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Abstract. Following Mark Kac, it is said that a geometric property of a compact Riemannian
manifold can be heard if it can be determined from the eigenvalue spectrum of the associ-
ated Laplace operator on functions. On the other hand, D’Atri spaces, manifolds of type A,
probabilistic commutative spaces, C-spaces, TC-spaces, and GC-spaces have been studied by
many authors as symmetric-like Riemannian manifolds. In this paper, we prove that for closed
Riemannian manifolds, none of the properties just mentioned can be heard. Another class of in-
terest is the class of weakly symmetric manifolds. We consider the local version of this property
and show that weak local symmetry is another inaudible property of Riemannian manifolds.

1. Introduction and Preliminaries

If M is a compact Riemannian without boundary one may consider the eigenvalue spectrum
(with multiplicities) of the associated Laplace operator on functions and ask how much geometric
information is encoded in the spectrum.

The classical heat invariants ak(M) (k ∈ N0) are coefficients of the asymptotic expansion of
the heat kernel of M , and are thus spectrally determined in the above sense. In particular, the
volume a0 and the total scalar curvature a1 of M are spectrally determined. Note that each
ak is some combination of expressions obtained from the Riemannian curvature tensor of M by
applying covariant derivatives and traces. Therefore, it is of particular interest to know which
curvature properties of a Riemannian manifold are spectrally determined.

A geometric property is “inaudible”, i.e., not determined by the spectrum, if there exist pairs
of isospectral manifolds which differ with respect to this property. For example, it was shown
in [11] that the maximum of the scalar curvature function on a Riemannian manifold is inaudible
(in spite of a1), and it was shown in [21] that the total squared norm of the Ricci tensor,

∫

|ric|2,
is inaudible, in spite of a2 = 1

360

∫

(5 scal2 − 2|ric|2 + 2|R|2).
In the present paper we will prove inaudibility of several other curvature properties. For

this we will use certain pairs of isospectral manifolds Na+b,0 and Na,b for a, b > 0 which we
will describe in Section 2. These manifolds are submanifolds of certain two-step Riemannian
nilmanifolds and were introduced by Z.I. Szabó in [26]. Using them, Szabó proved, in particular,
that local homogeneity is an inaudible property of Riemannian manifolds. More explicitly, he
proved that Na+b,0 is a homogeneous manifold while Na,b is not even locally homogeneous.

The least restrictive of the curvature properties which we are going to consider is the so-called
type A property. A Riemannian manifold M is said to be of type A if its Ricci tensor ric is cyclic
parallel; that is, if (∇Xric)(X,X) = 0 for all X ∈ TM . This class of Riemannian manifolds was
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introduced by A. Gray in [12] as one of the possible natural extensions of Einstein spaces. The
type A property is clearly equivalent to ric(γ̇(t), γ̇(t)) being constant in t for each geodesic γ in M .
Manifolds of type A are known to be analytic [25] and to have constant sectional curvature [9].
In dimensions up to three, manifolds of type A have been classified [15] and are homogeneous.
In dimensions ≥ 5 there exist manifolds of type A which are not locally homogeneous [19]. In
the four dimensional case it is still open whether the type A property implies local homogeneity.
Four-dimensional homogeneous spaces of type A have recently been classified [1], [3].

Besides Einstein spaces, the most well-known examples of type A spaces are locally symmetric
spaces (note that ∇R = 0 implies ∇ric = 0), D’Atri spaces [9], and C-spaces [6].

