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These are the notes for my talk in this semester’s "The h-Principle” seminar. The
main content of the talk were two proofs, one of the Smale—Hirsch h-principle and one
of a generalization of it. In presenting this, I mostly follow the material in chapter 9 of
the book by Cieliebak, Eliashberg and Mishachev [l]. T reworked the notes to fix some
mistakes I made in the talk and hopefully make the contents more accessible.

1 The Smale—Hirsch immersion theorem

Theorem 1 (Smale-Hirsch h-principle for immersions). The relative parametric C°-dense
h-principle holds for immersions of an n-dimensional manifold V into a manifold W of
dimension q > n.

Proof. Let us only consider the nonparametric case. The let F': TV — TW be a formal
solution of the differential relation defining immersions R, C JY(V,W). Set f = bs F.
The pullback bundle f*TW is a pullback in the categorical sense, so we get the commuting
diagram

Vv— W

where the unnamed maps to V and W are the bundle projections. As F is a formal
solution, it acts injectively on tangent spaces, hence F’ does too. Thus we can use F’ to
identify TV with a subbundle of f*TW, i.e. F'(TV). Now let N denote (total space of)
the subbundle of f*TW that is the orthogonal complement of F’(TV) and 7: N — V its
bundle projection.

In the presentation there was some confusion about the following construction, so I
will write about it in a bit more detail here. It is a standard construction not specfic
to the bundle at hand. For a reference on this see e.g. Proposition 15.6.7 (p. 376) in [2].
Additionally, a more concrete explanation of what this means for us will follow after.

I will denote by Tf the tangent map of a map f and by T, f the tangent map at a
point p. For any n € N we have the short exact sequence of vector spaces

a T, m
0— Ny — T, N — T,V —0.

w(n
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Where N, := 7~ '(m(n)) denotes the fiber of N over m(n) and a maps a € N, to the
derivative of the curve ¢ — n 4 ta at t = 0. We may split this sequence by choosing an
inner product on T, N and identifying 77,V with the orthogonal complement of im cv.
But we’re not just interested in T, N, we want to decompose the whole bundle TN. To
approach this we modify the above into a short exact sequence of vector bundles over N

00— 7N —TN — 7TV — 0

where we had to pull back N and TV in order to turn them into a bundles over N i By
choosing any bundle metric on TN we then get the splitting

TN >27*N @ n*TV.

Generally, 7*N and 7*TV (seen as subbundles of TN) are respectivey referred to as the
vertical bundle and horizontal bundle.

To see what this splitting means, consider what data elements of N and TN contain.
Every point n € N consists of a point 7(n) € V and a vector that is normal to F'(T V).
The tangent space T, N should then contain the data of the tangent space T,V and
some kind of tangent data of the normal vectors, which as the tangent space of a vector
space is identified with the space itself. This is precisely what the above split gives us. So
for any x € TN let n denote its usual projection into the base space N and let a and b
respectively denote the corresponding points in N,, and 17,V given by the splitting.

With this notation, we can explicitly define a lift of F' to TN as

F: TN = TW
x> F"(a) + F(b),

where F” is necessary as N C f*TW. This extends F' in the sense that we can consider
V as a subset V C N by lifting it into IV as the zero section of 7 (and TV C TN is e.g.E
given by the tangent map of the inclusion V' C N). With these identifications we can see
that F extends F because F|py = F.

Now, because F is still formal immersion, we can apply the C°-dense local h-principle 8.3.1
near V C N. The restriction to V yields the sought-after deformation of F' to an immersion
V — W proving the h-principle for immersions.

It remains to be shown that the relative h-principle holds. Assume F' is holonomic
on Op A for a closed A C V. The book does not offer a specific construction to make a
holonomic on Up, A (open in N), but I believe the following is the easiest way.

For all z € TN decompose z as we did to define £ abvoe. We redefine F(z) as

. d

exp(p(n) - F"(n) + - (F"(a) + F(b)) )
t=0

where exp is the Riemannian exponential map on W. When n = 0, this reduces to the
previous definition of F. Thus it will a formal immersion at least in a neighborhood of
V' C N which is good enough. If m(z) € Op A, then

F(z) = T(expoF")(x)

!To formally see how to find the map "Tw”: TN — 7" TV just consider a diagram as the one above
but switch the Ws for Vs, Vs for Ns and f for .

