

Mathematical Model

O&D Revenue Management has become standard in the airline industry. The entire airline network is considered because costumers often require multiple flights.

Literature: K. Talluri, G. van Ryzin: Revenue Management, Kluwer 2004.

We present an optimization model for O&D RM that

- models the dynamic booking control process consisting of recursive decisions and observations,
- incorporates the stochastic nature of the passenger behaviour,
- determines protection levels for all origin destination itineraries, fare classes, points of sale and data collection points (dcp's),
- represents a multi-stage stochastic program where its stages correspond to the dcp's of the booking horizon,
- reduces to a specially structured large scale MILP if the stochastic demand and cancellations processes are represented by a scenario tree.

Home Page
Title Page
Contents
••
Page 2 of 17
Go Back
Full Screen
Close
Quit

Notation:

Input data

 π^s - probability of scenario s stochastic

 $d_{i,j,k,t}^{s}$ - passenger demands $\gamma_{i,j,k,t}^{s}$ - cancellation rates deterministic

 $f_{i,j,k,t}$ - fares $C_{l,m}$ - leg capacities

Variables

 $\begin{array}{l} P_{i,j,k,t}^{s} \ - \ \mathrm{protection} \ \mathrm{levels} \\ B_{i,j,k,t}^{s} \ - \ \mathrm{cumulative} \ \mathrm{bookings} \\ b_{i,j,k,t}^{s} \ - \ \mathrm{bookings} \\ C_{i,j,k,t}^{s} \ - \ \mathrm{cumulative} \ \mathrm{cancelations} \\ c_{i,j,k,t}^{s} \ - \ \mathrm{cancelations} \\ z_{i,j,k,t}^{b,s} \ z_{i,j,k,t}^{P,s} \ - \ \mathrm{slack} \ \mathrm{variables} \\ \tilde{z}_{i,j,k,t}^{s} \ - \ \mathrm{binary} \ \mathrm{variables} \end{array}$

For node variables superscript n is used instead of s.

Indices

 $s = 1, \ldots, S$ - scenarios $t = 0, \ldots, T$ - data collection points (dcp's) $i = 1, \ldots, I$ - Origin-Destination-Itineraries $j = 1, \ldots, J$ - fare classes $k = 1, \ldots, K$ - points of sale $l = 1, \ldots, L$ - legs $\mathcal{I}_l \subset \{1, \ldots, I\}$ - index set of itineraries containing leg l $m = 1, \ldots, M(l)$ - compartments on $\log l$ $\mathcal{J}_m(l) \subset \{1, \ldots, J\}$ - index set of fare classes of compartment m on leg l $n = 0, \ldots, N$ - nodes

Stochastic Optimization Model

Objective

$$\max_{(P_{i,j,k,t}^{s})} \left\{ \sum_{s=1}^{S} \pi^{s} \sum_{t=1}^{T} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} f_{i,j,k,t} \left[b_{i,j,k,t}^{s} - c_{i,j,k,t}^{s} \right] \right\}$$

Constraints

Cumulative bookings

$$B_{i,j,k,0}^s := \bar{B}_{i,j,k}^0; \qquad B_{i,j,k,t}^s := B_{i,j,k,t-1}^s + b_{i,j,k,t}^s$$

 $\begin{array}{ll} \begin{array}{ll} \text{Cumulative cancelations } (\vartheta \in (0,0.5]) & \text{Cancelations} \\ \gamma_{i,j,k,t}^{s}B_{i,j,k,t}^{s} - \vartheta \leq C_{i,j,k,t}^{s} < \gamma_{i,j,k,t}^{s}B_{i,j,k,t}^{s} + \vartheta & c_{i,j,k,t}^{s} = C_{i,j,k,t}^{s} - C_{i,j,k,t-1}^{s} \\ \begin{array}{ll} \text{Passenger demands} & \text{Protection levels} \\ b_{i,j,k,t}^{s} + z_{i,j,k,t}^{b,s} = d_{i,j,k,t}^{s} & B_{i,j,k,t}^{s} - C_{i,j,k,t}^{s} + z_{i,j,k,t}^{P,s} = P_{i,j,k,t-1}^{s} \\ \end{array} \\ \begin{array}{ll} \text{Number of bookings (disjunctive constraints)} (\omega > 0, \text{ adequately large}) \\ 0 \leq z_{i,j,k,t}^{b,s} \leq (1 - \tilde{z}_{i,j,k,t}^{s}) d_{i,j,k,t}^{s} & 0 \leq z_{i,j,k,t}^{P,s} \leq \tilde{z}_{i,j,k,t}^{s} \omega & \tilde{z}_{i,j,k,t}^{s} \in \{0,1\} \end{array} \\ \end{array}$

