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PROBLEM SET 6

1. Viewing S1 as the unit circle in C, fix a generator rS1s P H1pS
1;Zq � Z and use it to deter-

mine local orientations rCsz P HnpC,Cztzu;Zq for every point z P C via the natural isomorphisms
H2pC,Cztzu;Zq � H2pDz, BDz;Zq � H1pBDz;Zq, where Dz � C denotes the closed unit disk centered
at z, whose boundary is canonically identified with S1. This choice will be used in the following for
the definition of local degrees of maps f : U Ñ C defined on open subsets U � C; note that changing
the generator rS1s P H1pS

1;Zq does not change the definition of degpf ; zq since it changes both rCsz
and rCsfpzq by a sign.

(a) Show that if f : C Ñ C is of the form fpzq � pz � z0q
kgpzq for some z0 P C, k P N and g a

continuous map with gpz0q � 0, then degpf ; z0q � k.

(b) Can you modify the example in part (a) to produce one with degpf ; z0q � �k for k P N?
(c) Suppose U � C is open and f : U Ñ C is continuous with fpz0q � w0 and degpf ; z0q � 0 for some

z0 P U , w0 P C. Prove that for any neighborhood V � U of z0, there exists an ϵ ¡ 0 such that
every continuous map pf : U Ñ C satisfying | pf � f |   ϵ maps some point in V to w0.
Remark: I have stated this problem for maps on C just for convenience, but one can do something
similar with maps on open subsets of Rn for any n P N.

(d) Find an example of a continuous map f : C Ñ C that has an isolated zero at the origin with
degpf ; 0q � 0 and admits arbitrarily small continuous perturbations that are nowhere zero.
Hint: You should probably not think in complex terms, but instead identify C with R2.

(e) Let f : S2 Ñ S2 denote the natural continuous extension to S2 :� CYt8u of a complex polynomial
CÑ C of degree n. What is degpfq?

(f) Pick a constant t0 P S1 and let A � S1 _ S1 denote the subset tpx, yq | x � t0 or y � t0u �
S1 � S1 � T2. Show that T2{A � S2, and that the quotient map T2 Ñ T2{A has degree �1
(depending on choices of generators for H2pT2;Zq and H2pS

2;Zq).

2. Suppose f : Sn Ñ Sn is any continuous map, and p� P ΣSn � C�S
n YSn C�S

n is the vertex of the
top cone in the suspension ΣSn � Sn�1. What is degpΣf ; p�q? Use this to give a new proof (different
from the one we saw in lecture) that degpΣfq � degpfq.

3. (a) Show that every map Sn Ñ Tn has degree 0 if n ¥ 2.
Hint: Lift Sn Ñ Tn to the universal cover of Tn.

(b) Show that for every d P Z and every Z-admissible n-dimensional manifold M with n ¥ 1, there
exists a map M Ñ Sn of degree d.
Hint: Try a map that is interesting only on some n-ball in M and constant everywhere else.

4. For these problems you need to use the mod 2 degree, since RP2 and the Klein bottle are Z2-admissible
but not Z-admissible. (This is because they are closed and connected but not orientable).

(a) Find an example of a map RP2 Ñ S2 that cannot be homotopic to a constant.

(b) Same problem but with RP2 replaced by the Klein bottle.
Hint: Problem 1(f) might provide some useful inspiration.

5. The following exercise involves point-set topological issues that are related to the reason why compact
subsets of CW-complexes are always contained in finite subcomplexes. The set R8 :�

À
jPN R consists

of all sequences of real numbers px1, x2, x3, . . .q such that at most finitely many terms are nonzero.
Identifying Rn for each n P N with the subset

 
px1, x2, x3, . . .q P R8

�� xj � 0 for all j ¡ n
(
,
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we can define a topology on R8 such that a set U � R8 is open if and only if U X Rn is an open
subset of Rn (with its standard topology) for all n P N.1 Notice that every element x P R8 belongs
to Rn for sufficiently large n P N. Prove that for any convergent sequence xk Ñ x P R8, there exists
a (possibly larger) number N P N such that xk P RN for all k. Deduce from this that every compact
subset K � R8 is contained in RN for some N sufficiently large (depending on K).

6. For integers g ¥ 0 and m ¥ 1, let Σg,m denote the compact surface with boundary obtained by
deleting m open disks from the closed oriented surface Σg of genus g. Assuming the isomorphism
between singular and cellular homology, compute H�pΣg,m;Gq with G an arbitrary coefficient group.
Hint: Since singular homology is homotopy invariant, you are free to replace Σg,m by a CW-complex
that is homotopy equivalent to it.

7. The complex projective n-space CPn is a compact 2n-manifold defined as the set of all complex
lines through the origin in Cn�1, or equivalently,

CPn � pCn�1zt0uq
L
�

where two points z, z1 P Cn�1zt0u are equivalent if and only if z1 � λz for some λ P C. It is conven-
tional to write elements of CPn in so-called homogeneous coordinates, meaning the equivalence class
represented by pz0, . . . , znq P Cn�1 is written as rz0 : . . . : zns. Notice that CPn can be partitioned into
two disjoint subsets

Cn � tr1 : z1 : . . . : zns P CPnu and CPn�1 � tr0 : z1 : . . . : zns P CPnu.

(a) Show that the partition CPn � Cn Y CPn�1 gives rise to a cell decomposition of CPn with one
2k-cell for every k � 0, . . . , n.

(b) Using the isomorphism between singular and cellular homology, compute H�pCPn;Gq for an
arbitrary coefficient group G. Hint: This is easy.

1This is the right topology so that the subspace topology on the set of unit vectors S8 � R8 matches the topology defined
on S8 via the infinite-dimensional cell decomposition we discussed in lecture.
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