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Mathematical Model

O&D Revenue Management has become standard in the airline industry.
The entire airline network is considered because costumers often require
multiple flights.

Literature: K. Talluri, G. van Ryzin: Revenue Management, Kluwer 2004.

We present an optimization model for O&D RM that

• models the dynamic booking control process consisting of recursive
decisions and observations,

• incorporates the stochastic nature of the passenger behaviour,

• determines protection levels for all origin destination itineraries, fare
classes, points of sale and data collection points (dcp’s),

• represents a multi-stage stochastic program where its stages corre-
spond to the dcp’s of the booking horizon,

• reduces to a specially structured large scale MILP if the stochastic
demand and cancellations processes are represented by a scenario
tree.
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Notation:

Input data
πs - probability of scenario s
stochastic
ds

i,j,k,t - passenger demands
γs

i,j,k,t - cancellation rates
deterministic
fi,j,k,t - fares
Cl,m - leg capacities

Variables
P s

i,j,k,t - protection levels
Bs

i,j,k,t - cumulative bookings
bs
i,j,k,t - bookings

Cs
i,j,k,t - cumulative cancelations

cs
i,j,k,t - cancelations

zb,s
i,j,k,t, zP,s

i,j,k,t - slack variables
z̃s
i,j,k,t - binary variables

For node variables superscript n is
used instead of s.

Indices
s = 1, . . . , S - scenarios
t = 0, . . . , T - data collection points
(dcp’s)
i = 1, . . . , I - Origin-Destination-
Itineraries
j = 1, . . . , J - fare classes
k = 1, . . . , K - points of sale
l = 1, . . . , L - legs
Il ⊂ {1, . . . , I} - index set of
itineraries containing leg l

m = 1, . . . ,M(l) - compartments on
leg l
Jm(l) ⊂ {1, . . . , J} - index set of fare
classes of compartment m on leg l

n = 0, . . . , N - nodes
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Stochastic Optimization Model

Objective

max
(P s

i,j,k,t)

{
S∑

s=1
πs

T∑
t=1

I∑
i=1

J∑
j=1

K∑
k=1

fi,j,k,t

[
bs
i,j,k,t − cs

i,j,k,t

]}
Constraints
Cumulative bookings

Bs
i,j,k,0 := B̄0

i,j,k; Bs
i,j,k,t := Bs

i,j,k,t−1 + bs
i,j,k,t

Cumulative cancelations (ϑ ∈ (0, 0.5])
γs

i,j,k,tB
s
i,j,k,t − ϑ ≤ Cs

i,j,k,t < γs
i,j,k,tB

s
i,j,k,t + ϑ

Cancelations
cs
i,j,k,t = Cs

i,j,k,t − Cs
i,j,k,t−1

Passenger demands
bs
i,j,k,t + zb,s

i,j,k,t = ds
i,j,k,t

Protection levels
Bs

i,j,k,t − Cs
i,j,k,t + zP,s

i,j,k,t = P s
i,j,k,t−1

Number of bookings (disjunctive constraints) (ω > 0, adequately large)
0 ≤ zb,s

i,j,k,t ≤ (1− z̃s
i,j,k,t)d

s
i,j,k,t 0 ≤ zP,s

i,j,k,t ≤ z̃s
i,j,k,tω z̃s

i,j,k,t ∈ {0, 1}
Leg capacity limits ∑

i∈Il

∑
j∈Jm(l)

K∑
k=1

P s
i,j,k,T−1 ≤ Cl,m

Integrality and nonnegativity constraints
Bs

i,j,k,t, C
s
i,j,k,t, P

s
i,j,k,t ∈ Z; bs

i,j,k,t ≥ 0; cs
i,j,k,t ≥ 0

Nonanticipativity constraints
the decisions at t only depend on the demand until t
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Demand process approximation by scenario trees

The demand process {dt}T
t=0 is approximated by a process forming a sce-

nario tree which is based on a finite set N = {0, 1, . . . , N} of nodes.
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Scenario tree with t1 = 1, T = 4, N = 22 and 11 leaves

n = 0 root node, n− unique predecessor of node n,
path(n) = {0, . . . , n−, n}, t(n) := |path(n)| − 1,
N+(n) set of successors to n, NT := {n ∈ N : N+(n) = ∅} set of leaves,
path(n), n ∈ NT , scenario with (given) probability πn,
πn :=

∑
n+∈N+(n) π

n+ probability of node n, ξn realization of ξt(n).
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Stochastic optimization model in node formulation

Objective

max
(Pn

i,j,k)

