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Problems marked with p˚q will be graded. Solutions may be written up in German or

English and should be submitted electronically via the moodle before the Übung on the

due date. For problems without p˚q, you do not need to write up your solutions, but it is

highly recommended that you think through them before the next Tuesday lecture. You

may also use the results of those problems in your written solutions to the graded problems.

Problem 1
For this problem, we consider functions valued in a fixed finite-dimensional complex inner

product space pV, x , yq. Recall that for s P R, the Hilbert space H
spRnq is defined to

consist of all tempered distributions f P S 1pRnq whose Fourier transforms pf P S 1pRnq
are represented by functions of the form pfppq “ p1 ` |p|2q´s{2

gppq for some g P L
2pRnq.

The inner product on H
spRnq is given by

xf, gyHs :“
A

p1 ` |p|2qs{2 pf, p1 ` |p|2qs{2pg
E

L2
.

If a distribution f P H
spRnq is representable by a locally integrable function, we generally

identify it with this function; note that this is always possible when s • 0, but not when

s † 0. For an open subset ⌦ Ä Rn
, the closure in H

spRnq of the space C
8
0 p⌦q of smooth

functions on Rn
with compact support in ⌦ defines a closed subspace rHsp⌦q Ä H

spRnq,
and the quotient of H

spRnq by the closed subspace of distributions that vanish on test

functions supported in ⌦ is denoted by H
sp⌦q.

(a) p˚q Given n P N, for which s P R is the Dirac �-distribution in H
spRnq? [3pts]

(b) Prove that S pRnq is dense in H
spRnq for every s P R.

(c) Prove that the pairing S pRnq ˆ S pRnq Ñ C : p', q fiÑ x', yL2 extends to a

continuous real-bilinear pairing

H
´spRnq ˆ H

spRnq Ñ C : pf, gq fiÑ xf, gy :“ xp1 ` |p|2q´s{2 pf, p1 ` |p|2qs{2pgyL2 ,

such that the real-linear map f fiÑ xf, ¨y sends H
´spRnq isomorphically to the dual

space of H
spRnq.

(d) Given an open subset ⌦ with compact closure in p0, 1qn, associate to each f P C
8
0 p⌦q

the unique function F P C
8pTnq such that fpxq “ F pxq for x P p0, 1qn. Show that

the map C
8
0 p⌦q Ñ C

8pTnq : f fiÑ F extends to bounded linear injections

L
2p⌦q – rH0p⌦q ãÑ L

2pTnq and rH1p⌦q ãÑ H
1pTnq

whose images are closed.

Hint: Avoid Fourier analysis here by replacing the usualH
1
-norm with the equivalent

norm }u} :“ ∞
|↵|§1 }B↵

u}L2 . This works equally well on Rn
or Tn

.

1
This version of the problem set has been revised to correct some errors that invalidated the original

version of Problem 1(j) (worth 5 points).
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(e) Deduce from the compactness of the inclusion H
1pTnq ãÑ L

2pTnq that the map

rHsp⌦q Ñ H
´sp⌦q : f fiÑ rf s is compact for every s • 1 and every bounded open set

⌦ Ä Rn
.

(f) Let � :“ ∞
n

j“1 B2
j
denote the Laplace operator. Show that the linear map

� : S pRnq Ñ S pRnq : u fiÑ u ´ 1

4⇡2
�u

has a unique extension to a unitary isomorphism � : H
1pRnq Ñ H

´1pRnq.
(g) Let I : H

´1pRnq Ñ pH1pRnqq˚
denote the real-linear isomorphism from part (c).

Show that the map rH1p⌦q Ñ
` rH1p⌦q

˘˚
: u fiÑ I�puq

ˇ̌
rH1p⌦q is an isometric real-linear

isomorphism, and deduce that rH1p⌦q Ñ H
´1p⌦q : u fiÑ r�puqs is an isomorphism.

Hint: Write down an explicit formula for I�puqf for u, f P rH1p⌦q.
(h) Deduce that rH1p⌦q Ñ H

´1p⌦q : u fiÑ r�us is a Fredholm operator of index 0.

(i) Show that the equation �u “ 0 has no nontrivial solutions u P C
8
0 pRnq.

Hint: What does integration by parts tell you about
≥
Rnxu,�uy dm?

(j) Prove that rH1p⌦q Ñ H
´1p⌦q : u fiÑ r�us is an isomorphism.

Hint: Extend the formula for
≥
Rnxu,�uy dm in part (i) to all u P rH1p⌦q, and use

this to prove injectivity.

Problem 2
Assume X is a complex Banach space and T P L pXq. We say that � P C is an approximate
eigenvalue of T if there exists a sequence xn P X with }xn} “ 1 for all n such that

p�´ T qxn Ñ 0. Prove:

(a) Every approximate eigenvalue of T belongs to the spectrum �pT q.
(b) p˚q If � P �pT q is neither an eigenvalue nor belongs to the residual spectrum of T ,

then it is an approximate eigenvalue of T . [4pts]

(c) p˚q For the operator T : `
1 Ñ `

1
: px1, x2, x3, . . .q fiÑ px2, x3, x4, . . .q, 1 is not an

eigenvalue but is an approximate eigenvalue. [4pts]

Problem 3
Given a complex Banach space X and T P L pXq, let T 1 P L pX˚q denote the transpose,

also known as the dual operator of T .
2
Prove:

(a) If � P �pT q is in the residual spectrum of T then it is an eigenvalue of T
1
.

(b) p˚q If � P �pT 1q is an eigenvalue of T
1
, then it is either an eigenvalue of T or belongs

to the residual spectrum of T . [4pts]

Now suppose X is a complex Hilbert space H, and T
˚
: H Ñ H denotes the adjoint

operator, defined via the condition xx, Tyy “ xT ˚
x, yy for all x, y P H. Prove:

(c) �pT ˚q “
 s� P C

ˇ̌
� P �pT 1q

(

(d) �pT q “ �pT 1q

Hint: T
˚
: H Ñ H and T

1
: H

˚ Ñ H
˚
are closely related via the complex-antilinear

isomorphism H Ñ H
˚
: x fiÑ xx, ¨y.

2
We have sometimes denoted T 1

in the past by T˚
, but will now be reserving the latter notation for

the adjoint of an operator on a complex Hilbert space.
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