Leg capacity limits

$$\sum_{i \in \mathcal{I}_l} \sum_{j \in \mathcal{J}_m(l)} \sum_{k=1}^K P_{i,j,k,T-1}^s \le C_{l,m}$$

Integrality and nonnegativity constraints

$$B_{i,j,k,t}^{s}, C_{i,j,k,t}^{s}, P_{i,j,k,t}^{s} \in \mathbb{Z}; \qquad b_{i,j,k,t}^{s} \ge 0; \qquad c_{i,j,k,t}^{s} \ge 0;$$

Nonanticipativity constraints

the decisions at t only depend on the demand until t

Home Page
Title Page
Contents
44
Page 4 of 17
Go Back
Full Carry or
Full Screen
Close

Demand process approximation by scenario trees

The demand process $\{d_t\}_{t=0}^T$ is approximated by a process forming a scenario tree which is based on a finite set $\mathcal{N} = \{0, 1, \dots, N\}$ of nodes.

Scenario tree with $t_1 = 1, T = 4, N = 22$ and 11 leaves

 $n = 0 \text{ root node, } n_{-} \text{ unique predecessor of node } n,$ $path(n) = \{0, \dots, n_{-}, n\}, \quad t(n) := |path(n)| - 1,$ $\mathcal{N}_{+}(n) \text{ set of successors to } n, \quad \mathcal{N}_{T} := \{n \in \mathcal{N} : \mathcal{N}_{+}(n) = \emptyset\} \text{ set of leaves,}$ $path(n), n \in \mathcal{N}_{T}, \text{ scenario with (given) probability } \pi^{n},$ $\pi^{n} := \sum_{n_{+} \in \mathcal{N}_{+}(n)} \pi^{n_{+}} \text{ probability of node } n, \xi^{n} \text{ realization of } \xi_{t(n)}.$

Stochastic optimization model in node formulation

Objective

$$\max_{(P_{i,j,k}^{n})} \left\{ \sum_{n=1}^{N} \pi^{n} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \left[f_{i,j,k,t(n)} b_{i,j,k}^{n} - f_{i,j,k,t(n)} c_{i,j,k}^{n} \right] \right\}$$

Constraints

Cumulative bookings

$$B^s_{i,j,k,0} := \bar{B}^0_{i,j,k}; \qquad B^n_{i,j,k} := B^{n_-}_{i,j,k} + b^n_{i,j,k}$$

 $\begin{array}{l} \begin{array}{l} \text{Cumulative cancelations } (\vartheta \in (0.0, 0.5]) & \text{Cancelations} \\ \gamma_{i,j,k}^{n} B_{i,j,k}^{n} - \vartheta \leq C_{i,j,k}^{n} < \gamma_{i,j,k}^{n} B_{i,j,k}^{n} + \vartheta & c_{i,j,k}^{n} = C_{i,j,k}^{n} - C_{i,j,k}^{n-} \\ \hline \text{Passenger demands} & \text{Protection levels} \\ b_{i,j,k}^{n} + z_{i,j,k}^{b,n} = d_{i,j,k}^{n} & B_{i,j,k}^{n} - C_{i,j,k}^{n} + z_{i,j,k}^{P,n} = P_{i,j,k}^{n-} \\ \hline \text{Number of bookings (disjunctive constraints)} (\omega > 0, \text{ adequately large}) \\ 0 \leq z_{i,j,k}^{b,n} \leq (1 - \tilde{z}_{i,j,k}^{n}) d_{i,j,k}^{n} & 0 \leq z_{i,j,k}^{P,n} \leq \tilde{z}_{i,j,k}^{n} \omega & \tilde{z}_{i,j,k}^{n} \in \{0,1\} \end{array} \right]$