{
N∑

n=1
πn

I∑
i=1

J∑
j=1

K∑
k=1

[
fi,j,k,t(n)b

n
i,j,k − fi,j,k,t(n)c

n
i,j,k

]}
Constraints
Cumulative bookings

Bs
i,j,k,0 := B̄0

i,j,k; Bn
i,j,k := B

n−
i,j,k + bn

i,j,k

Cumulative cancelations (ϑ ∈ (0.0, 0.5])
γn

i,j,kB
n
i,j,k − ϑ ≤ Cn

i,j,k < γn
i,j,kB

n
i,j,k + ϑ

Cancelations
cn
i,j,k = Cn

i,j,k − C
n−
i,j,k

Passenger demands
bn
i,j,k + zb,n

i,j,k = dn
i,j,k

Protection levels
Bn

i,j,k − Cn
i,j,k + zP,n

i,j,k = P
n−
i,j,k

Number of bookings (disjunctive constraints) (ω > 0, adequately large)
0 ≤ zb,n

i,j,k ≤ (1− z̃n
i,j,k)d

n
i,j,k 0 ≤ zP,n

i,j,k ≤ z̃n
i,j,kω z̃n

i,j,k ∈ {0, 1}
Leg capacity limits∑

i∈Il

∑
j∈Jm(l)

K∑
k=1

P n
i,j,k ≤ Cl,m ∀n ∈ NT−1

Integrality and nonnegativity constraints
Bn

i,j,k, C
n
i,j,k, P

n
i,j,k ∈ Z; bn

i,j,k ≥ 0; cn
i,j,k ≥ 0

Nonanticipativity constraints are satisfied by construction.
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Generation of scenario trees

(i) Development of a stochastic model for the data process ξ

(parametric [e.g. time series model], nonparametric [e.g. resam-
pling]) and generation of simulation scenarios;

(ii) Construction of a scenario tree out of the stochastic model
or of the simulation scenarios.

(1) Bound-based approximation methods,
(Frauendorfer 96, Edirisinghe 99, Casey/Sen 02).

(2) Monte Carlo-based schemes (inside or outside decomposition meth-
ods) (e.g. Shapiro 00, 03, Higle/Rayco/Sen 01, Chiralaksanakul/Morton 03).

(3) the use of Quasi Monte Carlo integration quadratures
(Koivu/Pennanen 03, Pennanen 03, 04).

(4) EVPI-based sampling schemes (inside decomposition schemes) (Con-

sigli/Dempster 98).

(5) Moment-matching principle (Høyland/Wallace 01, Høyland/Kaut/Wallace 03).

(6) (Nearly) best approximations based on probability metrics
(Pflug 01, Hochreiter/Pflug 02, Gröwe-Kuska/Heitsch/Römisch 01, 03).

Survey: Dupačová/Consigli/Wallace 00
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A Distance of Probability Distributions

Let P denote the probability distribution of the stochastic process d =
{dt}T

t=0 with dt in Rd, i.e., P has support in some Ξ ⊆ RdT = Rr, and
let P̃ be the distribution of an approximation d̃ of d. The Kantorovich or
transportation distance is of the form

`1(P, P̃) := inf

{∫
Rr×Rr

‖ξ − ξ̃‖η(dξ, dξ̃) | π1η = P, π2η = P̃
}

= E[‖d− d̃‖]

on some probability space, where ‖ · ‖ is a norm in Rr.

(Rachev 91, Rachev/Rüschendorf 98)

The case of finitely many scenarios:
P: scenarios ds with probabilities ps, s = 1, . . . , S,
P̃: scenarios d̃σ with probabilities qσ, σ = 1, . . . , S̃.

`1(P, Q) = inf

{∑
s,σ

ηsσ‖ds − d̃σ‖ | ηsσ ≥ 0,
∑

σ

ηsσ = ps,
∑

s

ηsσ = qσ

}
(linear transportation problem)
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Constructing Scenario Trees

Let P be the probability distribution of a fan of (multivariate) data scenar-
ios ξs = (ξs

1, . . . , ξ
s
T ) with probabilities πs, s = 1, . . . , S, i.e., all scenarios

coincide at t = 1, i.e., ξ1
1 = . . . = ξS

1 =: ξ∗1 .

The fan may be regarded as a scenario tree with 1 + S(T − 1) nodes.
We develop an algorithm that constructs new scenarios such that their
t-th component belongs to the set {ξ1

t , . . . , ξ
S
t }.

The algorithm is based on recursive scenario reduction on the time horizon
{1, . . . , t} starting from t = T and ending at t = 1. For the time horizon
{1, . . . , t} we consider the norm ‖ξ‖t := ‖(ξ1, . . . , ξt, 0, . . . , 0)‖ and the
corresponding Kantorovich distance `1,t based on the norm ‖ · ‖t.
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Algorithm: (Recursive Scenario Reduction)

Let ε, εt > 0, t = 1, . . . , T , be such that
T∑

t=1
εt ≤ ε.

Step 0: Determine QT with scenario index set IT ⊂ {1, . . . , N} by opti-
mal scenario reduction such that `1,T (QT , P) < εT and QT =

∑
s∈IT

πs
T δξs.

