
Basics on Symplectic & Contact Geometry Florian Kaufmann

This talk is mainly based on [CEM24] chapter 17, with some ideas taken from [MS17].

1 What is symplectic geometry?
Let us first answer another question: What is Riemannian geometry? A Riemannian metric is
a way to associate smoothly to each tangent space a scalar product. We would like something
similar in symplectic geometry, but for that we need to understand the linear notion of symplectic
vector spaces first.

Definition 1.1. Given a real finite-dimensional Vector space V , a symplectic form is a bilinear
form ω satisfying

• (antisymmetry) ω(v, w) = −ω(w, v) for any v, w ∈ V

• (non-degenerateness) v 7→ ω(v, ·) : V → V ∗ is an isomorphism - equivalently for any v ∈ V
there exists some vector v′ ∈ V such that ω(v, v′) ̸= 0

Example 1.2. On R2n the standard symplectic form is given by

ω0 :=
n∑

i=1
dxi ∧ dyi,

where x1, ..., xn, y1, ..., yn is the standard basis of R2n. Here the dxi and dyi denote the corre-
sponding vectors of the dual basis.

Lemma 1.3. Every antisymmetric bilinear form ω on a vector space V has a basis

x1, ..., xn, y1, ..., yn, z1, ..., zp

such that ω(xi, yi) = 1 and on all other pairings of basis vectors ω vanishes. In other words

ω =
n∑

i=1
dxi ∧ dyi

In particular if ω is non-degenerate, p = 0 and dim(V ) = 2n is even and we have an isomorphism
V → R2n that pushes ω to ω0.

Thus in the following (V, ω) will always be a real, 2n−dimensional vector space with a
symplectic form ω.

Definition 1.4. A linear symplectomorphism of (V, ω) is a vector space isomorphism
Ψ : V → V that preserves ω, i.e.

Ψ∗ω(v, w) = ω(Ψv, Ψw) = ω(v, w).

These form the subgroup Sp(V, ω) ≤ Aut(V ) and in the case of (R2n, ω0) we write Sp(2n) :=
Sp(R2n, ω0).

Remark 1.5. • Since any (V, ω) is isomorphic to (R2n, ω0), it suffices to study Sp(2n).

• By the above lemma, a symplectic form in some sense ”pairs” basis vectors. This restricts
what a symplectomorphism can do quite severely. It for example can’t only exchange x1
with x2. Intuitively, it should also mean that any rescaling of xi should come with an
inverse rescaling of yi. This is basically what Gromov’s non-squeezing theorem tells us, if
you have heard of that before.
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Similar to the orthogonal complement in the case of scalar products, there is the following
notion.

Definition 1.6. The symplectic complement of a (linear) subspace W ⊆ V is given by

W ω := {v ∈ V | ω(v, w) = 0, ∀w ∈ W} .

W is called

• isotropic if W ⊆ W ω,

• coisotropic if W ω ⊆ W ,

• symplectic if W ∩ W ω = {0},

• Lagrangian if W = W ω.

Lemma 1.7. For any subspace W ⊆ V ,

dim W + dim W ω = dim V, (W ω)ω = W.

Symplectic geometry is all about the study of these subspaces! Using the lemma here are a
few equivalent ways to describe these subspaces:

• W is symplectic ⇐⇒ W ω is symplectic ⇐⇒ ω restricts to a symplectic form on W again.

• W is isotropic ⇐⇒ W ω is coisotropic ⇐⇒ ω vanishes on W

• W is Lagrangian ⇐⇒ W is isotropic and of dimension n ⇐⇒ W is coisotropic and of
dimension n

Moreover, isotropic subspaces are always of dimension ≤ n, coisotropic subspaces of dimension
≥ n and symplectic subspaces of even dimension.

Example 1.8. • Any line G ⊂ V is isotropic with complement Gω a hyperplane. Every
hyperplane is thus coisotropic.

• The span ⟨x1, y1⟩V ⊂ (R2n, ω0) is symplectic.

• The span ⟨x1, ..., xn⟩V ⊂ (R2n, ω0) is Lagrangian.

2 Almost complex structures
Definition 2.1. A complex structure on V is an automorphism J : V → V such that
J2 = − IdV . Such a structure makes V into an actual complex vector space by

(a + ib)v = av + bJv.

The group of automorphisms that commute with J is denoted by

GL(V, J) := {Φ ∈ Aut(L) | ΦJ = JΦ}.
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For any such vector space there exists a basis x1, ..., xn, y1, ..., yn such that Jxi = yi. In this
basis

J =
(

0 −1
1 0

)
=: J0.

