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Advice for the final exam

Practical information

The exam will take place online during a precise 3-hour time window (with a half-hour
buffer at the end for uploading solutions). Important: Everyone taking the exam must
join a new moodle course that has been created specifically for this exam:

e Moodle “Funktionalanalysis Klausur 9.04.2021”:
https://moodle.hu-berlin.de/course/view.php?id=103195

e Enrolment key: Banach

Essential practical details about the exam, including a trial run planned for the Wednesday
beforehand (in order to sort out technical issues), will be announced only via that moodle
page, and not via the usual moodle page for this course. Please enrol yourself in the new
moodle course as soon as possible if you are taking the exam. (Students who already
took the March 3 exam, take note: This is yet another separate moodle course, not
the same one that was used for the March 3 exam.)

Also important (but irrelevant to most of you): if you are a HU student, then you
are required to use your HU-account for enrolling in the new moodle course, even if you
normally use a different e-mail address for logging into moodle. You may in that case need
to contact Moodle-Support to change the e-mail address that you use for logging in—see
the passage beginning with “Grundsétzlich miissen sich die Studierenden der HU...” at
https://www.cms.hu-berlin.de/de/dl/e-assessment/guide/vorbereitung

Extra office hours

I will be available for questions during my usual office hour (Tuesday 14:00-15:00) in the
week of the exam, and also during the usual Thursday lecture time (13:15-14:45) on the
day before. The Zoom link for my virtual office hour is
https://hu-berlin.zoom.us/j/98760164105

There will be another opportunity to ask mathematical questions during or right after the
“trial run” planned for the Wednesday before the exam (see the new moodle for details).

What is or is not allowed during the exam?

As indicated in the original course syllabus, this will be an open-book exam, so you
may have your class notes, textbooks, past problem sets, the typed lecture notes from the
course etc. on hand for the exam and should feel free to use them. In theory you can also
use the internet, but I would advise against it, as the information you find there may be
unreliable, and searching the web will eat up time that you should instead spend thinking
about the problems. We will be available the entire time in a continuously running Zoom
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meeting (and also by phone in case that doesn’t work) to answer any questions that may
arise. You may not communicate with other people besides the teaching staff
during the exam.

Format

The format of the exam will be similar to that of a problem set: 4 or 5 problems with 2
or 3 parts each. The bulk of the problems will be designed to be doable within a total of
two hours. Some parts will be doable by anyone who has learned anything in the course,
and a few parts may only be doable by the top 10% of students—do not despair or panic
if one or two of the “part (c¢)”s leave you completely stumped.

Since the exam is open-book, there will be no questions asking you to reproduce essential
definitions or proofs of standard theorems. The problems will instead be designed to test
how well you have understood the main ideas behind those theorems, whether you can
adapt them to different contexts and apply them in examples. The best advice I can
give about preparation is to review the problem sets and make sure you understand the
solutions that were discussed in the problem sessions—including the unstarred problems.
It is not out of the question that some of those problems may reappear in nearly identical
forms on the exam. Most things that were stated in lecture as “exercises” but not assigned
for homework are also fair game for exam problems.

Examinable vs. non-examinable material

As a rule, I will not expect you on the exam to understand anything about any proof that
was not explained in either a lecture or a homework problem. There are a few cases of
such results that definitely would have been proved in lecture if the semester had been two
weeks longer, and these are important enough that I will assume you at least understand
the statements and how to use them in applications. The notable examples are the results
singled out at the top of Problem Set 9, namely:

e For any distribution A and test function ¢, ¢ * A is a smooth function satisfying
0%(p*A) = (0%) * A = p=0“A for all multi-indices a. (Theorem 10.27 in the notes)

e If A € 2'(Q) has first derivatives 01A,...,0,A € Z'(Q2) that are all representable
by continuous functions on €2 = R”, then A is representable by a C'-function on §).
(Theorem 10.33 in the notes)

On the other hand, I will not assume you know anything about the following topics, despite
some of them being covered extensively in the lecture notes:

e Maximal and weakly integrable functions, Vitali’s covering lemma and the Hardy-
Littlewood maximal inequality (§6.3 in the notes)

e Functions of bounded variation and the proof that non-increasing absolutely conti-
nuous functions are integrals (§6.5.2 in the notes)

e Alternative approaches to proving the FTC without Radon-Nikodym (§6.5.3 in the
notes)

e Why certain functions are nowhere differentiable (§8.8 in the notes)
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Fubini’s theorem for distributions (§10.4 in the notes)
Distributions with compact support (§10.7 in the notes)

The topology of the space Z(2) of test functions (§10.8 in the notes): to clarify, I
will definitely expect you to understand what convergence of a sequence in Z(f2)
and continuity of a linear functional A : 2(Q2) — V mean, but you need not worry
about what the open sets in Z(12) are.

The spaces H*(R") for s < 0, H*(€2), H*(Q) and H§(Q) for open domains 2 < R,
and the properties of the operator A : H}(Q) — H~1(Q) (§2 and the last four
exercises in the separate notes on Fredholm operators)

The functional calculus for unbounded self-adjoint operators and Stone’s theorem
(contents of the final lecture)

How to study

Aside from reviewing homework, I can give the following advice about reviewing the
course material. When reviewing an important theorem, ask yourself and try to answer
the following questions:

(a)

What is it good for?
Try to find a few examples of other theorems in the course or applications we dis-
cussed in which this theorem shows up as an essential ingredient.