D’Atri spaces were introduced by J.E. D’Atri and H.K. Nickerson in [9]. A Riemann-
ian manifold is called a D’Atri space (cf. [27]) if the local geodesic symmetries (defined as
σp : expp(X) 7→ expp(−X) on normal neighborhoods of p) preserve the Riemannian volume.
Obviously, D’Atri spaces are a natural generalization of locally symmetric spaces (where the
local geodesic symmetries are isometries). It is an open question whether each D’Atri space is
locally homogeneous. The classification of D’Atri spaces has been obtained only in dimensions
up to three [15]. In dimension four, partial classifications were obtained by J.T. Cho, K. Seki-
gawa and L. Vanhecke [22], [23], [8]; the classification of 4-dimensional homogeneous D’Atri
spaces has recently been completed by the first author and O. Kowalski [1], [2], [3]. See [17] for
references about D’Atri spaces and related topics. A useful characterization of D’Atri spaces
was proved by J.E. D’Atri and H.K. Nickerson [9] and improved by Z.I. Szabó [25]; namely:
A Riemannian manifold is a D’Atri space if, and only if, it satisfies the series of all odd Ledger
conditions L2k+1, k ≥ 1. The Ledger conditions Lm, m ≥ 2, are an infinite series of curvature
conditions derived from the so-called Ledger recurrence formula. This formula is derived using
a calculation involving the Jacobi operator (see [17]). The explicit form of Lm is known only for
small values of m. The first nontrivial odd Ledger condition L3 reads: (∇Xric)(X,X) = 0 for
all X ∈ TM ; this is exactly the type A condition. Therefore, every D’Atri space is of type A.
The converse is not true [19].

C-spaces were introduced by J. Berndt and L. Vanhecke in [6]. By definition, a Riemannian
manifold is a C-space if for each geodesic γ in M the eigenvalues of the associated field of Jacobi
operators Rγ̇(t) := R( . , γ̇(t))γ̇(t) are constant in t. For locally symmetric spaces this is always
the case (by ∇R = 0), so C-spaces are another natural generalization of locally symmetric
spaces. It is an open question whether every C-space is locally homogeneous. The classification
of C-spaces has been obtained only in dimensions up to three [6]. Non-symmetric Damek-Ricci
spaces were the first examples of D’Atri spaces which are not C-spaces [5]. However, it is an
open question whether each C-space is a D’Atri space. Obviously, every C-space is of type A:
If for each geodesic γ in M the eigenvalues of the operator Rγ̇(t) are constant in t then so is its
trace; but this trace is just ric(γ̇(t), γ̇(t)). The converse is not true; recall that non-symmetric
Damek-Ricci spaces are D’Atri spaces, hence of type A, but are not C-spaces.

Weakly symmetric spaces were introduced by A. Selberg in [24]. A Riemannian manifold M
is called weakly symmetric if each p ∈ M and each nontrivial geodesic γ starting in p there exists
an isometry f of M which fixes p and reverses γ (equivalently: dfp(γ̇(0)) = −γ̇(0)). This is not
Selberg’s original definition, but was Z.I. Szabó’s definition of what he called ray symmetry [25].
However, Selberg’s and Szabó’s definitions turned out to be equivalent [7]. Weak symmetry
implies commutativity [24] which is defined as follows.

A commutative space is a homogeneous Riemannian manifold whose algebra of I0(M)-invariant
differential operators is commutative. Here, I0(M) denotes the connected component of the
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isometry group of M . J. Lauret gave the first example of a commutative space which is not
weakly symmetric [18]. Every commutative space is a C-space [6].

Probabilistic commutative spaces were introduced by P.H. Roberts and H.D. Ursell in [20]
for compact Riemannian manifolds from a probabilistic point of view. The general case has
been treated by O. Kowalski and F. Prüfer in [14] and [16]. They characterized probabilistic

commutative spaces as those Riemannian manifolds for which all Euclidean Laplacians ∆̃(k) (k ∈
N) commute. The Euclidean Laplacians are defined as follows: For p ∈ M define a differential
operator ∆̄p on a normal neighborhood of p as the pullback of the (standard) Laplacian on the

euclidean space TpM via the exponential map expp. Then (∆̃(k)f)(p) is defined as ((∆̄p)
kf)(p)

for f ∈ C∞(M). Since ∆̃(k) is certainly invariant under isometries, the above characterization
immediately implies that every commutative space is also probabilistic commutative. Moreover,
every probabilistic commutative space is a D’Atri space [16]. Classifications of probabilistic
commutative spaces are known only for dimension three [15]. For more information about
probabilistic commutative spaces and Euclidean Laplacians we refer to [17].