We call J0 the standard complex structure on R2n. In this case GL(R2n, J0) = GL(n,C) where
we identify R2n ≃ Cn. Slogan: ”Complex automorphisms are real automorphisms that commute
with i”.

Definition 2.2. A symplectic form ω and a complex structure J on V are compatible if

• J is a symplectomorphism, i.e. ω(Jv, Jw) = ω(v, w) for all v, w ∈ V and

• ω(X, JX) > 0.

In this case one might call (V, ω, J) a Hermitian vector space. Then g(X, Y ) := ω(X, JY )
defines a scalar product.

In this situation we can find a basis that is symplectic in the sense of Lemma 1.3 and also
fulfills Jxi = yi. Thus any (V, ω, J) looks like (R2n, ω0, J0).

For completeness sake we will state the following theorem.

Theorem 2.3. The spaces S(V ) of all symplectic forms and J (V ) of all complex structures on
V are Lie group quotients of GL(2n,R) and homotopy equivalent with their topology coming from
these quotients.

3 Symplectic manifolds
Definition 3.1. A symplectic form ω on a real vector bundle p : X → V is a 2−form ω such
that ω is non-degenerate. Similarly one defines a complex vector bundle. We say that (X, ω)
is a symplectic vector bundle.

One might be inclined to define a manifold to be symplectic when its tangent bundle comes
equipped with a symplectic structure. But this turns out not to be enough. We want (R2n, ω0)
to be a local model of our symplectic manifolds. In that case one can see the local closedness
condition

dω0 = 0.

is satisfied. This is not true for all nondegenerate 2−forms, so let’s add it to our definition

Definition 3.2. A symplectic structure on a manifold M is a closed nondegenerate 2−form
ω. We call M a symplectic manifold. If ω is not closed, we call M an almost symplectic
manifold. An almost complex structure on M is a complex structure on its tangent bundle.

A diffeomorphism f : M → M is a symplectomorphism if f∗ω = ω.

Notice how dim M again needs to be even and how every symplectic manifold is orientable.
Now the notions of linear subspaces easily carry over from the linear case.

Definition 3.3. Call N ⊆ M isotropic, coisotropic, symplectic or Lagrangian if each
TpN ⊆ TpM satisfies the corresponding linear condition.
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Example 3.4. Of course (R2n, ω0) is also a symplectic manifold. Another interesting example
is the cotangent bundle T ∗M of any manifold M . It is always even dimensional and orientable,
so this gives us at least some reason to hope for a symplectic structure.

Given coordinates x : U → Rn on M , the dxi form a basis of the cotangent bundle over U .
Thus any u ∈ T ∗U can be written as (

∑
xiei,

∑
yidxi) in charts. Locally we can now define the

canonical 1−form

λcan := ydx :=
n∑

i=1
yidxi.

One can show (see [MS17], page 105) that this is independent of the chosen coordinates. Its
differential

ωcan := dλcan = dx ∧ dy =
n∑

i=1
dxi ∧ dyi

defines the canonical symplectic structure on T ∗M .

Example 3.5. The image of a closed simple loop γ : S1 → (R2, ω0) is always Lagrangian: It’s
tangent space is always half-dimensional and isotropic.

Definition 3.6. A Lagrangian, isotropic or coisotropic embedding into a symplectic manifold
is an embedding whose image is Lagrangian, isotropic or coisotropic respectively. Similarly we
define different types of immersions to be maps that locally look like the respective embeddings.

A map f : M → (N, ωN ) is called symplectic if f∗ωN is symplectic. If M also comes with a
symplectic structure that coincides with f∗ωN , we call f isosymplectic.

4 Symplectic Stability
Symplectic stability describes the idea that there are no nontrivial local invariants on symplectic
manifolds. As mentioned before, this is where our assumption of symplectic forms beeing closed
is crucial. To get there, let’s look at the following situation.

Given a homotopy ωt of symplectic forms on M , one might ask for a family of diffeomorphisms
(isotopy) φt such that

φ∗
t ωt = ω0.

Suppose these φt exist and are generated by a family of vector fields vt. Differentiating ω0 = φ∗
t ωt

gives

0 = d

dt
(φ∗

t ωt) = φ∗
t (Lvt

ωt + ω̇t) or

Lvtωt = −ω̇t for all t ∈ [0, 1].

As it turns out such vt exist under the right homological assumptions.

Theorem 4.1. Let ωt = ω0 + dαt be a smooth family of symplectic forms on a manifold M and
vt the unique vector field such that ωt(vt, ·) = −α̇t. Then

Lvt
ωt = −ω̇t for all t ∈ [0, 1].

