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Problem 1
The Ricci tensor Ric € T'(TYM) can be defined on a Riemannian n-manifold (M, g) by

Ric(Y, Z) := Y (ej, R(e;,Y)Z) = ) Riem(ej,¢;,Y, Z) € R, for Y, Z e T,M, (1)
j=1

j=1
where e1, ..., e, is any choice of orthonormal basis of T}, M at a point p € M. The following
sequence of exercises is aimed showing that this definition does not depend on the choice
of basis ey, ..., ey, and also generalizing it to the pseudo-Riemannian case:

(a) Use the Einstein summation convention to give a one-line proof that tr(AB) =
tr(BA) for all pairs of square matrices A and B.

(b) Define tr(A) for any linear map A : V' — V on a finite-dimensional vector space V.
(There is only one reasonable definition. Show that it is independent of choices.)

(c) Show that Ric(Y, Z) according to is the trace of the linear map T,M — T,M :
X - R(X,Y)Z.

(d) If (M, g) is a pseudo-Riemannian manifold, then the trace in part (c¢) can be taken
as a definition of Ric, but the formula is not quite right if g is indefinite. Fix it.

(e) Show that in local coordinates, the components Ry of Ric are given by Ryy = Riik:e‘
The trick used above to turn a type (1, 3) tensor into a type (0, 2) tensor is called contrac-

tion. One can contract further to define the scalar curvature, a function Scal : M — R
that, on a Riemannian manifold (M, g), can be written as

n n
Scal(p) := 2 Ric(ej, e5) = Z Riem(e;, e, ex, ex) € R, (2)
Jj=1 Jk=1
where eq, ..., e, € T, M again denotes an orthonormal basis.

(f) Show that is independent of the choice of orthonormal basis e1,...,e, € T,M
by reinterpreting it as a contraction (i.e. trace) of the tensor Ric* € I'(T} M) defined
via the relation (Y, Ric*(Z)) = Ric(Y, Z).

(g) Taking the trace in part (f) as a general definition of Scal : M — R for pseudo-
Riemannian manifolds (M, g), rewrite (2)) so that it is also valid when g is indefinite.

(h) Show that in local coordinates, Scal = g**R?,, .

(i) Prove that if dim M = 2, then R € I'(T4 M) is fully determined by Scal : M — R.
Hint: Use the antisymmetry relations satisfied by the covariant Riemann tensor Riem.

(j) Show that on a Riemannian 2-manifold, Scal is twice the Gaussian curvature Kg.
Problem 2

Prove: A closed surface ¥ in Euclidean R? cannot have Kg < 0 everywhere.
Hint: For some R > 0, ¥ must lie inside the closed ball of radius R and touch its boundary
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tangentially at some point.

Problem 3

1
Prove that for the hyperboloid H := {z? + y? — 2% = 1} in Euclidean R3, Kg(p) = —

1
Hint: This can be a horrible computation, but it doesn’t have to be. For instance, ther(|ap5|zre
some obvious isometries that make it sufficient to consider a point of the form (r,0, z) € H
with r2 — 22 = 1, which is the intersection of the smooth curves a(t) = (cosht,0,sinht)
and B(t) = (rcost,rsint, z) in H. Since H is a level set of f(z,y,2) = 2% + y* — 22, there
is a unit normal vector field of the form v = g -V f for some function g : H — (0,00). Try
to convince yourself without any calculations that the curves « and (8 are tangent to the
principal directions, i.e. the eigenvectors of the linearized Gauss map. Then consider the
following: if you know ~(t) € H satisfies %V(’y(t)) = \Y(t) for some X\ € R, what happens
if you take the inner product of both sides with (t)? Write v = g -V f and use this
observation to compute the two principal curvatures at (r,0,z). You will need to write
down the function g for this, but you should not need to differentiate it.

Final remark: It’s also possible there’s an easier way to do this that I haven’t thought of.

Problem 4

In Problem 3 on the take-home midterm, we established that the geodesic curves on the
Poincaré half-plane (H, h), defined as H := {(z,y) € R? | y > 0} with h := y%(de + dy?),
are the vertical lines and the semicircles that meet the z-axis orthogonally.

(a) Write down the Riemannian volume form on (H, k), and show that any region of the
form [a, b] x [¢,00) < H for —00 < @ < b < 00 and ¢ > 0 has finite area, while regions
of the form [a, b] x (0, ¢] < H have infinite area.

(b) By drawing pictures, show that the sum of the angles in a geodesic triangle in (H, h)
can be arbitrarily small. (By “geodesic triangle” we mean a compact region in H
bounded by three geodesic segments.)

(c) Pretend for the moment that you don’t know (H, h) is isometric to the hyperbolic
plane, and compute its Gaussian curvature.
Note: Since (H, h) is not given as a submanifold of R, one should define K¢ : H — R
in this case as the unique function satisfying R(X,Y)Z = —Kg dvol(X,Y)JZ.

Problem 5

Suppose 7 : E— M is a complex line bundle with a bundle metric {, ), so it has structure
group U(1). Since U(1) is abelian, we showed in lecture that any metric connection
V on E — M gives rise to a globally-defined imaginary-valued curvature 2-form F €
O2(M,u(1)) = Q2(M,iR), which matches dA, on U, = M for any U(1)-compatible local
trivialization @, : Ely, — Uy x C with connection 1-form A, € Ql(M u(1)). Show that if
V is a second metric connection on E — M with curvature 2-form F' € 0?(M,u(1)), then
F — F is exact. The cohomology class ¢ (E) := [ F] € H3z(M) is thus independent
of the choice of connection; it is known as the first Chern class of E.

Hint: The two connections differ by a bililinear bundle map B : TM @ E — E satisfying
B(X,v) = Vxv — Vxv. Reinterpret this as an End(F)-valued 1-form, and then as a
complex-valued 1-form, using the fact that fibers of E are 1-dimensional.



