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This talk lays the groundwork for singularity theory of nonlinear equations. It
introduces K- and C-equivalence. The notes present chapter 10 and 11 of James
Montaldis book ”Singularities Bifurcations and Catastrophes” [3] with an additional
insight to K-equivalence in respect to vector and fiber bundles on manifolds.

Bifurcation

Definition 1 (Bifurcation Problem [3, Def. 10.1])
A bifurcation problem is a smooth map G : Rn × Rk ↣ Rp (defined on an open
subset of Rn×Rk), or it is the germ at a point of such a map. For each u ∈ Rk (the
base space, or parameter space) we denote by gu : Rn ↣ Rp the map

gu(x) := G(x;u).

As usual we refer to the gu as a smooth family of maps with parameter u; the
variables denoted by x are called state variables. Given such a bifurcation problem,
we are interested in the solutions of the corresponding equations, so we denote the
set of zeros of G by

ZG := {(x, u) ∈ Rn × Rk| G(x, u) = 0}.

This is called the zero-set of G. The bifurcation problem (or family of maps) G is
said to be regular if as a map (germ), G is a submersion.

If the bifurcation problem is regular the zero-set ZG is the preimage of a sub-
mersion, thus preimage of a map with surjective differential, which gives us that the
preimage is a (sub-)manifold by the regular value theorem.
In most cases the dimension of the parameter space (also called state variables) p is
equal to the number of equations.
Suppose we have a family of functions F : Rn ×Rk → R one may define a family of
functions via the gradient

G := ∇xF.

In that case the zero-set ZG equals the catastrophe set CF of F .
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Definition 2 (Singular Set of a Bifurcation Problem [3, Def. 10.2])
The singular set of a bifurcation problem Gv is

ΣG = {(x, u) ∈ ZG| rank(d(gU)(x)) < p}.

In most applications p = n and in that case,

ΣG = {(x, u) ∈ ZG| det(dgU(x)) = 0}.

The discriminant of bifurcation set is the subset of the base space,

∆G = πG(ΣG)

where πG : ZG → Rk is the projection πG(x, u) = u. That is,

∆G = {u ∈ Rk| ∃x, (x, u) ∈ ΣG}.

Example ([3, Def. 10.3.]):
Let G(x, y;u) = (x2 + y2 − u, xy). One obtains

ZG = {(x, y, u) ∈ R3| x, y = 0, u = x2 + y2} = {(x, 0, x2)| x ∈ R} ∪ {(0, y, y2)| y ∈ R}

which is the union of two parabolas in R3 and is singular at the origin. Further more

dgu =

(
2x 2y
y x

)
, such that

ΣG = {(x, y, u) ∈ ZG| 2x2 − 2y2 = 0} = {(0, 0, 0)}

and thus
∆G = {u = 0}.

A typical source for this problem are equilibrium points of real dynamical sys-
tems.
To broaden our portfolio of tools we will establish contact equivalence to study zero-
sets of systems of equations. One point of focus in our study will be versal unfolding
of systems of equations and maybe in the last talk our theme will get an outlook on
bifurcation problems from the perspective of contact equivalence.

Definition 3 (Singular Set of a Map [3, Def. 10.4.])
Given a map f : Rn ↣ Rp, one defines the singular set (or critical set) of f to be

Σf := {x ∈ Rn| rk(dfx) < p},

and its discriminant ∆f is the image f(Σf ) ⊂ Rp.

The definition of the singular set defined for a bifurcation problem does not equal
the singular set of the underlying bifurcation map. Σ′

G the singular set of G lies in
the singular set of the bifurcation problem Σ′

G ⊂ ΣG
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Contact equivalence

Remark (Notation):
A matrix M is said to be in Gln(En) if M is a n× n matrix whose entries are in En
and moreover the matrix is invertible with the entries of M−1(x) also belonging to
En.
Definition 4 (Contact Equivalence [3, Def. 11.1])
Two map germs f, g : (Rn, 0) → (Rp, 0) are contact equivalent or K-equivalent, if
there exists,

1. a diffeomorphism ϕ of the source (Rn, 0), and

2. a matrix M ∈ Glp(En) such that

f ◦ ϕ(x) =M(x)g(x),

where f(x) and g(x) are written as column vectors, and M(x)g(x) is the usual
product of matrix times vector.
If ϕ is the identity, one says f and g are C-equivalent. In this case f(x) =M(x)g(x).

Example:
Let g(x, y) = (x2, y2) and f(x, y) = (x2+ y2, x2− y2+ y3) be considered as germs at

the origin. Then f and g are C-equivalent, with M(x, y) =

(
1 1
1 y − 1

)
. Note that

M(x, y) is invertible for (x, y) in a neighborhood of (0, 0)

Proposition 1 (Zero-sets and Contact Equivalence[3, Prop. 11.3])
If f and g are C-equivalent then their zero-sets are the same.
Equivalently if f and g are K-equivalent then their zero-sets are diffeomorphic subsets
of Rn.