Step t: Determine QT−t with scenario index set IT−t ⊂ IT−t+1 by opti-
mal scenario reduction such that `1,t(QT−t, QT−t+1) < εT−t and determine
jT−t(i) ∈ arg minj∈IT−t

‖ξi − ξj‖t for i ∈ IT−t+1 \ IT−t.

Step T: Construction of Pε: Determine the following mappings recur-
sively αt : IT → It for t = T, . . . , 1 where αT := id|IT

and

αt(i) :=

{
jt(αt+1(i)) , αt+1(i) ∈ It+1 \ It,

αt+1(i) , else
(t = T − 1, . . . , 1).

Determine scenarios ξ̂s with ξ̂s
t := ξ

αt(s)
t for s ∈ IT and set Pε :=

∑
s∈IT

πs
T δξ̂s.

(Dupačová/Gröwe-Kuska/Römisch 03, Gröwe-Kuska/Heitsch/Römisch 03)
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Example:

Recursive construction of a bivariate load-price scenario tree starting with
N = 58 scenarios (illustration, time period: 1 year)

<Start Animation>

file:C:/anim/animation.html
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Approximation Results

Theorem: If Pε is determined by the Algorithm starting with P, we have

`1(P, Pε) < ε.

(Heitsch/Römisch 05)

Theorem: (Stability of multistage programs)
Let d be the demand process with probability distribution P. Then there
exists a constant L > 0 such that the estimate

|v(d)− v(d̃)| ≤ L[E[‖d− d̃‖] +
T−1∑
t=2

Dt(d
t, d̃t)]

holds for the optimal values of the original and approximate programs,
respectively, where d̃ is the approximate demand process with distribution
P̃. Here,

Dt(d
t, d̃t) := max{E[‖xt − E[xt|d̃1, . . . , d̃t]‖], E[‖x̃t − E[x̃t|d1, . . . , dt]‖]},

where x and x̃ are solutions of the original and approximate programs,
respectively. Dt is called the information distance at t.
(Heitsch/Römisch/Strugarek 05)
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Example: (Optimal purchase under uncertainty)
The decisions xt correspond to the amounts to be purchased at each time
period with uncertain prices are ξt, t = 1, . . . , T , and such that a pre-
scribed amount a is achieved at the end of a given time horizon. The
problem is of the form

min

E

[
T∑

t=1

ξtxt

] ∣∣∣∣∣∣∣∣
(xt, st) ∈ Xt = R2

+,

(xt, st) is (ξ1, . . . , ξt)-measurable,
st − st−1 = xt, t = 2, . . . , T,
s1 = 0, sT = a.

 ,

where the state variable st corresponds to the amount at time t.
Let T := 3 and Pε denote the probability distribution of the stochastic
price process having the two scenarios ξ1

ε = (3, 2+ε, 3) (ε ∈ (0, 1)) and ξ2
ε =

(3, 2, 1) each endowed with probability 1
2 . Let P̃ denote the approximation

of P given by the two scenarios ξ̃1 = (3, 2, 3) and ξ̃2 = (3, 2, 1) with the
same probabilities 1

2 .
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Let the scenario trees of the processes ξε and ξ̃ be of the form

3

3

12

2+ε 3

1

23

Scenario trees for Pε (left) and P̃

We obtain

v(ξε) =
3 + ε

2
a and v(ξ̃) = 2a , but µ̂1(Pε, Q) =

ε

2
.

Hence, the multistage stochastic purchasing model is not stable with re-
spect to the Kantorovich distance `1.

However, the estimate for |v(ξ) − v(ξ̃)| in the previous Theorem is valid
with L = a since D2(ξ

2, ξ̃2) = 1.
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O&D Example and Demand Tree

Hub-and-Spokes Network

#Legs 6
#ODIs 12
#Compartments 2
#Fare Classes 6
#POS 1
#DCPs 14 Hub

A

B

CH

Tree and Size

#Scenarios 95
#Nodes 1022
#cont. Variables 434304
#bin. Variables 73512
#Constraints 442212
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Numerical Results

CPLEX-Results
Version 8.1
MIP Gap 0.001
Solution Status Optimal
#MIP Nodes passed 0 (root)

Computing times
Total 41.920 s
→ Solving Problem (CPLEX) 36.81 s
→→ CPLEX Presolve Time 13.32 s
(Intel Celeron, 2.0 GHz, Linux)
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Conclusions and Future Work

We presented an approach to O&D Revenue Management using a scenario
tree-based dynamic stochastic optimization model. The approach

• starts from a finite number of demand scenarios and probabilities,

• requires no assumptions on the demand distributions except their
decision-independence.

Stochastic programming approaches lead to solutions that are more robust
with respect to perturbations of input data. However, the models have
higher complexity.

Future work:

• Analysis of O&D data and setting up suitable demand models (es-
sentially done by Lufthansa Systems)

• Generation of large scale scenario trees

• Implementation of an itinerary-based decomposition scheme

• Numerical comparison with other approaches

(URL: www.math.hu-berlin.de/~romisch, Email: romisch@math.hu-berlin.de)