Leg capacity limits

$$\sum_{i \in \mathcal{I}_l} \sum_{j \in \mathcal{J}_m(l)} \sum_{k=1}^K P_{i,j,k}^n \le C_{l,m} \qquad \forall n \in \mathcal{N}_{T-1}$$

Integrality and nonnegativity constraints

$$B_{i,j,k}^{n}, C_{i,j,k}^{n}, P_{i,j,k}^{n} \in \mathbb{Z}; \qquad b_{i,j,k}^{n} \ge 0; \qquad c_{i,j,k}^{n} \ge 0$$

Nonanticipativity constraints are satisfied by construction.

Home Page Title Page Contents 44 Page 6 of 17 Go Back Full Screen Close

Generation of scenario trees

- (i) Development of a stochastic model for the data process ξ (parametric [e.g. time series model], nonparametric [e.g. resampling]) and generation of simulation scenarios;
- (ii) Construction of a scenario tree out of the stochastic model or of the simulation scenarios.
- Bound-based approximation methods, (Frauendorfer 96, Edirisinghe 99, Casey/Sen 02).
- (2) Monte Carlo-based schemes (inside or outside decomposition methods) (e.g. Shapiro 00, 03, Higle/Rayco/Sen 01, Chiralaksanakul/Morton 03).
- (3) the use of Quasi Monte Carlo integration quadratures (Koivu/Pennanen 03, Pennanen 03, 04).
- (4) EVPI-based sampling schemes (inside decomposition schemes) (Consigli/Dempster 98).
- (5) Moment-matching principle (Høyland/Wallace 01, Høyland/Kaut/Wallace 03).
- (6) (Nearly) best approximations based on probability metrics (Pflug 01, Hochreiter/Pflug 02, Gröwe-Kuska/Heitsch/Römisch 01, 03).

Survey: Dupačová/Consigli/Wallace 00

Home Page
Title Page
Contents
•• ••
Page 7 of 17
Go Back
Full Screen
Close
Quit

A Distance of Probability Distributions

Let \mathbb{P} denote the probability distribution of the stochastic process $d = \{d_t\}_{t=0}^T$ with d_t in \mathbb{R}^d , i.e., \mathbb{P} has support in some $\Xi \subseteq \mathbb{R}^{dT} = \mathbb{R}^r$, and let $\tilde{\mathbb{P}}$ be the distribution of an approximation \tilde{d} of d. The Kantorovich or transportation distance is of the form

$$\ell_1(\mathbb{P}, \tilde{\mathbb{P}}) := \inf \left\{ \int_{\mathbb{R}^r \times \mathbb{R}^r} \|\xi - \tilde{\xi}\| \eta(d\xi, d\tilde{\xi}) \mid \pi_1 \eta = \mathbb{P}, \ \pi_2 \eta = \tilde{\mathbb{P}} \right\} \\ = \mathbb{E}[\|d - \tilde{d}\|]$$

on some probability space, where $\|\cdot\|$ is a norm in \mathbb{R}^r .

(Rachev 91, Rachev/Rüschendorf 98)

The case of finitely many scenarios:

 \mathbb{P} : scenarios d^s with probabilities p^s , $s = 1, \ldots, S$, $\tilde{\mathbb{P}}$: scenarios \tilde{d}^{σ} with probabilities q^{σ} , $\sigma = 1, \ldots, \tilde{S}$.

$$\ell_1(\mathbb{P}, \mathbb{Q}) = \inf\left\{\sum_{s,\sigma} \eta_{s\sigma} \| d^s - \tilde{d}^\sigma \| \mid \eta_{s\sigma} \ge 0, \sum_{\sigma} \eta_{s\sigma} = p^s, \sum_s \eta_{s\sigma} = q^\sigma\right\}$$

(linear transportation problem)

Constructing Scenario Trees

Let \mathbb{P} be the probability distribution of a fan of (multivariate) data scenarios $\xi^s = (\xi_1^s, \ldots, \xi_T^s)$ with probabilities π^s , $s = 1, \ldots, S$, i.e., all scenarios coincide at t = 1, i.e., $\xi_1^1 = \ldots = \xi_1^S =: \xi_1^*$.

