=z Skt <A =Zjr)di e 0< Z kt S Bk Zigre €{0,13

’77 ’7’

Leg capacity limits

Z Z ZP,j,kT 1<Clm

1€1; ]Gjm( ) =
Integrality and nonnegativity constraints
S S S . S . S
vikt Cojrp Lije € L5 Bijpe 20 Clype 20

Nonanticipativity constraints
the decisions at ¢ only depend on the demand until ¢
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Demand process approximation by scenario trees

The demand process {d;}I_, is approximated by a process forming a sce-
nario tree which is based on a finite set N'= {0,1,..., N} of nodes.

Nr

t=0 t t(n) T
Scenario tree with ¢t1 =1, T'=4, N = 22 and 11 leaves

n = 0 root node, n_ unique predecessor of node n,

path(n) = {0,...,n_,n}, t(n):= |path(n)| —1,

N, (n) set of successors to n, Np:={n €N : N, (n) =0} set of leaves,
path(n), n € N, scenario with (given) probability 7",

= Zn+€ N (n) 7"+ probability of node n, " realization of ).



Stochastic optimization model in node formulation

Objective
N I K
max & > 7" 30 30 3 [ fuskambijn = Figkom)Chix]
(Plg) | n=1  i=1j=1k=1
Constraints
Cumulative bookings
0 . _
BZj,k,O B,Jk’ B,J, Bzyk+b,ﬂk
Cumulative cancelations (¢ € (0.0,0.5]) Cancelations
n_
Vg Bigr =V = Cijp < WjnBije +9 Cak = Cigr — Cigi
Passenger demands Protection levels
n_
bn] kT Zw k= d”fj’ BT?J, CZ] BT %, ,J,k - Pwk

Number of bookings (disjunctive constramts) (w > 0, adequately large)
b, .
0 <27y < (1= 3y)dl, 047, <Fyw 25, €{0,1}

Leg capacity limits
> > Z ik < Cim Vn € Nr_

i€y jeTm(l) k=
Integrality and nonnegativity constraints
Bk Cigio Fiie €5 b 205 65 =20

Nonanticipativity constraints are satisfied by construction.



Generation of scenario trees

(i) Development of a stochastic model for the data process &
( le.g. time series modell, [e.g. resam-
pling]) and generation of simulation scenarios;

(ii) Construction of a scenario tree out of the stochastic model
or of the simulation scenarios.

(1) Bound-based approximation methods,
(Frauendorfer 96, Edirisinghe 99, Casey/Sen 02).

(2) Monte Carlo-based schemes (inside or outside decomposition meth-
OdS) (e.g. Shapiro 00, 03, Higle/Rayco/Sen 01, Chiralaksanakul/Morton 03).

(3) the use of Quasi Monte Carlo integration quadratures
(Koivu/Pennanen 03, Pennanen 03, 04).

(4) EVPI-based sampling schemes (inside decomposition schemes) (Con-
sigli/Dempster 98).

(5) Moment-matching principle (Hgyland/Wallace 01, Hoyland/Kaut/Wallace 03).

(6) (Nearly) best approximations based on probability metrics
(Pflug 01, Hochreiter/Pflug 02, Gréwe-Kuska/Heitsch/Romisch 01, 03).

Survey: Dupacova/Consigli/Wallace 00
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A Distance of Probability Distributions

Let P denote the probability distribution of the stochastic process d =
{d;}L, with d; in R?, i.e., P has support in some & C R¥” = R", and
let P be the distribution of an approximation d of d. The Kantorovich or
transportation distance is of the form

a@8) = wt{ [ e, )| my =P, man =P |
RT‘~><R’"
Eflld — d|l]
on some probability space, where || - || is a norm in R".
(Rachev 91, Rachev/Riischendorf 98)

The case of finitely many scenarios:
P: scenarios d* with probabilities p*, s =1,..., S,
P: scenarios d” with probabilities ¢°, o =1,...,S.

gl(Pa Q) = inf {Z%UMS — da“ ‘ Tso > 0727730 - ps’ Znsa — qa}

(linear transportation problem)



Constructing Scenario Trees

Let P be the probability distribution of a fan of (multivariate) data scenar-
ios & = (&7,...,&5) with probabilities 7%, s = 1,...,S, i.e., all scenarios
coincide at t = 1, i.e., &l = ... = ¢&F =: &,

The fan may be regarded as a scenario tree with 1 4+ S(7 — 1) nodes.
We develop an algorithm that constructs new scenarios such that their
t-th component belongs to the set {&}, ..., &)

The algorithm is based on recursive scenario reduction on the time horizon
{1,...,t} starting from ¢ = T and ending at ¢ = 1. For the time horizon
{1,...,t} we consider the norm ||¢||; := ||(&,--.,&,0,...,0)| and the
corresponding Kantorovich distance ¢; ; based on the norm || - ||;.
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Algorithm: (Recursive Scenario Reduction)

iy
Let €, e, >0,t=1,...,T, be such that > & <e.
t=1

Step 0: Determine Qp with scenario index set I+ C {1,..., N} by opti-
mal scenario reduction such that ¢, 7(Qz,P) < er and Qr =) 1, Tp0gs

Step t: Determine Q_; with scenario index set Iy ; C Iy_;.q1 by opti-
mal scenario reduction such that ¢ ;(Qr_¢, Qr_s11) < ey and determine

jr-+(9) € argminjer, , [|§' — &||¢ for i € Ip—yi1 \ Ir—y.

