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Notation:

For the first two problems, assume V is an n-dimensional vector space equipped with a
nondegenerate symmetric bilinear form { , ), which is used in the definition of the Clif-
ford algebra CI(V') and spin group Spin(V) < CI(V). We denote by SO(V) the group
of orientation-preserving linear maps A : V. — V that satisfy (Av, Aw) = (v, w) for all
v,weV.

Problem 1

For any codimension 1 subspace H < V' on which the restriction of { , ) is nondegenerate,
one can define the reflection about H as the unique linear map V — V that fixes every
point in H but sends v +— —v for all v € H+. (Note that this definition does not make
sense if {, Y|z is degenerate, because H~ is then contained in H; see Lemma 24.7 in the
notes from the first semester.)

(a) For x € V with {(z,z) = +1, show that the reflection V' — V about z+ < V is given

by v > —zva™!.

(b) Deduce that for each x € Spin(V'), the transformation Ad, : CI(V) —» Cl(V) : y —
zyz ' preserves the subspace V < CI(V) and acts on it by orientation-preserving
orthogonal transformations, defining a group homomorphism ® : Spin(V) — SO(V').

Problem 2
Given an orthonormal basis ey, ..., e, € V, let spin(V) < CI(V') denote the vector space
spanned by all products of the form e;e; for 7 # j. Prove:

(a) spin(V) < CI(V) does not depend on the choice of orthonormal basis eq,...,e, € V.

(b) spin(V) is a Lie algebra with respect to the commutator bracket [x,y] := zy — yz.

(c) For any v,w € V satisfying (v,v) = +1, (w,w) = +1 and {v,w) = 0, we have
vw € spin(V) and ezt ¢ Spin(V) for all t € R, where for x € CI(V'), we define
e” =Y 2e ClV).

In the following, ® : Spin(V)) — SO(V) is the homomorphism from Problem 1(b).

(d) Under the assumptions of part (c), can you give a geometric interpretation to the
family of transformations @(e%“’w) e SO(V)?
Hint: Evaluate @(e%”w) on v and w and on an arbitrary vector orthogonal to both.

(e) Construct a smooth map ¢ : spin(V) — CI(V') whose derivative at 0 € spin(V') is the
inclusion spin(V) — CI(V), such that the image of ¢ is in Spin(V') and the derivative
of oy :spin(V) — SO(V) at 0 is a Lie algebra isomorphism spin(V) — so(V).
Hint: Using the orthonormal basis ey, ..., e, € V, first define ¢(te;e;) for each t € R
and i # j, then extend it to the rest of spin(V') in whatever way is convenient.

Comment: If you find this problem intimidating, try attacking a special case such as
V = R? or R? with the Euclidean inner product. As outlined in the notes, one can combi-
ne the result with an algebraic computation of ker ® to prove that Spin(V') is a Lie group
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and ® : Spin(V') - SO(V) is a covering map of degree 2.

Problem 3

Let o; € C?>*? for i = 1,2, 3 denote the Pauli matrices defined in §39.2 of the lecture notes,
and let o9 = 1. These four matrices form a basis of the real 4-dimensional vector space
H < C?*? consisting of all Hermitian 2-by-2 matrices. Show that if R* is identified with
H in this way, then the SL(2, C)-action on R* defined by

A -B:= ABA' for A € SL(2,C) and B e H

defines a Lie group homomorphism & : SL(2,C) — O(1,3) < GL(4,R) with ker & = {+1}.
What does this tell you about the relationship between the groups SL(2, C) and Spin(1, 3)?
(Caution: SO(1, 3) is not connected!)

Hint: What is the determinant of a real-linear combination of the o, for 4 =10,...,37

Problem 4

Since U(1) and SO(2) are naturally isomorphic, the tautological complex line bundle
E — CP" with its standard bundle metric can also be viewed as an SO(2)-bundle, meaning
an oriented Euclidean vector bundle of rank 2. Show that this bundle does not admit a
spin structure. You may use as a black box the following standard fact from covering space
theory: if M is simply connected, then every covering map M—> Misa homeomorphism.

Problem 5

For n > 2, CP" is a simply connected 2n-manifold that is not homeomorphic to $?" or R??,
so by a theorem proved in lecture, it cannot admit any Riemannian metric with constant
sectional curvature. Prove however that it does admit a metric that is homogeneous and
isotropic.

Problem 6

A Riemannian symmetric space is a Riemannian manifold (M, g) such that for every point
p € M, there exists an isometry 1 € Isom(M, g) with ¢(p) = p and Typ = —1. (Note that
unlike the notion of locally symmetric Riemannian manifolds we defined in lecture, the
isometry v is required to be defined globally.) Prove that every Riemannian symmetric
space is homogeneous.

Problem 7
Find an explicit example of a closed Riemannian manifold that is homogeneous but not
isotropic.

Problem 8

In lecture we proved that every simply connected and complete Riemannian manifold
(M, g) with constant positive sectional curvature Kg = 1/R? is isometric to the sphere Sk
of radius R in Euclidean space R"*!. Prove that the same conclusion holds if instead of
assuming (M, g) is complete, we assume there exists a point p € M at which the exponenti-
al map exp,, is well defined on a ball B,.(0)  T;, M of some radius r > 7R about the origin.

Problem 9
Suppose (M, g) is a connected Riemannian manifold of dimension n > 3 and f: M — R
is a smooth function such that the sectional curvature satisfies Kg(P) = f(p) for all

P cT,M, pe M. Prove that Kg is then constant. (Is this true for n = 27)
Hint: Prove that g is an FEinstein metric.