Why, in a nutshell, is it true?
In other words, don’t try to memorize the proof, but see if you can discern a main
idea or trick that summarizes why the proof works.

Why are the hypotheses what they are?

Think about how each individual hypothesis is used in the proof, especially those
hypotheses that involve essential definitions like the completeness of a Banach space,
or a subspace being closed. Consider how far you can alter the hypotheses before the
theorem becomes false. (There have sometimes been homework problems exploring
such questions.)

Similarly, when reviewing an important definition, ask yourself:

(a)

What, in a nutshell, is it?
Try to give an informal summary of the definition in only one sentence, even if only
by an analogy (or a picture!).

What are some examples and non-examples?
If the definition is a condition, find some examples of things that satisfy the condition,
and also some examples of things that don’t.

What is it good for?

A common mathematical saying is that a good definition should always be a hypo-
thesis for a good theorem. (If it is not, then the definition isn’t good.) Find a few
examples of theorems for which this definition is an essential hypothesis.

Here are some examples of this strategy in action.
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Example 1. Definition: Uniform convexity.

(a)

What, in a nutshell, is it?

A normed vector space is uniformly convex if the unit ball is “round” in a quantitative
sense described via the midpoint between two arbitrary points on its boundary. (This
can be expressed better with a picture.)

What are some examples and non-examples?

All inner product spaces are uniformly convex, and so are most of our favorite Banach
spaces, e.g. LP(X) for every p € (1,00), but L'(X) and L®(X) are not. (I don’t think
we ever talked about any other examples, so I wouldn’t suggest trying to think up
more examples now.)

What is it good for?

The main immediate application is the theorem in Example 2] below, which is used in
the proof of the Riesz representation theorem. One can also use uniform convexity
to turn weakly convergent sequences x,, — x into strongly convergent sequences
xn, — x under the extra condition that |z,| — |z| (Theorem 4.16 in the lecture
notes).

Example 2. Theorem (1.8 in the lecture notes): If X is a uniformly convex Banach space,
K c X is a closed convex subset and z € X\K, then K contains a unique point closest

to x.

(a)

What is it good for?

This was the main tool we used in proving that every Hilbert space H is V@ V= for
any closed subspace V < H, because z — v € V* for any z € H\V if v is the point
in V closest to x. A similar trick provides the existence result needed for the Riesz
representation theorem, both in Hilbert spaces and in LP(X) for 1 < p < o0.

Why, in a nutshell, is it true?

Choose a sequence v, € K whose distances to « converge to the infimum of all such
distances and use the uniform convexity condition to prove that v, is a Cauchy
sequence.

Why are the hypotheses what they are?

The theorem becomes false if X is uniformly convex but not complete, as the Cauchy
sequence in the proof-sketch above need not converge. This is why, for instance, there
can exist an (incomplete!) inner product space containing a closed codimension 1
subspace whose orthogonal complement is trivial (see Problem Set 2 #3).

Example 3. Definition: Compact operators.

(a)

(b)

What, in a nutshell, is it?
An operator between Banach spaces is compact if it sends bounded sets to sets with
compact closure.

What are some examples and non-examples?

Finite-rank operators (in particular, every linear map to a finite-dimensional space)
and limits of sequences of finite-rank operators are examples. More concrete examples
include the Sobolev inclusions H*(T™) — H!(R") for s > ¢, and certain operators
defined via convolutions (e.g. Problem Set 11 #3). Non-examples include all Banach
space isomorphisms in infinite dimensions.
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What is it good for?

Compact perturbations of Fredholm operators are always Fredholm, leading to the
so-called Fredholm alternative for operators of the form 1y — K with K : X — X
compact. Relatedly, the spectral theory of compact operators is not so different from
spectral theory in finite dimensions: the spectrum consists of isolated eigenvalues
with finite multiplicity (with the possible exception of 0), and in the self-adjoint
case, there is an orthonormal basis of eigenvectors.

Example 4. The open mapping theorem: surjective bounded linear operators T': X — Y
between Banach spaces X,Y map open sets to open sets.

(a)

What is it good for?

Mainly for proving the inverse mapping theorem, which gives every bounded linear
bijection a bounded inverse. The latter is used in proving e.g. that small perturba-
tions of Fredholm operators are Fredholm with the same index, that an injective
operator has closed image if and only if it is “bounded below” (Take-Home Mid-
term #4(a)), and that the resolvent Ry(T") of a closed operator 1" for A € C\o(T') is
a bounded operator.

Why, in a nutshell, is it true?

Because if T'e Z(X,Y) and Y = J,,cy T(Bn(0)), then the Baire category theorem
implies that at least one of the T'(B,(0)) has closure containing a ball. (That’s not
the entire proof, but the rest might be characterized as “nitpicky details”.)

Why are the hypotheses what they are?

If Y is not complete then it does not satisfy the Baire category theorem, so all of
the T'(B,(0)) might be nowhere dense, and it then becomes easy to find examples
where the inverse mapping theorem fails: e.g. if T € Z(H) is injective but has 0
as an approximate eigenvalue, then it is a bijection to its necessarily non-closed
image, and the inverse of this bijection is unbounded. (Easiest concrete example: a
multiplication operator T : L?(R) — L?(R) : u ~ Fu for any continuous bounded
function F : R — (0,00) whose image has 0 in its closure.)