Note that both the C property and probabilistic commutativity (as well as the D’Atri and the
type A property) are local properties of Riemannian manifolds. As mentioned above, both of
them are implied by commutativity which, in turn, is implied by weak symmetry. Therefore, the
C property and probabilistic commutativity follow already in the case that some Riemannian
covering of the manifold is weakly symmetric. In this context, let us introduce the following
local version of weak symmetry:

Definition 1.1. A Riemannian manifold M is called weakly locally symmetric if for every p ∈ M
there exists ε > 0 such that for any unit speed geodesic γ in M with γ(0) = p there exists an
isometry of the distance ball Bε(p) which fixes p and reverses γ|(−ε,ε).

Local symmetry clearly implies weak local symmetry. The converse is not true: See [7] for
examples of weakly symmetric spaces which are not locally symmetric. However, we note the
following important fact which is analogous to the locally symmetric case:

Lemma 1.2. Let M be a complete, simply connected, weakly locally symmetric Riemannian

manifold. Then M is weakly symmetric. In particular, the universal Riemannian covering of

any complete, weakly locally symmetric Riemannian manifold is weakly symmetric.

Proof. Let γ : R → M be a unit speed geodesic and p = γ(t0) any point on it. By weak
local symmetry of M there exists ε > 0 and an isometry of Bε(p) which reverses γ|(t0−ε, t0+ε).

In particular, s 7→ ric(γ̇(t0 + s), γ̇(t0 + s)) is an even function of s ∈ (−ε, ε) and hence has
derivative zero at s = 0. So t 7→ ric(γ̇(t), γ̇(t)) has derivative zero at t0. Since t0 was arbitrary,
this function is constant. This shows that M is of type A. As mentioned above, it follows that
M is analytic [25]. But on every complete, simply-connected, analytic Riemannian manifold,
any isometry between open subsets of M extends to an isometry of M (see Corollary IV.6.4
in [13]). In particular, the isometries from the definition of weak local symmetry extend to
isometries of M . Hence M is weakly symmetric. �

By the above discussion, Lemma 1.2 immediately implies that every complete, weakly locally
symmetric Riemannian manifold is probabilistic commutative and a C-space. Lauret’s afore-
mentioned example [18] of a commutative (and hence probabilistic commutative and C-) space
which is not weakly symmetric is in fact a complete, simply connected manifold; thus, by
Lemma 1.2, it is not even weakly locally symmetric.
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In the following diagram we now summarize, in the setting of complete Riemannian manifolds,
the relations between those classes of manifolds which we discussed above and which are defined
by local properties:

⊂ C-spaces

Loc. symm. ⊂ weakly loc. symm. ⊂ Type A.

⊂ prob. comm. ⊆ D’Atri

(1)

Here, ⊂ means that the inclusion is strict while ⊆ means that it is not known whether each
D’Atri space is probabilistic commutative.

For our isospectral pairs of compact Riemannian manifolds Na+b,0 and Na,b (see Section 2)
with a, b > 0 we will prove in Section 3 that the first manifold is weakly locally symmetric, and
we will prove in Section 4 that the second manifold is not even of type A. Using (1) we can
then conclude:

Main Theorem 1.3. Each of the following properties is an inaudible property of Riemannian

manifolds: Weak local symmetry, the D’Atri property, probabilistic commutativity, the C prop-

erty, and the type A property.

Let us mention that there are two other (less studied) local properties of Riemannian manifolds
which turn out to be inaudible by our examples, namely, the so-called TC and GC properties
(see [4] or [5]). Each weakly locally symmetric space is a TC space and a GC space; on the other
hand, each of these two properties implies the C property. However, it is not known whether
these properties are really stronger than the C property and not equivalent to it.

Finally we remark here without proof that using the formula for the Ricci curvature from
Lemma 4.3(i) below one can show that ∇ric 6= 0 for each of our manifolds Na,b, including Na,0.
In particular, none of our manifolds is locally symmetric (note that ∇R = 0 would imply
∇ric = 0), or Einstein (which would imply ∇ric = 0), or harmonic (which would imply Einstein).
Whether any of these three properties is spectrally determined remains an open question.

2. The manifolds Na,b

Let v and z be euclidean vector spaces, each endowed with a fixed inner product, and let L be
a cocompact lattice in z.

