Analysis II* SoSe 2019

Übungsblatt 5

Schriftliche Abgabe: Donnerstag 16. Mai 2019

Schreiben Sie jede Aufgabe bitte auf ein gesondertes Blatt, und schreiben Sie auf jedes Blatt ihren Namen, ihre Matrikelnummer und ihre Übungsgruppe (Wochentag + Übungsleiter + Zeit)

Aufgabe 5.1 (3 Punkte)

Sei $\mathcal{U}:=(0,\infty)\times(0,\infty)\times(0,\infty)\subset\mathbb{R}^3$. Berechnen Sie die Jacobi-Matrix der Abbildung

$$f: \mathcal{U} \to \mathbb{R}^2: (x, y, z) \mapsto \left(x\sqrt{z} + \sqrt{y}, \frac{z^2y}{x}\right)$$

in einem beliebigen Punkt des Definitionsbereiches. Ist f überall differenzierbar?

Aufgabe 5.2 (2 + 2 Punkte)

Der Graph einer Funktion $f: \mathbb{R}^n \to \mathbb{R}$ ist die Teilmenge in \mathbb{R}^{n+1} definiert durch

$$\Gamma_f := \{(x_1, \dots, x_n, z) \in \mathbb{R}^{n+1} \mid z = f(x_1, \dots, x_n)\}.$$

Wenn f differenzierbar ist, dann wird der $Tangentialraum\ T_p\Gamma_f$ an den Graphen Γ_f im Punkt $p:=(a,f(a))\in\Gamma_f$ definiert als die Menge der Vektoren $X\in\mathbb{R}^{n+1}$, die als $X=\gamma'(0)$ für beliebige differenzierbare Kurven $\gamma:(-\epsilon,\epsilon)\to\Gamma_f$ mit $\gamma(0)=p$ vorkommen. Beweisen Sie:

- a) $T_p\Gamma_f = \{(v,t) \in \mathbb{R}^{n+1} \mid v \in \mathbb{R}^n, \ t = \langle \nabla f(a), v \rangle \}$. Insbesondere ist $T_p\Gamma_f$ ein linearer Unterraum von \mathbb{R}^{n+1} .
- b) Der Vektor $(\nabla f(a), -1) \in \mathbb{R}^{n+1}$ ist orthogonal zu $T_p\Gamma_f$.

Aufgabe 5.3 (2 + 2 Punkte)

Wir betrachten die Funktion $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, definiert durch f(x,y) := |xy|.

- a) Bestimmen Sie alle Punkte $a \in \mathbb{R}^2$, in denen die Funktion f die partiellen Ableitungen $\frac{\partial f}{\partial x}(a)$ und $\frac{\partial f}{\partial y}(a)$ besitzt.
- b) Bestimmen Sie alle Punkte $a \in \mathbb{R}^2$, in denen die Funktion differenzierbar ist.

Aufgabe 5.4 (3 + 3 Punkte)

Sei $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ ein beliebiges Skalarprodukt auf \mathbb{R}^n und $\phi : \mathbb{R}^n \to \mathbb{R}^n$ eine lineare Abbildung. Zeigen Sie, dass die folgenden Abbildungen differenzierbar sind und geben Sie jeweils das Differential in einem beliebigen Punkt des Definitionsbereiches an.

- a) $f: \mathbb{R}^n \to \mathbb{R}$ gegeben durch $f(\mathbf{x}) := \langle \phi(\mathbf{x}), \mathbf{x} \rangle$.
- b) $g: \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ gegeben durch $g(\mathbf{u}, \mathbf{v}, \mathbf{w}) := \det (\mathbf{u} \ \mathbf{v} \ \mathbf{w})$, wobei $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ als die Spalten einer 3×3 -Matrix zu verstehen sind. Was ist insb. $Dg(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) : \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ für die Standard-Basisvektoren $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \in \mathbb{R}^3$?

 $^{^1}$ Das Symbol ∇f als Synonym für "grad f" kommt im Skript von Helga Baum nicht vor, ist jedoch eine Standardbezeichnung für den Gradienten einer Funktion und wird in dieser Vorlesung häufig verwendet.