Remark (Converse Direction):
The converse of Proposition 1, a diffeomorphic zero set does not imply contact
equivalence as as can be seen in the above example with x2 and x.

Proof. Let f and g be C-equivalent. Since M(x) is invertible,

f(x) = 0 ⇔ g(x) = 0

and if f and g are K-equivalent one obtains that

g(x) = 0 ⇔ f(ϕ(x)) = 0

Remark (Images of Contact Equivalent functions):
Images of contact equivalent map germs also do not need to be diffeomorphic. A
counterexample here are the maps R → R2 given by f(t) = (t2, 0) and g(t) = (t2, t3).
These are K-equivalent but their images are not diffeomorphic.
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Some Authors also call this type of equivalence the V−equivalence for V as
in Variety, as in the book of V. I. Arnold [1] to distinguish the name from other
concepts, e.g. the contact group.

Definition 5 (Local Algebra)
Let f : (Rn, 0) → (Rp, 0) be a smooth map germ and denote by If the ideal in En
generated by the components of f . Define the local algebra of f to be

Q(f) :=
En
If
.

For example, if f(x, y) = (x2, y2) then If = ⟨x2, y2⟩ and

Q(f) =
E2

⟨x2, y2⟩
≃ R{1, x, y, xy}.

Even if it only seems like a vector space isomorphism we have more structure since
the local algebra Q(f) has the ring structure inherited from En.

Example ([3, Expl. 11.4.]):
If h ∈ En is the germ of a smooth function then with f = ∇h we have

Q(f) =
En
Jh

which is a familiar object from the Talk about R-equivalence or [3, Chap. 4].

The importance of the local algebra If for C-equivalence is highlighted by the
following theorem by Mather.

Theorem 2 ([3, Thm. 11.5.])
Let f, g : (Rn, 0) → (Rp, 0) be two map germs. The following statements are equiva-
lent:

1. f and g are C-equivalent.

2. Their ideals If and Ig are equal.

3. Their local algebras are equal.

Example ([3, Expl. 11.6.]):
Consider f(x, y) = (x2, y2), and g(x, y) = (x2 + y3, y2 + x3). By Nakayama’s lemma
we may calculate ⟨x2, y2⟩ = ⟨x2 + y3, y2 + x3⟩. Consequently If = Ig and thus the
maps are C-equivalent. One may also construct directly an appropriate matrix M .

Lemma 3 ([3, Lem. 11.8.])
Given any pair of p×pmatrices A,B with real entries, there is a matrix C (depending
only on B) such that M := C(Idp − AB) +B is invertible.
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Corollary 4 ([3, Thm. 11.7.])
Let f, g : (Rn, 0) → (Rp, 0) be two map germs. The following statements are equiva-
lent:

1. f and g are K-equivalent.

2. Their ideals If and Ig are diffeomorphic in En.

3. Their local algebras are diffeomorphic.

Proof of Theorem 2. (ii) ⇔ (iii):
R
I
is the set of equivalence classes in the ring R modulo the ideal I, and one of these

classes (the zero of multiplication in QI) is just I. So if R
I
= R

J
then I = J . And

conversely.
(i) ⇔ (ii):
Let f and g be K-equivalent, then there exists a Matrix M ∈ Gl(En) such that

f(x) =M(x)g(x).

By matrix multiplication we can represent the i-th component of f by

fi(x) =
n∑

j=1

mi,jgj

So each component fi has to be in the Ideal of Ig. One may repeat the calculation
with M−1 and gets that gj ∈ If .
(ii) ⇔ (i):
Let If and Ig be diffeomorphic. Since fi ∈ Ig there exist n coefficients ai,j ∈ Ig such
that

fi(x) =
n∑

j=1

ai,jgj,

and similarly there exist coefficients bi,j for the components of g

gi(x) =
n∑

j=1

bi,jfj.

Combining the two identities we obtain

fi =
n∑

j=1

n∑
k=1

ai,jbj,kfk.

Defining the p × p matrices A := (ai,j) and B := (bi,j) one may use lemma 3 with
A(0) and B(0), then the lemma tells us that there exists a matrix C such that

M(x) = C(Idp − A(x)B(x)) +B(X)
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is invertible at 0. Since M is continuous it must be invertible in a neighbourhood
of 0. And it holds that

M(x)f(x) = C(Idp − A(x)B(x))f +B(x)f(x) (1)

= C(f(x)− A(x)g(x)) + g(x) (2)

= C(f(x)− f(x)) + g(x) = g(x). (3)

Definition 6 (Algebraic Multiplicity[3, Def. 11.9.])
Let f : (Rn, 0) → (Rn, 0) be a map germ. Define the algebraic multiplicity of f to
be mA(f) = dimQ(f).