Definition 2.1. Given the above data, one associates with any linear map j : z → so(v) the
following:

(i) The two-step nilpotent metric Lie algebra g(j) with underlying vector space v⊕ z, whose
inner product is given by letting v and z be orthogonal and taking the given inner product
on each factor, and whose Lie bracket [ , ]j is defined by letting z be central, [v, v]j ⊆ z

and 〈jZX,Y 〉 = 〈Z, [X,Y ]j〉 for all X,Y ∈ v and Z ∈ z.
(ii) The two-step simply connected nilpotent Lie group G(j) whose Lie algebra is g(j), and

the left invariant Riemannian metric g(j) on G(j) which coincides with the chosen inner
product on g(j) = TeG(j). Note that the Lie group exponential map expj : g(j) → G(j)
is a diffeomorphism because G(j) is simply connected and nilpotent. Moreover, by the
Campbell-Baker-Hausdorff formula, expj(X,Z) · expj(Y,W ) = expj(X + Y,Z + W +
1
2 [X,Y ]j) for all X,Y ∈ v and Z,W ∈ z.

(iii) The two-step nilpotent Lie group G(j)/expj(L). Note that expj(L) is a discrete cen-
tral subgroup of G(j), and that g(j) induces a left invariant metric, which we denote
again g(j), on G(j)/expj(L).
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(iv) The submanifolds Ñ(j) := {expj(X,Z) | X ∈ v, |X| = 1, Z ∈ z} of G(j) and N(j) :=

Ñ(j)/expj(L) of G(j)/expj(L), each endowed with the Riemannian metric induced

by g(j). Note that Ñ(j) is indeed invariant under multiplication by elements of expjz

because of expj(X,Z) · expj(0,W ) = expj(X,Z + W ). Moreover, Ñ(j) is diffeomorphic
to Sdimv−1×z, and that N(j) is compact and diffeomorphic to Sdimv−1×(z/L), the prod-

uct of a sphere and a torus. The canonical projection Ñ(j) → N(j) is a Riemannian
covering.

Definition 2.2. Two linear maps j, j′ : z → so(v) are called isospectral if for each Z ∈ z, the
maps jZ , j′Z ∈ so(v) have the same eigenvalues (with multiplicities) in C.

Proposition 2.3 (see [11]). Let j, j′ : z → so(v) be isospectral, and let L be a cocompact lattice

in z. Then the associated closed Riemannian manifolds N(j) and N(j′), obtained as above, are

isospectral for the Laplace operator on functions.

Remark 2.4. If j, j′ : z → so(v) are both of Heisenberg type, that is, if j2
Z = j′ 2Z = −|Z|2Idv for

all Z ∈ z, then j and j′ are obviously isospectral because the eigenvalues for both of them are
±i|Z|, each with multiplicity (dim v)/2.

Definition 2.5. Let H = span{1, i, j, k} denote the algebra of quaternions with the usual
multiplication, endowed with the inner product for which {1, i, j, k} is an orthonormal basis.
For a, b ∈ N0 with a + b > 0 define v as the direct orthogonal sum of a + b copies of H, let
z := span{i, j, k} be the space of pure quaternions, and let L := spanZ{i, j, k} be the standard
lattice in z. Define ja,b : z → so(v) by

ja,b
Z : v ∋ (X1, . . . ,Xa, Y1, . . . , Yb) 7→ (X1Z, . . . ,XaZ,ZY1, . . . , ZYb) ∈ v.

We denote the resulting Riemannian manifolds by

Na,b := N(ja,b), resp. Ña,b := Ñ(ja,b).

Remark 2.6.

(i) For all pairs (a, b) ∈ N
2
0 with fixed sum a + b = (dim v)/4 > 0 the associated Riemann-

ian manifolds Na,b are obviously of Heisenberg type and thus mutually isospectral by
Proposition 2.3 and Remark 2.4. Independently of Proposition 2.3 from [11] this had
previously been shown by Z.I. Szabó in [26] using explicit calculations.

(ii) Of particular interest to us will be the isospectrality of the pairs Na+b,0 and Na,b for
a, b > 0: We will show in this paper that Na+b,0 is weakly locally symmetric, and thus,
in particular, a D’Atri space, while Na,b for a, b > 0 is not a D’Atri space and not even
of type A. We will also exhibit several other geometric properties that these isospectral
pairs do not share. The simplest such example will be given by pair of isospectral
ten-dimensional closed Riemannian manifolds N2,0 and N1,1.