The fan may be regarded as a scenario tree with 1 + S(T - 1) nodes. We develop an algorithm that constructs new scenarios such that their *t*-th component belongs to the set $\{\xi_t^1, \ldots, \xi_t^S\}$. The algorithm is based on recursive scenario reduction on the time horizon

 $\{1, \ldots, t\}$ starting from t = T and ending at t = 1. For the time horizon $\{1, \ldots, t\}$ we consider the norm $\|\xi\|_t := \|(\xi_1, \ldots, \xi_t, 0, \ldots, 0)\|$ and the corresponding Kantorovich distance $\ell_{1,t}$ based on the norm $\|\cdot\|_t$.

Home Page Title Page Contents Page 9 of 17 Go Back Full Screen Close Quit

Algorithm: (Recursive Scenario Reduction) Let ε , $\varepsilon_t > 0$, t = 1, ..., T, be such that $\sum_{t=1}^T \varepsilon_t \le \varepsilon$.

Step 0: Determine \mathbb{Q}_T with scenario index set $I_T \subset \{1, \ldots, N\}$ by optimal scenario reduction such that $\ell_{1,T}(\mathbb{Q}_T, \mathbb{P}) < \varepsilon_T$ and $\mathbb{Q}_T = \sum_{s \in I_T} \pi_T^s \delta_{\xi^s}$.

Step t: Determine \mathbb{Q}_{T-t} with scenario index set $I_{T-t} \subset I_{T-t+1}$ by optimal scenario reduction such that $\ell_{1,t}(\mathbb{Q}_{T-t}, \mathbb{Q}_{T-t+1}) < \varepsilon_{T-t}$ and determine $j_{T-t}(i) \in \arg\min_{j \in I_{T-t}} \|\xi^i - \xi^j\|_t$ for $i \in I_{T-t+1} \setminus I_{T-t}$.

Step T: Construction of \mathbb{P}_{ε} : Determine the following mappings recursively $\alpha_t : I_T \to I_t$ for $t = T, \ldots, 1$ where $\alpha_T := id|_{I_T}$ and $\alpha_t(i) := \begin{cases} j_t(\alpha_{t+1}(i)) &, \alpha_{t+1}(i) \in I_{t+1} \setminus I_t, \\ \alpha_{t+1}(i) &, \text{else} \end{cases}$ $(t = T - 1, \ldots, 1).$ Determine scenarios $\hat{\xi}^s$ with $\hat{\xi}^s_t := \xi^{\alpha_t(s)}_t$ for $s \in I_T$ and set $\mathbb{P}_{\varepsilon} := \sum_{s \in I_T} \pi^s_T \delta_{\hat{\varepsilon}^s}.$

(Dupačová/Gröwe-Kuska/Römisch 03, Gröwe-Kuska/Heitsch/Römisch 03)

Home Page
Title Page
Contents
Page 10 of 17
Go Back
Full Screen
Class
Close

Example:

Recursive construction of a bivariate load-price scenario tree starting with N = 58 scenarios (illustration, time period: 1 year)

<Start Animation>

Quit

Close

Home Page

Title Page

Approximation Results

Theorem: If \mathbb{P}_{ε} is determined by the Algorithm starting with \mathbb{P} , we have

$$\ell_1(\mathbb{P},\mathbb{P}_{\varepsilon})<\varepsilon$$

(Heitsch/Römisch 05)

Theorem: (Stability of multistage programs)