Proof. Indeed using Cartans magic formula, dωt = 0 and the fact that the time derivative
commutes with the exterior derivative we see

Lvt
ωt = d(ωt(vt, ·)) = −d (α̇t) = − ˙dαt = −ω̇t.
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This now gives rise to a bunch of really useful corollaries which are also often called Symplectic
Stability Theorems.

Theorem 4.2 (Stability near a compact set). Let A ⊆ M be a compact subset. Let
ωt = ω0 + dαt be a family of symplectic forms on OpA ⊆ M such that αt|T M |A

= 0. Then there
exists an isotopy φt : OpA → M fixed on A such that φ∗

t ωt = ω0 for all t ∈ [0, 1].

Proof. Choosing OpA small enough, the vt Theorem 4.1 are compactly supported. Thus the
isotopy generated by the vt exists on all of OpA. Moreover it is fixed on A by the vanishing of
the vt there.

Theorem 4.3 (Darboux’s Theorem). Any symplectic form is locally equivalent to ω0 on R2n.

Proof. Pull back the symplectic form to a symplectic form ω on R2n using local charts. After
some change of coordinates on R2n, ω coincides with ω0 at the origin, since all linear symplectic
forms are equivalent. Moreover

ωt = (1 − t)ω0 + tω

is a family of symplectic forms in Op0 with ωt = ω0 + dαt where αt(0) = 0 for all t ∈ [0, 1]. Now
apply stability near A = {0} to get φ∗

1ω = ω0.

Theorem 4.4 ((Relative) Moser’s Theorem). Let ωt = ω0 + dαt be a family of symplectic
forms on a compact manifold M , maybe with boundary, such that ωt = ω0 on Op∂M (this
neighborhood might be empty, if ∂M is). Then there exists an isotopy φt : M → M fixed on
Op∂M such that φ∗

t ωt = ω0.

Proof. Since M is compact and αt is zero on Op∂M , the flow exists globally again and is fixed
on Op∂M .

Theorem 4.5 (Weinstein’s Theorem). Any isotropic immersion f : L → (M, ω) (in particular
any Lagrangian one) of a compact manifold L extends to an isosymplectic immersion OpL → M
where OpL is a neighborhood of the zero section L ⊂ T ∗L endowed with its canonical symplectic
structure.

Proof. Choosing a ω−compatible almost complex structure J (this always exists, see [MS17],
page 81) we get a Riemannian metric g(X, Y ) = ω(X, JY ) on M . After pulling it back we can
use it to define isomorphisms Φp : T ∗

p L → TpL. Using the exponential map we now define the
map ϕ : T ∗L → M by

ϕ(p, q) := expf(p)(JpdfpΦp(q)).

Since the immersion is isotropic, JdfTL points away from L, so locally ϕ is an embedding.
Moreover one can compute that ϕ∗ω agrees with the canonical symplectic form on T ∗L on the
zero section L ⊆ T ∗L. Since L is compact, we can apply stability at L, use the isotopy at t = 1
to modify ϕ and make it isosymplectic on a neighborhood. For a more treatment of this, see the
”Lagrangian neighbourhood theorem” in [MS17] page 121.

5 Contact manifolds
Definition 5.1. Given a nonzero 1−form α on a (2n + 1)−dimensional manifold M , ξ := ker α
is a (2n)−dimensional tangent distribution. We want to call ξ a contact structure on M , if ξ is as
far away from beeing integrable as possible. By Frobenius’ integrability theorem ξ is integrable if
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and only if the sections of ξ are closed under the Lie bracket. A vector field X is a section of ξ if
and only if α(X) = 0. In view of the identity

dα(X, Y ) = LX (α(Y )) − LY (α(X)) + α([X, Y ])

integrability is equivalent to dα vanishing on ξ, or in other words α ∧ dα = 0.
Thus we define a contact form α on M to be a 1−form such that dα is nondegenerate on

ker α or equivalently
α ∧ (dα)n ̸= 0.

We call ξ ⊂ TM a contact structure on M , if it locally looks like the kernel of contact forms.
If there exists a global contact form α such that ξ = ker α, we call ξ coorientable.
Remark 5.2. • One can show that coorientability of ξ is equivalent to the triviality of the

line bundle TM/ξ.

• Different contact forms can give rise to the same contact structure. In fact two contact
forms induce the same (coorientable) contact structure if and only if

α′ = fα

for some smooth f : M → R.