Proposition 2.7. For every a ∈ N the manifolds Na,0 and Ña,0 are homogeneous.

Proof. Although this was already shown in [26], we include an explicit proof here for convenience
of the reader. In the general context of Definition 2.1, note that if A ∈ O(v) and C ∈ O(z) are
two orthogonal maps which satisfy

(2) AjZA−1 = jCZ for all Z ∈ z

then [AX,AY ] = C[X,Y ] for all X,Y ∈ v; hence

(A,C) : v ⊕ z ∋ (X,Z) 7→ (AX,CZ) ∈ v ⊕ z
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is an isometric Lie algebra isomorphism of g(j) and is, thus, the differential of an isometric Lie
group automorphism

fA,C : (G(j), g(j)) ∋ expj(X,Z) 7→ expj(AX,CZ) ∈ (G(j), g(j)),

where X and Z denote elements of v and z, respectively. Note that fA,C restricts to an isometry

of Ñ(j). Now for j := ja,0 and v = H
a, the pair (A, Id) satisfies (2) for any

A ∈ Sp(a) := {A ∈ O(Ha) | A(Xλ) = A(X)λ for all λ ∈ H,X ∈ H
a}.

Write exp := expj. Given an arbitrary pair of points in Ña,0, say, exp(X,Z), exp(Y,W ) with
X,Y ∈ v, Z,W ∈ z, we choose A ∈ Sp(a) such that AX = Y . This is possible because Sp(a)
acts transitively on the unit sphere in H

a. Then the isometry fA,Id maps exp(X,Z) to exp(Y,Z).

Finally, left translation by exp(0,W − Z) is another isometry of Ga,0 which restricts to Ña,0,

and it maps exp(Y,Z) to exp(Y,W ). Therefore Ña,0 is homogeneous; since the isometries we
used commute with the left action of exp(L) and thus descend to isometries of Na,0, the latter
is homogeneous, too. �

Remark 2.8. Z.I. Szabó also proved in [26] that Na,b is not locally homogeneous if both a
and b are nonzero. More precisely, he showed that in this case any isometry of the universal
covering Ña,b leaves exp(v1×z) and exp(v2×z) invariant, where v1 := H

a×{0}, v2 := {0}×H
b ⊂

H
a+b = v. Szabó’s isospectral pairs Na+b,0 and Na,b thus exhibited the surprising fact that local

homogeneity is an inaudible property of Riemannian manifolds.

3. Weak local symmetry of Na,0

In this section we are going to show that the Riemannian manifolds Ña,0 are weakly symmetric
(Theorem 3.1); in particular, since Ña,0 and Na,0 are locally isometric, the manifold Na,0 is
weakly locally symmetric.

Theorem 3.1. For any a ∈ N the Riemannian manifold Ña,0 is weakly symmetric. In particu-

lar, Na,0 is weakly locally symmetric.

As a preparation for the proof we first state:

Lemma 3.2 (cp. [11]). In the general context of Definition 2.1, for any p := expj(x, z) ∈ Ñ(j)
with x ∈ v, |x| = 1, z ∈ z we have

TpÑ(j) = Lp∗{(X,Z) | X ∈ v,X ⊥ x,Z ∈ z}.

In particular, Lp∗(x, 0) is a unit normal vector to TpÑ(j) in TpG(j).

Proof. We write exp := expj. The definition of Ñ(j) implies TpÑ(j) = exp∗(x,z)(x
⊥ × z), where

x⊥ is the orthogonal complement of span{x} in v. Note that

(3) exp∗(x,z) = Lp∗(Id − 1

2
adx);

this identity holds in any two-step nilpotent Lie group and follows from the Campbell-Baker-
Hausdorff formula. In particular, exp∗(x,z) and Lp∗ coincide on z, hence Lp∗z ⊂ TpÑ(j). Finally,

for any Y ∈ x⊥, the element exp∗(x,z)Y = Lp∗(Y − 1
2 [x, Y ]) of TpÑ(j) differs from Lp∗Y by an

element of Lp∗z. Consequently, Lp∗Y lies in TpÑ(j). �
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Proof of Theorem 3.1. Again we use the abbreviations j := ja,0 and exp := expj . We write
vectors in v = H

a in the form X = (X1, . . . ,Xa) with X1, . . . ,Xa ∈ H.