Aufgabe 5.5 (2 + 2 + 4 Punkte)

Der Raum $\mathbb{R}^{n \times n}$ von reellen $n \times n$ -Matrizen ist ein n^2 -dimensionaler Vektorraum, den wir in dieser Aufgabe mit \mathbb{R}^{n^2} identifizieren werden, damit wir differenzierbare Funktionen auf offenen Teilmengen in $\mathbb{R}^{n \times n}$ betrachten können. Eine wichtige offene Teilmenge² ist

$$GL(n, \mathbb{R}) = \{ \mathbf{A} \in \mathbb{R}^{n \times n} \mid \mathbf{A} \text{ ist invertierbar} \}.$$

In Aufgabe 2.2 wurde auf $\mathbb{R}^{n\times n}$ eine Norm definiert, womit $\mathbb{R}^{n\times n}$ ein Banachraum wird, und diese Norm erfüllt auch die Ungleichung $\|\mathbf{A}\mathbf{B}\| \leq \|\mathbf{A}\| \cdot \|\mathbf{B}\|$ für alle $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n\times n}$. Beweisen Sie:

- a) Für alle $\mathbf{A} \in \mathbb{R}^{n \times n}$ mit $\|\mathbf{A}\| < 1$ konvergiert die Reihe $\sum_{k=0}^{\infty} \mathbf{A}^k$ in $\mathbb{R}^{n \times n}$.
- b) Für alle $\mathbf{A} \in \mathbb{R}^{n \times n}$ mit $\|\mathbf{A}\| < 1$ ist $\mathbb{1} + \mathbf{A} \in \mathbb{R}^{n \times n}$ invertierbar, und

$$(1 + \mathbf{A})^{-1} = \sum_{k=0}^{\infty} (-1)^k \mathbf{A}^k.$$

Bemerkung: Dies verallgemeinert die Formel $\frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k$ für |x| < 1.

c) Die Funktion $\iota: \mathrm{GL}(n,\mathbb{R}) \to \mathbb{R}^{n \times n}$, definiert durch $\iota(\mathbf{A}) = \mathbf{A}^{-1}$, ist differenzierbar, mit Ableitung $D\iota(\mathbf{A}) \in \mathscr{L}(\mathbb{R}^{n \times n}, \mathbb{R}^{n \times n})$ im Punkt $\mathbf{A} \in \mathbb{R}^{n \times n}$ gegeben durch

$$D\iota(\mathbf{A})\mathbf{H} = -\mathbf{A}^{-1}\mathbf{H}\mathbf{A}^{-1}.$$

Bemerkung: Dies verallgemeinert die Formel $\frac{d}{dx}\frac{1}{x}=-\frac{1}{x^2}$.

Insgesamt: 25 Punkte

Schriftliche Zusatzaufgabe 5.Z (3 Punkte)

Finden Sie eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit den folgenden Eigenschaften: f ist stetig, alle Richtungsableitungen von f im Punkt (0,0) existieren, $(\partial_x f(0,0), \partial_y f(0,0)) \in \mathbb{R}^2$ ist nicht null, aber dieser Vektor gibt *nicht* diejenige Richtung an, in der f im Punkt (0,0) am schnellsten wächst.³

Hinweis: Die Funktion in Aufgabe 4.3(c) könnte helfen, müsste aber modifiziert werden.

Die folgenden Aufgaben werden teilweise in den Übungen besprochen.

Aufgabe 5.A

Sei $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ gegeben durch

$$f(x,y) := \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & \text{für } (x,y) \neq (0,0), \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

Beweisen Sie, dass die partielle Ableitung $\frac{\partial f}{\partial x}$ in (0,0) nicht stetig ist, aber f trotzdem in (0,0) differenzierbar ist.

Aufgabe 5.B

Sei $f: \mathcal{U} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ eine Funktion, die auf \mathcal{U} alle partiellen Ableitungen besitzt. Zeigen Sie: Sind alle partiellen Ableitungen von f auf \mathcal{U} beschränkt, so ist f stetig.

 $^{{}^2\}mathrm{GL}(n,\mathbb{R})$ ist das Urbild der offenen Teilmenge $\mathbb{R}\setminus\{0\}\subset\mathbb{R}$ unter der stetigen Abbildung det : $\mathbb{R}^{n\times n}\to\mathbb{R}$, und ist daher offen.

³Die Botschaft dieser Aufgabe ist, dass der Vektor $(\partial_1 f, \ldots, \partial_n f)$ keine besondere Bedeutung haben muss, wenn f nicht differenzierbar ist. Deswegen definiert man den Gradienten ∇f im Allgemeinen nur für differenzierbare Funktionen—die Existenz der partiellen Ableitungen allein ist nicht ausreichend.