Definition 7 (Geometric Multiplicity[3])
Let f : (Rn, 0) → (Rn, 0) be a map germ. Define the algebraic multiplicity of f
to be mG(f) equal to the maximal number of preimage points for a representative
function on an arbitrarily small neighbourhood.

Definition 8 (K′-equivalence)
Two map germs f, g : (Rn, 0) → (Rp, 0) are K′-equivalent if there exists a diffeomor-
phism Ψ of (Rn × Rp, (0, 0)) of the form

Ψ : Rn × Rp → Rn × Rp (4)

(x, y) 7→ (ϕ(x), ψ(x, y)) (5)

such that for the graphs of functions f , Γf ,

1. Ψ(Γ0) = Γ0, and

2. Ψ(Γf ) = Γg

More explicitly one may write that for the diffeomorphism Ψ = (ϕ, ψ) in the
definition it has to hold that,

1. ψ(x, 0) = 0 and

2. g ◦ ϕ(x) = ψ(x, f(x)).

Proposition 5 ([3, Prop. 11.10.])
K and K′ equivalences are identical.

Proof. First the simple direction, if f and g are K-equivalent then they are K′-
equivalent.

For the converse direction one applies Hadamard’s lemma. Let g and f be K′-
equivalent, then there is a diffeomorphism Ψ such that

g ◦ ϕ(x) = ψ(x, f(x)).
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Each component ψj satisfies ψj(x, 0) = 0 for all j = 1, . . . , p we can apply Hadamard’s
lemma to write

ψi(x, y) =
∑
j

χi,j(x, y)yj,

for χi,j ∈ En. It follows for each component that,

ψi(x, f(x)) =
∑
j

χi,j(x, f(x))fj(x)

Define M(x) := (χi,j(x, f(x)). Then we may write by the definition of ψ

g ◦ ϕ(x) =M(x)f(x)

and we conclude that g ∼ f .

Differential Geometric Viewpoint

Now follows a short digression to differential geometry. Some details like regularity
of maps are omitted, and can found in full length in Lee’s book ”Smooth manifolds”
[2].

Definition 9 (Manifold)
A topological manifold is a second countable Hausdorff space that is locally eu-
clidean.
We call the tuple (U,φ) consisting out of an open subset U of M and a homeomor-
phism φ from U to an open subset V ⊂ Rn a chart. A collection of chart such that
the open sets cover M is called an Atlas A.
A topological manifold with an Atlas whose transition maps, i.e. all charts (Ui, φi)
and (Uj, φj) composed to τi,j := φi ◦ φ−1

j , are smooth is called a smooth manifold.

Definition 10 (Fibre Bundle)
Let M , E and F be a topological spaces and π : E → B a map we call the 4-tupel
(E,M, π, F ) a fibre bundle if π is a continuous surjection, such that for every x ∈M
exists an open neighborhood U ⊂M of x such that there is exists a homeomorphism
φ : π−1(U) → U × F in such that the following diagram commutes

π−1(U) U × F

U

φ

π
pr1

We call E the total space, M the base space, F the fibre and the collection of all
{(Ui, φi)} is called a local trivialization of the bundle.
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Definition 11 (Vector Bundle)
Let (E,M, π,Rk) be a fibre bundle. It is called a (real) vector bundle of rank k if
the fibers Rk are vector spaces of dimension k and the trivializations (ϕ, U) induces
a linear isomorphism v 7→ ϕ(x, v) between π−1(x) and Rk.
Given two trivializations (φi, Ui) and (φj, Uj) one obtains the composition

φi ◦ φ−1
j : (Ui ∩ Uj)× Rk → (Ui ∩ Uj)× Rk

(x, v) 7→ (x, gi,j(x)v)

which defines the transition map gi,j : Ui ∩ Uj → Glk(R).
Definition 12 (Section of a Bundle)
A section of a fibre bundle is a smooth map f :M → E such that the base point is
preserved, i.e. π(f(x)) = x for x ∈M .

In the setting of smooth manifolds we may define K-equivalence as follows.

Definition 13 (K-equivalence on Manifolds)
Let V be a vector bundle of rank p over M and f, g ∈ Γ(V ) section of V . These
sections are K-equivalent if there exist choices of charts and local trivializations in
which the functions look identical.

Definition 14 (K′-equivalence on Manifolds)
Let E be a fiber bundle whose fibers are p-dimensional Manifolds over M , f, g ∈
Γ(E). These sections are K′-equivalent if there exists choices of charts and local
trivializations such that the local expressions coincide.

References

[1] V. I. Arnold, A. N. Varchenko, and S. M. Gusein-Zade. Singularities of dif-
ferentiable maps: Volume II Monodromy and asymptotic integrals, volume 83.
Springer Science & Business Media, 2012.

[2] J. M. Lee. Smooth manifolds. Springer, 2012.

[3] J. Montaldi. Singularities, bifurcations and catastrophes. Cambridge University
Press, 2021.