In order to show that Ña,0 is weakly symmetric, we must, for any given point p ∈ Ña,0 and
any given tangent vector at p, find an isometry of Ña,0 which fixes p and whose differential maps
the given tangent vector to its negative.

Since Ña,0 is homogeneous it suffices to consider the case p := exp((1, 0, . . . , 0), 0). We then
have, by Lemma 3.2,

TpÑ
a,0 = Lp∗{((X1, . . . ,Xa), Z) | X1, Z ∈ z = span{i, j, k},X2 , . . . ,Xa ∈ H}.

Let Lp∗(X,Z) be any tangent vector in TpÑ
a,0 and write X = (X1,X

′) with X ′ = (X2, . . . ,Xa).
Choose W ∈ span{i, j, k} such that W ⊥ span{X1, Z} and |W | = 1. Define A1 ∈ O(v) by
A1Y := −WY W , and define C ∈ O(z) by CZ := −WZW . Note that A1 and C act on v and
z, respectively, as Idspan{1,W} − Idspan{1,W}⊥ . The pair (A1, C) then satisfies (2). In fact, for all
U ∈ z and all Y ∈ v:

A1jUA−1
1 (Y ) = A1jU (−WY W ) = A1(−WY WU) = WWY WUW = −Y WUW

= Y · CU = jCUY.

Define the associated isometry f1 := fA1,C as in the proof of Proposition 2.7. Then f1 fixes p
because of A1(1, 0) = (−WW, 0) = (1, 0). Moreover, the differential of f1 at e is (A1, C) ∈
O(v⊕z) and f1 is a Lie group automorphism of Ga,0, so its differential at p maps Lp∗((X1,X

′), Z)

to Lp∗(A1X,CZ). This is equal to Lp∗((−X1,−WX ′W ),−Z) because of X1, Z ∈ span{1,W}⊥.
For ℓ = 2, . . . , a now choose cℓ ∈ H with |cℓ| = 1 such that cℓWXℓW = Xℓ. (Note that

cℓ is unique if Xℓ 6= 0 and arbitrary else.) Define A2 ∈ Sp(a) ⊂ O(v) by A2(Y1, . . . , Ya) :=
(Y1, c2Y2, . . . , caYa). Then (A2, Id) satisfies (2), the corresponding isometry f2 := fA2,Id fixes p,
and its differential at p maps Lp∗((−X1,−WX ′W ),−Z) to Lp∗((−X1,−X ′),−Z). The isometry

f := f2 ◦ f1 of Ña,0 hence fixes p and maps our given tangent vector Lp∗((X1,X
′), Z) to its

negative, as wished. �

Note that the isometry f1 in the proof of Theorem 3.1 will in general not descend to the
quotient manifold Na,0 because the condition CL ⊂ L will not hold in general. So we cannot
conclude weak symmetry of Na,0 but only weak local symmetry.

4. Failure of the type A condition for Na,b with a, b > 0

In this section we will show that for a, b > 0 the Riemannian manifolds Na,b are not of type A
(Theorem 4.4). We first introduce some notation and compute some formulas for the Ricci

curvature of the manifolds Ñ(j) from Definition 2.1 in the case that j is of Heisenberg type

(Lemma 4.3). In particular, these formulas will hold for our manifolds Ña,b.

Notation 4.1.

(i) Recall the notation from Definition 2.1. In the following, let j : z → so(v) be any linear

map (not necessarily one of our maps ja,b). We write [ , ] := [ , ]j, g := g(j), exp := expj ,

G := G(j), g := g(j). Inner products 〈 , 〉 and norms | . | will refer to g (either on Ñ or

on G). We denote the Levi Civita connection of Ñ by ∇ and that of (G, g) by ∇G. The

Ricci tensor of Ñ will be denoted by ric and that of G by ricG.
(ii) For any p = exp(x, z) ∈ Ñ , where x ∈ v, |x| = 1, z ∈ z, we let

νp := Lp∗(x, 0) ∈ TpG.
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Recall from Lemma 3.2 that νp is a unit normal vector to TpÑ .
(iii) We denote by S the Weingarten map associated with the unit normal field ν on the

submanifold Ñ of (G, g). More precisely, S is the endomorphism field on Ñ given by

Sp(Y ) = −∇G
Y ν ∈ TpÑ

for all p ∈ Ñ , Y ∈ TpÑ .
(iv) We will often identify vectors in TpG = Lp∗g with their preimage in g. That is, we

regard Y ∈ TpG as the value in p of the corresponding left invariant vector field Y on G.
Correspondingly, we will decompose Y ∈ TpG as

Y = Y v + Y z

with Y v ∈ v, Y z ∈ z.