• A contact form gives rise to a symplectic form dα|ker α on ker α. For a given contact structure
ξ, this is only defined up to a nonzero scaling function by the above remark. We denote this
class of symplectic forms by CS(ξ). Note that the notion of isotropic, coisotropic, lagrangian
and symplectic submanifolds does not depend on that scaling function.

Lemma 5.3. Integral submanifolds of a contact structure ξ are isotropic and in particular must
have dimension ≤ n.

Proof. Suppose L ⊆ M is integral. Then for X, Y ∈ TL ⊂ TM we also have [X, Y ] ∈ TL and
any contact form α representing ξ locally vanishes on all of these. Thus

dα(X, Y ) = LX (α(Y )) − LY (α(X)) + α([X, Y ]) = 0.

Therefore TpL is an isotropic subspace of (ξq, dαq) for every q.

Definition 5.4. An integral submanifold of (M, ξ) of maximal dimension n is called Legendrian.
Example 5.5. • J1(M,R) = T ∗M ×R has a canonical (coorientable) contact structure given

by α = dz − p dq where z us the coordinate on R and p dq the pullback of the canonical
1−form on T ∗M . In the case of M = Rn this gives rise to the standard contact structure
on R2n+1 defined by

α0 = dz −
n∑

i=1
yidxi

• Let (M, ξ) be a (2n − 1)−dimensional contact manifold. The 2n−dimensional manifold
M̂ := (TM/ξ)∗ \ M is called the symplectization of (M, ξ). Its symplectic structure
comes pulling the symplectic structure of T ∗M back through the embedding

M̂ → T ∗M

f 7→ f ◦ π

where π : TM → TM/ξ is the quotient map. This construction gives rise to a correspondence
between contact and symplectic structures, e.g. Legendrian manifolds in M correspond to
certain Lagrangian submanifolds of M̂
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Definition 5.6. An immersion f : N → (M, ξ) is called isotropic if df(TN) ⊆ ξ. By Lemma 5.3,
this implies dim N ≤ n. We call an isotropic immersion Legendrian, if dim N = n.

If N is odd-dimensional, we call f contact if it induces a contact structure on N . Then f is
automatically an immersion and transverse to ξ. If N already had a contact structure and this
pullback induces that structure, we call f isocontact.

Suppose we are given a family of contact 1−forms αt. Similar to the case of symplectic
stability we can find diffeomorphisms φt such that (we don’t have any homological conditions
this time!)

ġtφ
∗
t αt = α0

for some nonzero scaling functions gt. The gt did not appear in the symplectic case. But here
they don’t change the underlying contact structure and give us enough freedom to always find
suitable φt.

This gives rise to a similar suite of Contact Stability Theorems.

Theorem 5.7 (Stability near a compact subset). Let αt, t ∈ [0, 1] be a family of contact
forms on OpA ⊆ M of a compact subset A ⊆ M such that αt|T M |A

= α0. Then there exists
φt : OpA → M fixed on A such that φ∗

t αt = α0.

Theorem 5.8 (Darboux’s theorem). Any contact structure (contact form) is locally equivalent
to the standard contact structure (contact form) on R2n+1.

Theorem 5.9 ((Relative) Gray’s theorem). Let ξt, t ∈ [0, 1] be a family of contact structures
on a compact manifold M , maybe with boundary, such that ξt = ξ0 on Op∂M (this neighborhood
can be empty, if ∂M is). Then there exists an isoptopy φt : M → M fixed on Op∂M such that
φ∗

t ξt = ξ0.

Theorem 5.10 (Contact Weinstein’s theorem). Any isotropic immersion L → (M, ξ) extends
to an isocontact immersion OpL → (M, ξ) where OpL is a neighborhood of the zero section in
the 1−jet space J1(L,R) with its canonical contact structure.

I do not think we use them much in the this seminar, but for completeness sake we will define
Hamiltonian and Contact vector fields.

Definition 5.11. A vector field X on a symplectic manifold (M, ω) is symplectic, if LXω =
d(ω(X, ·)) = 0. If ω(X, ·) is exact, i.e. ω(X, ·) = −dH form some H : M → R, we call X
Hamiltonian. Conversely any such map H induces a Hamiltonian vector field XH by the
nondegeneracy of ω.

We call a symplectomorphism φ : M → M Hamiltonian, if it is homotopic to the identity
via a family φt : M → M of flows of Hamiltonian vector fields XHt

for Ht : M → R.

Definition 5.12. Similarly we call a vector field X on a contact manifold (M, ξ) contact, if its
flow perserves the contact structure ξ.
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