Step T: Construction of P.: Determine the following mappings recur-

sively ay : Iy — I for t =T,...,1 where ay := id|;,. and
oy (i) == { jt(%ﬂ@) yout (i) € Lepa \ I, t=T-1,...,1).
ay1(i)  else

Determine scenarios £ with & := & “®) for s € Ip and set P, := > sety T0

(Dupacova/Growe-Kuska/Roémisch 03, Growe-Kuska/Heitsch/R6misch 03)

g



Example:
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Approximation Results

Theorem: If P. is determined by the Algorithm starting with P, we have
0y (]P) ]P)g) < €.

(Heitsch/Romisch 05)

Theorem: (Stability of multistage programs)
Let d be the demand process with probability distribution IP. Then there
exists a constant L > 0 such that the estimate
T—1
[o(d) — v(d)| < L[E[|d - d|] + ) Di(d',d")]

(=)

holds for the optimal values of the original and approximate programs,
respectively, where d is the approximate demand process with distribution
IP. Here,

Dy(d', d') := max{E[|lx; — Elws|dy, ..., ]|}, E[|Z: — E[Z|dy, ..., d]|l]},

where x and x are solutions of the original and approximate programs,
respectively. Dy is called the information distance at ¢.
(Heitsch/Ro6misch/Strugarek 05)
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Example: (Optimal purchase under uncertainty)

The decisions x; correspond to the amounts to be purchased at each time
period with uncertain prices are &, t = 1,...,T, and such that a pre-
scribed amount a is achieved at the end of a given time horizon. The
problem is of the form

. (xt, St) & Xt = Ri,
Zf . (x4, 8¢) is (&1, ..., &)-measurable,
— B st—st_lzxt,tzl...,T,
s1=0,sr =a.

min { E

where the state variable s; corresponds to the amount at time ¢.

Let T := 3 and PP, denote the probability distribution of the stochastic
price process having the two scenarios £! = (3,2+¢,3) (¢ € (0,1)) and &2 =
(3,2,1) each endowed with probability % Let P denote the approximation
of P given by the two scenarios €' = (3,2,3) and £ = (3,2,1) with the

same probabilities %
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Let the scenario trees of the processes & and € be of the form

Scenario trees for P, (left) and P

We obtain

U<€€):3—i—€ ~ €

5 ¥ and v(§) =2a, but (P, Q) = 5
Hence, the multistage stochastic purchasing model is not stable with re-

spect to the Kantorovich distance ¢;.

However, the estimate for [v(§) — v(€)] in the previous Theorem is valid
with L = a since Dy(&2, &%) = 1.



O&D Example and Demand Tree

Hub-and-Spokes Network

#Legs

#0ODIs
#Compartments
#Fare Classes
#POS

#DCPs

Tree and Size

#Scenarios
#Nodes

#cont. Variables
#bin. Variables
#Constraints

95
1022
434304
73512
442212

6
12
7
6
1
14

Hub




Numerical Results

CPLEX-Results

Version 8.1

MIP Gap 0.001
Solution Status Optimal
#MIP Nodes passed 0 (root)

70(l—CanceIIation Rate) * Cumulative Demand (ODI: 12 Fare Class: 3)
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70(l—CanceIIation Rate) * Cumulative Demand (ODI: 12 Fare Class: 6)
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Computing times

Total 41.920 s
— Solving Problem (CPLEX) 36.81 s
—— CPLEX Presolve Time 13.32 s
(Intel Celeron, 2.0 GHz, Linux)

Protection Level (ODI: 12 Fare Class: 3)
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Conclusions and Future Work

We presented an approach to O&D Revenue Management using a scenario
tree-based dynamic stochastic optimization model. The approach

e starts from a finite number of demand scenarios and probabilities,

e requires no assumptions on the demand distributions except their
decision-independence.

Stochastic programming approaches lead to solutions that are more robust
with respect to perturbations of input data. However, the models have
higher complexity.

Future work:

e Analysis of O&D data and setting up suitable demand models (es-
sentially done by Lufthansa Systems)

e Generation of large scale scenario trees
e Implementation of an itinerary-based decomposition scheme

e Numerical comparison with other approaches

(URL: www.math.hu-berlin.de/ romisch, Email: romisch@math.hu-berlin.de)
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