Lemma 4.2. Let p = exp(x, z) ∈ Ñ , where x ∈ v, |x| = 1, z ∈ z. Then

Sp(Y ) = −Y v − 1

2
[Y v, x] +

1

2
jY zx.

Proof. From the definition of ν it follows that ∇G
Y ν = Y v + ∇G

Y x, where x now denotes the left
invariant vector field associated to x ∈ v. By general formulas for left invariant vector fields on
two-step nilpotent Lie groups (see, e.g., [10]), one has ∇G

Y x = 1
2 [Y v, x] − 1

2jY zx. �

Lemma 4.3. Assume that j is of Heisenberg type. Let p = exp(x, z) ∈ Ñ , where x ∈ v, |x| = 1,

z ∈ z. Then for all Y1, Y2, Y ∈ TpÑ we have

(i) ricp(Y1, Y2) = (dim v − 2 − 1

2
dim z)〈Y v

1 , Y v
2 〉 + (

1

4
dim v − 1

2
)〈Y z

1 , Y z

2 〉

+
1

2
〈[Y v

1 , x], [Y v
2 , x]〉 +

1

2
(dim v − 2)〈jY

z

1

Y v
2 + jY

z

2

Y v
1 , x〉,

(ii) (∇Y ric)(Y, Y ) = 〈[Y v, x], [jY zY v, x]〉.

Proof. The Ricci curvature ric of Ñ satisfies the following formula which holds in the general
context of submanifolds of codimension one and can easily be derived from the Gauss equation:

ricp(Y, Y ) = ricG
p (Y, Y ) − KG(span{Y, νp})|Y |2 + trace(Sp)〈Sp(Y ), Y 〉 − |Sp(Y )|2(4)

for all p ∈ Ñ and Y ∈ TpÑ , where KG denotes sectional curvature in (G, g). Now let p =

exp(x, z) ∈ Ñ and Y = Y v + Y z ∈ TpÑ ⊂ TpG. Since (G, g) is of Heisenberg type, we have
(see [5]):

ricG
p (Y, Y ) = −1

2
dim z · |Y v|2 +

1

4
dim v · |Y z|2.

Moreover, by a general formula for left invariant metrics we have, noting that ad2 = 0 and
∇G

x x = 1
2 [x, x] = 0:

KG(span{Y, νp})|Y |2 = |∇G
Y x|2 − |[Y, x]|2 − 〈∇G

Y Y,∇G
x x〉 − 〈ad2

xY, Y 〉

=
1

4
|[Y v, x]|2 +

1

4
|jY zx|2 − |[Y v, x]|2 − 0 − 0 = −3

4
|[Y v, x]|2 +

1

4
|Y z|2,

where for the last term we have used the Heisenberg type property and |x| = 1. Moreover,
by Lemma 4.2, we have trace(Sp) = −(dim v − 1), 〈Sp(Y ), Y 〉 = −|Y v|2 − 〈jY zY v, x〉, and
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|Sp(Y )|2 = |Y v|2 + 1
4 |[Y v, x]|2 + 1

4 |Y z|2 + 〈jY zY v, x〉. In our setting, formula (4) thus becomes

ricp(Y, Y ) = −1

2
dim z · |Y v|2 +

1

4
dim v · |Y z|2 +

3

4
|[Y v, x]|2 − 1

4
|Y z|2

+ (dim v − 1)|Y v|2 + (dim v − 1)〈jY zY v, x〉

− |Y v|2 − 1

4
|[Y v, x]|2 − 1

4
|Y z|2 − 〈jY zY v, x〉

= (dim v − 2 − 1

2
dim z)|Y v|2 + (

1

4
dim v − 1

2
)|Y z|2

+
1

2
|[Y v, x]|2 + (dim v − 2)〈jY zY v, x〉.