20One may also define the inlusion of TV by referring to our hard-earned splitting of TNN. In fact, both
notions coincide as the splitting is canonical on the zero section V' C N (see Remark 15.6.8 [2]).



holdsE. Hence £ is holonomic on Op, A and we can now apply the relative C°-dense
h-principle.
O

Note that this proof does not work for submersions because the restriction of a sub-
mersion is not, in general, a submersion. In fact, the h-principle is false for submersions
of closed manifolds. However, one can prove a generalization of the previous theorem.

Theorem 2. Let £ be a subbundle of TW. If dimV < codim¢, then all forms of the
h-principle hold for immersions V. — W transverse to &.

2 Sections transverse to a distribution

To prove the following theorem, we need a modification of the local h-principle used above.

Theorem 3 (Special local h-principle). Let X — V xR be a natural fibration and X C X7
an open differential relation which is invariant with respect to diffeomorphisms of the form

(z,t) = (z,h(z,t)), xz€V,teR.

Then R satisfies all forms of the local h-principle near V x 0 and the global parametric
h-principle over V x R.

The proof follows from the Holonomic Approximation Theorem 3.1.1 according to the
same scheme as the proof of Theorem 8.3.1, with the additional observation that the
perturbation h implied by Theorem 3.1.1 has the special form required here.

Given a fibration X — V we say that a section f: V — X is transverse to a tangent
distribution/subbundle T C TX if the composition

Tf
TV —5 TX — TX /7

is fiberwise injective when rank 7 + dim V' < dim X and surjective when rank 7 4+ dim V' >
dim X. Note that this may differ from what you expect transverseness to mean (i.e.
requiring rank 7 4+ dim V' = dim X).

Theorem 4 (h-principle for sections transverse to a distribution). Let X — V be a
natumlH fibration and T a subbundle of the tangent bundle TX. If

rank 7 + dim V < dim X,

then sections V. — X transverse to T satisfy all forms of the h-principle.

There are two things to note about this. Firstly, the respective differential relation &
is not Diff V-invariant. This is why we will need the special local h-principle.

Secondly, note that for the trivial fibration V. x W — V and 7 = TV x 0, this theorem
is just the Smale—Hirsch A-principle.

3To see this note that in the usual trivializations of the pullback and tangent bundles, F” becomes
f x idgn and for our choice of z we have F'(b) = T f(b) as F is holonomic.
4The book is missing this modifier but I believe it is necessary.



Proof. By choosing a sufficiently small triangulation of V' and iterating over the skeleta,
we can reduce the problem to the following relative version: V = D", X = D" x R? and
the section V' — X already transverse to 7 near 0V = 9D".

Let ® ¢ X be the differential relation of transversality to 7 and F: V — R a
formal solution which is already holonomic near V. We want to perform the inclusion
V=V x0CV xR in order to use the special local h-principle. Hence we consider the
fibration X x R — V x R. Now, we need to define ® C (X x R)™M) such that solutions of
R yield solutions of . If a vector in T(X x R) is transverse to 7 x TR C T(X x R) then
its image in the quotient T(X x R)/TR = TX will be transverse to 7. Thus we let R be
the relation which defines sections transverse to 7 x TR.

What is left is for us to do is to extend F' to our new bundle as a formal solution of
R. This means we need to find an appropriate place to map tangent vectors in the new
dimension of our base space. Concretely, to preserve transverseness to 7 x R, the image
vector should not be linearly dependent on 7 x R and &, the subbundle of TX|y, defined by
F' (as injectivity of the tangent map is required for transverseness). Consider the bundle

v=TX|y/(rly ©¢).

A global non-vanishing section of v could be lifted to a section V' — TX and subsequently
VxR — T(X xR) to yield precisely what we are looking for. Such a section exists because
v is a trivial bundle and rank v > 0. To see that v is trivial just note that its base space
V = D" is contractible (this is the only reason for using the triangulation). To see that
rank v > 0 note that

rankv = (dim X +dim X —dim V') — (rank7 4+ dim X —dim V) —dim V'
=dim X —rank7 —dimV
>0

by assumption. The two dim X — dim V' terms arise because we are considering TX and
7 as bundles over V instead of X.

The relation X is open and invariant under diffeomorphisms in the form required by
the special local h-principle. Thus we can apply it to F near V x 0 C V x R which by
restriction implies the h-principle for R.

O
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