Let d be the demand process with probability distribution \mathbb{P} . Then there exists a constant L > 0 such that the estimate

$$|v(d) - v(\tilde{d})| \le L[\mathbb{E}[||d - \tilde{d}||] + \sum_{t=2}^{T-1} D_t(d^t, \tilde{d}^t)]$$

holds for the optimal values of the original and approximate programs, respectively, where \tilde{d} is the approximate demand process with distribution $\tilde{\mathbb{P}}$. Here,

$$D_t(d^t, \tilde{d}^t) := \max\{\mathbb{E}[\|x_t - \mathbb{E}[x_t|\tilde{d}_1, \dots, \tilde{d}_t]\|], \mathbb{E}[\|\tilde{x}_t - \mathbb{E}[\tilde{x}_t|d_1, \dots, d_t]\|]\}$$

where x and \tilde{x} are solutions of the original and approximate programs, respectively. D_t is called the information distance at t. (Heitsch/Römisch/Strugarek 05)

Home Page Title Page Contents Page 12 of 17 Go Back Full Screen Close Quit

Example: (Optimal purchase under uncertainty)

The decisions x_t correspond to the amounts to be purchased at each time period with uncertain prices are ξ_t , t = 1, ..., T, and such that a prescribed amount a is achieved at the end of a given time horizon. The problem is of the form

$$\min \left\{ \mathbb{E} \left[\sum_{t=1}^{T} \xi_t x_t \right] \left| \begin{array}{c} (x_t, s_t) \in X_t = \mathbb{R}^2_+, \\ (x_t, s_t) \text{ is } (\xi_1, \dots, \xi_t) \text{-measurable}, \\ s_t - s_{t-1} = x_t, \ t = 2, \dots, T, \\ s_1 = 0, s_T = a. \end{array} \right\},$$

where the state variable s_t corresponds to the amount at time t. Let T := 3 and \mathbb{P}_{ε} denote the probability distribution of the stochastic price process having the two scenarios $\xi_{\varepsilon}^1 = (3, 2+\varepsilon, 3)$ ($\varepsilon \in (0, 1)$) and $\xi_{\varepsilon}^2 =$ (3, 2, 1) each endowed with probability $\frac{1}{2}$. Let $\tilde{\mathbb{P}}$ denote the approximation of \mathbb{P} given by the two scenarios $\tilde{\xi}^1 = (3, 2, 3)$ and $\tilde{\xi}^2 = (3, 2, 1)$ with the same probabilities $\frac{1}{2}$.

Home Page
Title Page
Contents
••
•
Page 13 of 17
Go Back
Full Screen
Close

Let the scenario trees of the processes ξ_{ε} and ξ be of the form Home Page Title Page (3) 3 Contents 2 1 Scenario trees for \mathbb{P}_{ε} (left) and \mathbb{P} We obtain $v(\xi_{\varepsilon}) = \frac{3+\varepsilon}{2}a$ and $v(\tilde{\xi}) = 2a$, but $\hat{\mu}_1(P_{\varepsilon}, Q) = \frac{\varepsilon}{2}$. Page 14 of 17 Hence, the multistage stochastic purchasing model is not stable with re-Go Back spect to the Kantorovich distance ℓ_1 . However, the estimate for $|v(\xi) - v(\tilde{\xi})|$ in the previous Theorem is valid Full Screen with L = a since $D_2(\xi^2, \tilde{\xi}^2) = 1$. Close

O&D Example and Demand Tree

Numerical Results

Close

Conclusions and Future Work

We presented an approach to O&D Revenue Management using a scenario tree-based dynamic stochastic optimization model. The approach

- starts from a finite number of demand scenarios and probabilities,
- requires no assumptions on the demand distributions except their decision-independence.

Stochastic programming approaches lead to solutions that are more robust with respect to perturbations of input data. However, the models have higher complexity.

Future work:

- Analysis of O&D data and setting up suitable demand models (essentially done by Lufthansa Systems)
- Generation of large scale scenario trees
- Implementation of an itinerary-based decomposition scheme
- Numerical comparison with other approaches

(URL: www.math.hu-berlin.de/~romisch, Email: romisch@math.hu-berlin.de)

Home Page
Title Page
Contents
••
Page 17 of 17
Go Back
Full Screen
Close
Quit