Statement (i) now follows by polarization. In order to prove (ii) we may assume |Y v| = 1 by
rescaling Y . Then the curve c : R → G defined by

c(t) := exp(cos t · x + sin t · Y v, z + tY z +
1

2
t[x, Y v])

is a curve in Ñ , and c(0) = p. By (3),

ċ(t) = exp∗c(t)(− sin t · x + cos t · Y v + Y z +
1

2
[x, Y v]) = Lc(t)∗Y (t),

where Y (t) : = − sin t · x + cos t · Y v + Y z.

In particular, ċ(0) = Y . We now have, extending Y ∈ TpÑ as the vector field ċ along c:

(5) (∇Y ric)(Y, Y ) =
d

dt
∣

∣

t = 0
ricc(t)(ċ(t), ċ(t)) − 2 ricp(Y,∇Y ċ).

We observe that |Y v(t)|2 ≡ 1, |Y z(t)|2 ≡ |Y z|2, |[Y v(t), cos t · x + sin t · Y v]|2 ≡ |[Y v, x]|2, and
〈jY z (− sin t · x + cos t · Y v), cos t · x + sin t · Y v〉 ≡ 〈Y z, [Y v, x]〉 for all t. The first term on the
right hand side of (5) therefore vanishes by (i). Concerning the second term, note that

∇G
Y ċ = Ẏ (0) + ∇G

Y Y = −x − jY zY v.

By Lemma 3.2, orthogonal projection of this vector to TpÑ gives

∇Y ċ = −jY zY v + 〈jY zY v, x〉x.

In particular, ∇Y ċ lies in Lp∗v and is perpendicular to Y v. When we compute ricp(Y,∇Y ċ)
using the formula from (i), the first two terms on the right hand side thus vanish. The fourth
term vanishes, too, because the vector jY z (−jY zY v + 〈jY zY v, x〉x)+ j0Y

v = |Y z|2Y v + 〈. . .〉jY zx
is perpendicular to x. Hence we remain with the third term only and obtain ricp(Y,∇Y ċ) =
1
2〈[Y v, x], [−jY zY v, x]〉. Statement (ii) now follows from (5). �

Theorem 4.4. For a, b > 0 the Riemannian manifolds Na,b and Ña,b are not of Type A.

Proof. Since the type A condition is a local condition and since Na,b and Ña,b are locally
isometric, it suffices to prove the statement for Ña,b. We write j := ja,b, [ , ] := [ , ]j , exp := expj

and continue to use the notation of 4.1. From the definition of ja,b (see 2.5) one easily derives

[X,Y ] =
∑a

ℓ=1 Im(X̄ℓYℓ) +
∑a+b

ℓ=a+1 Im(YℓX̄ℓ), for X = (X1, . . . ,Xa+b), Y = (Y1, . . . , Ya+b) ∈
v = H

a+b, where Im q denotes the imaginary part of q ∈ H, and q̄ denotes the quaternionic
conjugate of q. Let x := (1/

√
2, 0, . . . , 0, 1/

√
2), Y v := (j, 0, . . . , 0, k), Y z := i. Then [Y v, x] =

(−j − k)/
√

2 ∈ z, jY z Y v = (ji, 0, . . . , 0, ik) = (−k, 0, . . . , 0,−j) ∈ v, and [jY zY v, x] = (k +
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j)/
√

2 ∈ z. Hence, for p := exp(x, 0) ∈ Ña,b and Y := Lp∗(Y
v + Y z) we have by Lemma 4.3(ii):

(∇Y ric)(Y, Y ) = 〈−j − k, k + j〉/2 = −1 6= 0. �

Theorem 4.4 and Theorem 3.1 now imply:

Corollary 4.5. There exist pairs of compact isospectral Riemannian manifolds (here: Na+b,0

and Na,b with a, b > 0) in which the first manifold is weakly locally symmetric while the second

is not of type A.

Recall from the Introduction that this corollary proves our Main Theorem 1.3.
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[25] Z.I. Szabó, Spectral theory for operator families on Riemannian manifolds, Proc. Symp. Pure Math. 54, 3
(1993), 615–665.
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